Microsoft Word - MNOGOUGAO.doc
|
|
- Jan Bogunović
- пре 5 година
- Прикази:
Транскрипт
1 MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug, k seče ' ekveks mgug. kveks mgug ekveks mgug VŽI : ) je brj stric brj uutršjih uglv brj teme ) Zbir svih uutršjih uglv s rču p frmuli ( ) 8 Zbir svih spljšjih uglv je 36 4) Iz svkg teme mgugl mgu se pvući d 3 dijgl 5) Ukup brj dijgl je (
2 PRVILN MNOGOUGO je mgug kji im meñusb pdudre strice i uutršje uglve. Z prvile mguglve s stric vži: - O im s simetrije - k je brj stric pr je ujed cetrl simetrič - Ok svkg prvilg mgugl se mže pisti kružic čiji se cetri pklpju - Mže se pdeliti krkterističih jedkkrkih truglv čij su dv teme bil kj dv sused teme mgugl treće je u cetru pise tj upise kružice. - Zbir svih uutršjih uglv s rču p frmuli ( ) 8 - Jed uutršji ug je d α - Jed spljšji ug je α 36 ( 8 α +α ) - Zbir svih spljšjih uglv je 36 - Iz svkg teme mgugl mgu se pvući d 3 dijgl ( - Ukup brj dijgl je - k je duži strice d je bim mgugl O h - Pvrši se rču p frmuli P, gde je h visi krkterističg trugl - Cetrli ug je ϕ 36 ϕ 3 r r r u α α
3 ŠETOUGO E d 3 F 6 6 C r r y 6 B Prvili šestug se sstji d 6 jedkstričih truglv. O 6 bim 3 3 P 6 3 pvrši 4 d 3 ml dijgl velik dijgl r pluprečik pise kružice 3 r y pluprečik upise kružice Ev eklik primer z bvljje grdiv: 3
4 Pšt je u pitju sedmug, d je. ( ( 4 4 ( ) 8 ( ) (jer je brj dijgl tri put veći d brj stric) 3 ( 3 ( pkrtim i ) (
5 6 ) B) ( ) 8 6 ( ) ( ( 8 44 α 6 ) B) Iskristićem d je zbir uutršjeg i spljšjeg ugl 8 stepei i ći spljšji ug, d ćem prek spljšjeg ugl izrčuti. 5
6 α+ α α 8 α 8 6 α α lje ije tešk izrčuti brj dijgl: ( 8 ( (brj dijgl je pet put veći d brj teme ) 5 ( 5 ( pkrtim i ) ( d rčum zbir jegvih uutršjih uglv: ( ) (3 )
7 α Pkušćem d ñem brj stric, i tk utvrditi d li tkv mgug pstji! α+ α 8 + α 8 α 8 α α kle, tkv mgug e pstji! ϕ Zm d je cetrli ug jedk spljšjem uglu. kle: ϕ α α kle, tj mgug im 3 stric. ϕ 5 α Cetrli ug jedk je spljšjem uglu. T jest: ϕ α α+ α 8 α+ 5 8 α 8 5 α 65
8 α 5 ϕ ( cetrli ug je 5 put mji d uutršjeg) Cetrli ug jedk je spljšjem uglu: ϕ α tu jedkst mžem zpisti i k: α 5 α lje ćem frmiti sistem jedči: α 5α α+ α 8 5α + α 8 6α 8 α α I kč, brj stric tržeg mgugl je: α 3 Prv jed bjšjeje: mi sm cetrli ug beležvli s ϕ i g dju s α, d vs t e zbui. Zm d je cetrli ug jedk spljšjem, t ćem iskristiti d ñem uutršji ug! 8
9 α uutr Učim dlje trug BC. O je jedkkrki, zm d je jed ug 5. Kk je zbir uglv u svkm truglu 8, ći ćem tržei ug: CB Ncrtjm sliku i će m sve ispričti'': E 6 F C 3 B Zm d se šestug sstji iz 6 jedkstričih truglv. Uglvi u svkm d tih truglv su p Ug C je plvi d 6, dkle 3. Tkv je i ug CF 3 6. Js je d su uglvi trugl C: 3, 6 i
10 Ovj zdtk je vrl slič 34. zdtku l vde imm ug CB trebm ći cetrli ug! ϕ Trug BC je jedkkrki, jer su dve jegve strice istvreme i strice mgugl. kle i ug BC je. Od je uutršji ug mgugl : pljšji ug ( kji je jedk tržem cetrlm) je : BC 8 ( + ) 8 6 ϕ 8 6 Brj stric ćem ći iz frmule: ϕ E 3 F C B
11 4 3cm d cm d 3 d 3 3 d 3 d 6cm d 3 P d cm 3 P 6 4 P P 6 4 P 6 3cm
12 s x E 3 C 9 F B Kk je s s simetrije, t zključujem d je ug F 9 lje psmtrm četvrug FE. Zm d je zbir uglv u svkm četvruglu Kk zm tri ugl, lk ćem izrčuti epzti ug: 36. EF (9 3 ) EF EF 3
13 3
Microsoft Word - PLANIMETRIJA.doc
PLANIMETRIJA Mguglvi Za pravile mguglve sa straica važi: - O ima sa simetrije - Ak je brj straica para je ujed cetral simetriča - Ok svakg pravilg mgugla se mže pisati kružica čiji se cetri pklapaju -
ВишеMicrosoft Word - SVODJENJE NA I KVADRAT.doc
SVODJENJE NA I KVADRAT Ka št sm videli d sada, trignmetrijske funkcije uglva I kvadranta izračunavaju se na isti način ka trignmetrijske funkcije štrih uglva pravuglg trugla. Pkazaćem da se prek frmula,
ВишеMicrosoft Word - 26ms441
Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,
ВишеMicrosoft Word - GEOMETRIJA 3.4..doc
4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.
