Microsoft Word - MATRICE ZADACI ii deo

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - MATRICE ZADACI ii deo"

Транскрипт

1 MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x x = b n n x + x x = b... n n x + x x = b n n Ovde su: x, x,... x n nepoznte, brojevi ij su koeficijenti b, b,... b su slobodni člnovi. Iz ovog siste i izvlčio tri trice:... n... n. A=..... n je tric siste... n b.. n b A= n b je proširen tric siste b b B=.. b je tric s slobodni člnovi. Kd je A kvdrtn tric, to jest kd je broj jednčin siste jednk s broje nepozntih, ond tkv siste nzivo kvdrtni. Ako je i det A ond je on Krerovski. Ako je B nul tric, siste je hoogen. (desno su sve nule) Ako B nije nul tric, siste je nehoogen. ( br jedn slobodn čln nije nul)

2 Koristeći ove trice, jsno je d siste ožeo zpisti ko : A X = B gde je X x x =.. x rešenje siste. Još neki izrzi se upotrebljvju često, p i njih d objsnio: - jedinstveno rešenje je kd siste i so jedno rešenje ( odredjen je) - kd siste i više od jednog rešenj kže se d je neodredjen - kd siste i rešenj, bez obzir dl je jedno il beskončno nogo njih, kže se d je rešiv ( sglsn, neprotivrečn) - kd siste ne rešenj kže se d je nerešiv ( nesglsn, protivrečn) Teore ( Kroneker- Kpeli) kže: ( vži z nehoogen siste) Siste i rešenje ko i so ko je rng trice siste jednk rngu trice proširenog siste, tj r( A) = r( A) Ako siste i ksiln rng n, vži: i) rešenje je jedinstveno ko je r( A) = r( A) = n ii) siste i beskončno nogo rešenj ko je r( A) = r( A) < n Često se jvlj proble kd postro hoogen siste: x + x x = x + x x =... n n n n x + x x = n n Ovj siste uvek i rešenje (,,,...,). Ovo se rešenje nziv trivijlno rešenje.

3 Pito se kd siste i i netrivijln rešenj? Hoogen siste i netrivijln rešenj ko i so ko je rng trice siste nji od broj nepozntih. Posledic ove teoree je : Ako u hoogeno sisteu vži d je broj jednčin nji od broj nepozntih, ond siste i netrivijln rešenj. Pre nego li kreneo s zdci, svetujeo v d još jedno pročitte i proučite fjl trice, posebno deo vezn z trženje rng trice. ZADACI. Odrediti rng trice u zvisnosti od pretr. A= 5 4 Rešenje: Pre nego li krenete d prvite nule ispod glvne dijgonle, nije loše d pretr prebcio d je u zdnjoj vrsti, n krjnjoj desnoj poziciji. Zto ćeo njpre d zenio est prvoj vrsti i trećoj vrsti. 4 A= 5 5 Sd prvio nule n nznčeni esti III vrst inus I vrst ponožen s ide u III vrstu II vrst inus I vrst ponožen s ide u II vrstu 4 4 A 5 7 Sd prvio još jednu nulu n estu

4 Od III vrste oduzeo II i to upišeo uesto treće vrste A Uočio poziciju 7 ( ) Jsno je d ko je z + = =, rng trice, jer io tricu 7 4 A, ko je, rng trice je tri, jer dobijo tricu 7, čij deterinnt je rzličit od nule, jer + ko se sećte, vrednost deterinnte ove trice je proizvod brojev po glvnoj dijgonli: det A= ( 7) ( + ). Odrediti rng trice u zvisnosti od pretr. A= Rešenje: Prvio nule n esti A=. II vrst I vrst n esto II vrste III vrst I vrst n esto III vrste IV vrst I vrst ponožen s n esto IV vrste A=. Sd prvio nule n esti 4

5 Uočio treću kolonu. U njoj već i nul koje n treb. Zto ćeo zeniti est II i III koloni. A sbereo II i IV vrstu p n IV Dlje oro nprviti nulu n uokvireno estu: + Sbereo IV i III vrstu i to upišeo n estu IV vrste ( )( ) Odvde je već izvesno: Ako je + rng trice je 4. Ako je = = tric postje 4 4 p je rng trice.ako je = io d je rng Dokzti d sledeći siste i netrivijln rešenj: x+ y z t u = x+ 4y 5z t u= x+ y z t u= x+ 5y z t u= Rešenje: 5

6 Ovde n je poso d dokžeo d je rng nji od ksilnog ogućeg rng( to jest od 4), jer je siste hoogen i vži: Ako u hoogeno sisteu vži d je broj jednčin nji od broj nepozntih, ond siste i netrivijln rešenj. Uočio tricu siste: Ko i obično, njpre prvio nule n esti II vrst - I vrst ponožen s ide n esto II vrste III vrst - I vrst ponožen s ide n esto III vrste IV vrst - I vrst ponožen s ide n esto IV vrste Sledeće nule orju biti n esti: III vrst ponožen s dv inus II vrst ide n esto III vrste IV vrst ponožen s dv plus II vrst n esto IV vrste Dobijo tricu: 8 6

7 Jsno je d je rng ove trice, što je nje od ksilnog rng, to jest, dokzli so d siste i netrivijln rešenj. U sledeće prieru ćeo pokzti kko se on trže U zvisnosti od pretr diskutovti rešenj siste: x+ y+ z+ t= x+ y+ ( + ) z+ t = x+ ( + ) y+ z+ t = x+ y+ z+ 4t= Rešenje: Opet se rdi o hoogeno sisteu... + A= + 4 Prvio nule: IIvrst Ivrst IIvrst IIIvrst Ivrst IIIvrst IVvrst Ivrst IVvrst + A= + 4 ( ) ( ) 4 Zenio est II i III vrsti... + A= + 4 ( ) ( ) 4 ( ) ( ) 4 IVvrst+ IIvrst IVvrst 7

8 A ( ) ( ) 4 ( ) 8 I još d nprvio nulu n uokvireno estu: ( ) 8 IVvrst+ IIIvrst IVvrst A ( ) Ko rng ove trice or biti nji od 4, d bi siste io netrivijln rešenj, n estu 4 5 or biti. Dkle: 4 5 = b± b 4c ± + 5 4=, = = = = ( 4) Postoje dve vrednosti z pretr, z koje siste i netrivijln rešenj. Moro proučiti obe ogućnosti. 8

9 z = 4 5 Iz treće vrste io z= z= Iz druge vrste io y= y= Iz prve vrste io x+ y+ z+ t= x+ t = x= t Rešenje je dkle ( x, y, z, t) = ( t,,, t) gde je t R z = Iz treće vrste io 9t -8 z+ 9t = 8z= 9t z= 8 Iz druge vrste io 9t -8 y+ 9t = 8y= 9t y= 8 Iz prve vrste io 8t 7t x+ y+ z 7t= x+ + 7t= 8 8 t 8x+ 8t+ 7t 56t= 8x= t x= 8 t 9t 9t Rešenje je dkle ( x, y, z, t) = (,,, t) gde je t R Zključk bi bio: Z, 7 siste i so trivijln rešenj (,,,) Z = siste i rešenj ( x, y, z, t) = ( t,,, t) gde je t R Z = -7 siste i rešenj t 9t 9t ( x, y, z, t) = (,,, t) gde je t R

10 5. U zvisnosti od pretr diskutovti rešenj siste: x+ y+ z= x+ y+ z= x+ y+ z= Rešenje: Ovde se rdi o nehoogeno sisteu. Mtric siste je A=, tric proširenog siste je A=. U trici proširenog siste prvio nule n već opisni nčin... A= njpre nule n ov dv est A= još ovde d nprvio nulu = + ( )( + ) ( )( + ) A ( )( ) Sd koristio Kroneker Kpelijevu teoreu: Siste i rešenje ko i so ko je rng trice siste jednk rngu trice proširenog siste, tj r( A) = r( A) Ako siste i ksiln rng n, vži: i) rešenje je jedinstveno ko je r( A) = r( A) = n ii) siste i beskončno nogo rešenj ko je r( A) = r( A) < n

11 Postrjo ( )( + ). ( )( + ) ( )( + ) D bi siste io jedinstveno rešenje, rng siste or biti jednk rngu proširenog siste. Ond je jsno d n uokvireni pozicij NE SMEJU biti nule. To je znči uslov d siste i jedinstveno rešenje. ( )( + ) Kko je svk kolon vezn z po jednu nepozntu, krenućeo od treće vrste, nći nepozntu z, p iz druge vrste nći nepozntu y i n krju iz prve vrste nći nepozntu x. ( )( ) + ( )( + ) ( )( + ) x y z treć jednčin: ( )( + ) z= ( )( + ) z=, nrvno z,, drug jednčin: ( )( + ) y+ ( ) z= ( )( + ) y+ ( ) = ( )( + ) y= + ( )( + ) y= + + y= y= ( ) ( + ) prv jednčin: x+ y+ z= x+ + = x= Dobili so jedinstveno rešenje: ( x, y, z) = (,, ) Ali tu nije krj zdtk... Moro ispitti i situcije kd je + = = i = =

12 Z = ( )( ) + ( )( + ) ( )( + ) Vrednost = so zenili u dobijenoj trici. Novonstl tric n govori sledeće: Rng siste je, jer postro so rešenj. rng proširenog siste je. Znči d ovde siste ne Z = ( )( + ) 4 ( )( + ) ( )( + ) Ovde je rng siste jednk rngu proširenog siste, tj r( A) = r( A) = < 4, li kko je rng nji od ksilnog rng, siste će iti beskončno nogo rešenj, odnosno : neodredjen je. drug jednčin: y z= 4 y= z 4 z 4 y= prv jednčin: x+ y+ z= z 4 x+ + z= z x= Dve nepoznte, x i y, so izrzili preko treće, preko z. Rešenj su : z z 4 ( x, y, z) ( =,, z) z R

13 6. U zvisnosti od pretr p, diskutovti i rešiti siste: x+ y+ z+ 5u= x+ y+ z+ u = x+ y+ z+ u= x+ y+ z+ pu= Rešenje: Oforio tricu proširenog siste i rdio opisni postupk... 5 IIvrst Ivrst IIvrst IIIvrst Ivrst IIIvrst IVvrst Ivrst IVvrst p II i III vrst zene est p IIIvrst IIvrst IIIvrst IVvrst IIvrst IVvrst - -4 p p- - Ispod glvne dijgonle so nprvili nule. Sd diskutujeo. Uočio poziciju s pretro od koje n zvisi rng siste: Ako je ovde nul, to jest, ko je p=, - 5 p vidio d je rng trice siste d je rng trice proširenog siste 4, po teorei Kroneker Kpelij td siste ne rešenj. Dkle, d bi siste io rešenj, or d je p- p

14 Sd kreneo od četvrte vrste i tržio vrednosti nepozntih...evo d npišeo sve četiri jednčine: x+ y+ z+ 5u= iz prve vrste y z 4u= iz druge vrste z+ u= 5 iz treće vrste ( p ) u= iz četvrte vrste ( p ) u= u= p z+ u= 5 z= u 5 5 p+ 7 5p z= 5 z= z= p p p itd Dobijo rešenje: 7 5 ( ), p, p u= z= y=, x= p p p p p Evo jednog prier kko rešiti siste jednčin pooću inverzne trice. 7. Rešiti siste: Rešenje: x+ y+ z= 9 x+ y+ z= 6 x+ y+ 4z= Iz zdtog siste njpre izdvojio trice: A= 4 X x = y z 9 B= 6 Oforio tričnu jednčinu: AX = B X = A B A = dja det A 4

15 Sd rdio ceo postupk... det A= = = =, znči d postoji inverzn tric 4 4 A= 4 A =+ = ; A = = ; A =+ = ; 4 4 A = = ; A =+ = ; A = = ; 4 4 A =+ = ; A = = ; A =+ = dja= A A = dja det A = = X A B = X = = + = 9+ 4 X = Rešenje je dkle: ( x, y, z ) = (4,,) Vidite i si d je ovj postupk težk, p g prienjujte so kd to od vs izričito trže 5

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._) EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih

Више

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205) VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n

Више

Microsoft Word - integrali IV deo.doc

Microsoft Word - integrali  IV deo.doc INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c

Више

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc) EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij

Више

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - INTEGRALI  ZADACI.doc INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc) VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku

Више

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2

Више

Microsoft Word - GEOMETRIJA 3.4..doc

Microsoft Word - GEOMETRIJA 3.4..doc 4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,

Више

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo

Више

Microsoft Word - Integrali III deo.doc

Microsoft Word - Integrali III deo.doc INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o

Више

1. Realni brojevi

1. Realni brojevi .. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo

Више

Microsoft Word - MATRICE.doc

Microsoft Word - MATRICE.doc MARICE (EORIJA) Z prvougonu ( kvrtnu ) šemu rojev (i,,,m j,,,n ):............ n n m m mn kžemo je mtri tip m n. Brojevi su elementi mtrie. ip mtrie je vrlo itn stvr : k kžemo je mtri tip m n, to znči on

Више

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti

Више

Microsoft Word - 26ms281

Microsoft Word - 26ms281 Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije

Више

Microsoft Word - 26ms441

Microsoft Word - 26ms441 Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,

Више

Zad.RGS.2012za sajt [Compatibility Mode]

Zad.RGS.2012za sajt [Compatibility Mode] n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo) VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe

Више

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D, Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri

Више

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij

Више

untitled

untitled Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme

Више

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

Microsoft Word - IZVODI _3. deo_.doc

Microsoft Word - IZVODI _3. deo_.doc IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio

Више

trougao.dvi

trougao.dvi Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

1

1 Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi

Више

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd

Више

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

Microsoft Word - Analiticka - formule.doc

Microsoft Word - Analiticka - formule.doc . Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju

Више

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart Univerzitet u Nišu Prirodno - mtemtički Fkultet Deprtmn z mtemtiku Višestruko osigurnje - Mster rd - Mentor: dr Mrij Milošević Niš, Mrt 213. Student: An Jnjić 2 Sdržj 1 Uvod 5 2 Osnovni pojmovi 7 2.1 Motivcioni

Више

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA

Више

Microsoft Word - PRIMENA INTEGRALA.doc

Microsoft Word - PRIMENA INTEGRALA.doc PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo

Више

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1 kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.

Више

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof.

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof. PRIRODNO-MATEMATIČKI FAKULTET Univerzie u Nišu MASTER RAD Krmine prvilno promenljive funkcije i linerne diferencijlne jednčine Menor: Prof. dr Jelen Mnojlović Suden: Krin Kosdinov Niš, 2015. Sdržj 1 Krmine

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

Microsoft Word - SISTEMI DIFERENCIJALNIH JEDNACINA,zadaci.doc

Microsoft Word - SISTEMI DIFERENCIJALNIH JEDNACINA,zadaci.doc SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: 7 d Ša j idja kod ovih adaaka? Jdnu od jdnačina difrniramo, o js nañmo ivod l jdnačin i u amnimo drugu jdnačinu. Moramo da

Више

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Slide 1

Slide 1 DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u f Dinmički sistem Ulzi Izlzi (?) i, ϕ[ i ], ωθ, m m f f U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA

Више

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n 4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

PI1_-_funkcije_i_srednja_log._temp._razlika

PI1_-_funkcije_i_srednja_log._temp._razlika lternativni način određivanja značaji istosjernog i protusjernog reuperatora U zadnje izdanju, ao i u prethodni izdanjia, udžbenia Terodinaia II, [], dano je analitičo rješenje značaji o ovisnosti o značajaa

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Microsoft Word - Integrali vi deo

Microsoft Word - Integrali vi deo INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala

Више

Ime i prezime: Matični broj: Grupa: Datum:

Ime i prezime: Matični broj: Grupa: Datum: Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa

Више

ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА

ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

07_JS aktuatori.rev8_lr_bn [Compatibility Mode]

07_JS aktuatori.rev8_lr_bn [Compatibility Mode] Podsećnje... Poluprovodničke komponente koje se koriste u energetskim pretvrčim SW-kontrolisni prekidčki element (trnzistor ili tiristor) D-diod L-induktivnost C-kpcitivnost F1,F2-zštitni elementi (ultr

Више

I RAZRED x 1 1. Ako je f 2x 1 2x 2, x 1, naći: f x, 2 f x 2015 (što je, ustvari, f f x ) i f Rešiti u skupu Z: x y 15. Naći sva

I RAZRED x 1 1. Ako je f 2x 1 2x 2, x 1, naći: f x, 2 f x 2015 (što je, ustvari, f f x ) i f Rešiti u skupu Z: x y 15. Naći sva I RAZRED 805 Ako je f,, ći: f, f 05 (što je, ustvri, f f ) i f 4 4 Rešiti u skupu Z: y 5 Nći sv rešej Proizvod dv dvocifre broj zpis je smo pomoću četvorki Koji su to brojevi? Nći sv rešej 4 Ako je skup

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

SA D R Z A J Strana Predgovor II izdanj u ~ , 4 Predgovor Objasnjenje simbola Skupo

SA D R Z A J Strana Predgovor II izdanj u ~ , 4 Predgovor Objasnjenje simbola Skupo SA D R Z A J Predgovor II izdanj u........... ~........., 4 Predgovor......................... Objasnjenje simbola.................... 1. Skupovi.................... 7 1. 1. Podskup. Partitivni skup. Komplementni

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk U jednodimenzionlnoj kutiji, širine, nlzi se 000 neutron. U t 0, stnje svke čestice je ψx, 0 Axx. Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b Koliko čestic se nlzi u intervlu 0, ]

Више