ВишеMicrosoft Word - ADICIONE FORMULE.doc
ADICIONE FORMULE Zbir uglva ( α+ β ) α csβ+ cs( α+ β ) csβ α + tg( α+ β ) c c ctg( α+ β ) c + c Razlika uglva ( α β ) α csβ cs( α β ) csβ+ α tg( α β ) c c+ ctg( α β ) c c Primećujete da su frmule za razliku
ВишеMLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički
MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti
ВишеI RAZRED x 1 1. Ako je f 2x 1 2x 2, x 1, naći: f x, 2 f x 2015 (što je, ustvari, f f x ) i f Rešiti u skupu Z: x y 15. Naći sva
I RAZRED 805 Ako je f,, ći: f, f 05 (što je, ustvri, f f ) i f 4 4 Rešiti u skupu Z: y 5 Nći sv rešej Proizvod dv dvocifre broj zpis je smo pomoću četvorki Koji su to brojevi? Nći sv rešej 4 Ako je skup
ВишеMicrosoft Word - INTEGRALI.doc
INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l
ВишеMicrosoft Word - VALJAK.doc
ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke
ВишеMicrosoft Word - 11ms201
Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)
VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku
ВишеMicrosoft Word - MATRICE ZADACI ii deo
MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n
ВишеMicrosoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
ВишеPowerPoint Presentation
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)
VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe
ВишеMicrosoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc
PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo
Више(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)
EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
Више(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)
EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih
Више(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)
VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеMicrosoft PowerPoint - NG_A-Perspektiva-2.ppt
Perspektiva Metrički zadaci dc. dr. sc. Mirna Rdić Lipanvić TTF Nacrtna gemetrija A Prblem: Kak drediti pravu veličinu dužine kja leži na sutražnici ili priklnici rizntalne ravnine, ili na vertikalnm pravcu,
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc
KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,
ВишеMicrosoft Word - Analiticka - formule.doc
. Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju
ВишеMicrosoft Word - 26ms281
Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije
ВишеMicrosoft Word - INTEGRALI ZADACI.doc
INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod
Вишеuntitled
EORIJA EEKRIČNIH KOA lic primri prmr mrž dv pr rv lic primri i udri prmr imriči mrž dv pr rv Prmri i idli ivi mrž dv pr rv Filri Fourir-ov rd priodič fuci S u olim ložopriodičim icim Fourir-ov rformci
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ
ВишеИспитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит
Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
Вишеwww.rgz.gov.rs/knweb 19.5.2016 16:07:15 Није службена исправа Подаци катастра непокретности Подаци о непокретности 1be81bd5 8824 4068 8dd3 290a5b5a4bef Матични број општине: 70874 Општина: Матични број
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo
ВишеMicrosoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode]
ODREĐIVANJE REDOSLEDA POSLOVA DŽONSONOV METOD P očetak k k k m in t i1 m a x t i2 ili m in t i3 m a x t i2 R e š e n je tre b a tra žiti n a d ru g i n ač in S vođenje p ro b le m a n x3 n a fik tiv a
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
Више1. Realni brojevi
.. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo
ВишеTrougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa
Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat
ВишеKORELISANOST REZULTATA MERENJA
Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje
ВишеIV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od
IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеT E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G
T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme
ВишеRITAM FORMS POSLOVNI PROCESI RAD S JOPPD OBRASCEM Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito Novi obrazac JOPPD Izmjene kod gla
Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito... 1 2. Novi obrazac JOPPD... 3 3. Izmjene kod glavne blagajne... 7 4. Izmjene kod doprinosa... 7 5. Iz je e kod predložaka vir a a... 9 6. Iz je e kod
ВишеNermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh
Slicnost trouglova Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a,, c su stranice trougla suprotne vrhovima A, B, C redom. -m a, m, m c su tezisnice iz vrhova A, B, C redom. -h a, h, h c su
Вишеtrougao.dvi
Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn
ВишеMicrosoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx
Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
Вишеnajbolja_ispravljeno.indd
2 3 Na pi sa la Džu li ja na Fo ster Ilu stro va la Aman da En rajt Ured ni ca Fi li pa Vin gejt Di zajn Zoi Kvejl Po seb no hva la Elen Bej li, Liz Ska gins, Džo Ruk i Kri su Mej nar du. Pre veo Ni ko
ВишеД И В Н А ВУ К СА НО ВИ Ћ ИГРА 566 ИГРА Жу рио је. Тре ба ло је да пре тр чи, и то без ки шо бра на, ра сто јање од Рек то ра та до Град ске га ле ри
Д И В Н А ВУ К СА НО ВИ Ћ ИГРА 566 ИГРА Жу рио је. Тре ба ло је да пре тр чи, и то без ки шо бра на, ра сто јање од Рек то ра та до Град ске га ле ри је, а да, при том, ка ко при ли ке на ла жу, из гле
ВишеMicrosoft Word - vjezbe_7.doc
VJEŽBE 7 Zadata 3 Brd čiji perid ljuljanja T Ф iznsi seundi, plvi brzinm v3 čvrva na valvima čija je valna duljina λ73 metra Ptrebn je drediti ut nailasa brda na valve pri jem će ljuljanje biti najveće
ВишеIErica_ActsUp_paged.qxd
Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi
ВишеBOSNA I HERCEGOVINA FEDERACIJA BOSNE I HERCEGOVINE TUZLANSKI KANTON GRAD TUZLA Sluiba za komunalne poslove, izgradnju i poslove mjesnih zajednica Broj
BOSA HRCGOVA DRACJA BOS HRCGOV TUZLASK KATO GRAD TUZLA Sluib kmunlne plve, igrnju i plve mjenih jenic Brj: 123 \'jc n f ul, 10.04.2O17. gine GRAD TUZLA GRADSKO VJ Preme: lnfrmcij reliciji kpilnih prjek
ВишеISSN COBISS.SR-ID Београд, 11. децембар Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је динара С
ISSN 0353-8389 COBISS.SR-ID 17264898 Београд, 11. децембар 2014. Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је 36.147 динара С А Д Р Ж А Ј М и н и с т а р с т в а Пра вил ник о
ВишеMicrosoft PowerPoint - Teorija kreanja vozila-predavanje 2.2.ppt
ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична взила, кинематика кретања Разматра се случај кретања взила у хризнталнј равни, са слнкретним механизмм кји има један пар гусеница. Упштен, путања при кретању
ВишеKnjiga 2.indd
СЛА ВО ЉУБ МАР КО ВИЋ СВЕ ТЛОСТ ПРО ДИ РЕ ДО БЕ ДЕ МА Ка да се раз бо лео отац, и пре не го што је умро, док је још причао да је мо гао и да се не ро ди, јер ње го ви ро ди те љи ду го ни су има ли де
ВишеMicrosoft Word - CLANAKzacasopis[2].doc Sandra Kosic.doc
MAT-KOL (Bj Luk) XIII()(007), Elemer riu ekim ekremlim rolemim dr Koić-Jeremić Uriičko-Grđeviki fkule Bj Luk Ekreme vrijedoi ojediih fukcij mogu e odredii i e ovj jihovih ivod. Z mldog memičr redjoškolc
Вишеу д и р е к т н ој ко м у н и к а ц и ји с а с р ијед о м љу дс ко с т и: Та ко је п р е к р и в е н а укуп ност те тра ди ци је у ко јој су сви ње ни
у д и р е к т н ој ко м у н и к а ц и ји с а с р ијед о м љу дс ко с т и: Та ко је п р е к р и в е н а укуп ност те тра ди ци је у ко јој су сви ње ни ви дљи ви об ли ци упра во оно ш т о у д а н о м н
ВишеПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в
ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те ве: 1.1. Сред ња вред ност ствар не ко ли чи не ни је
ВишеУНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 пое
УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке 30.06.2018. Писмени део испита из предмета Увод у рачунарство 1. [7 поена] Методом МакКласкија минимизарити систем прекидачких
ВишеRMT
VISOKA ŠKOLA STRUKOVNIH STUDIJA ZA INFORMACIONE TEHNOLOGIJE predvč mr Slobod Tomić, dipl. ig. RAČUNARSKA MATEMATIKA skript Beogrd, 0. S A D R ŽA J. UVODNI POJMOVI DISKRETNE MATEMATIKE. 5. Neki zci logičkih
Више58. Federalno takmičenje iz matematike učenika srednjih škola
58. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 4.0.018. godine PRVI RAZRED Zadatak 1 Ako su, i realni brojevi takvi da je 0, dokazati da vrijedi
Вишеу ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у
у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у је ов ом п и сц у. Е, с а д, д а л и ћ е С р д и ћ
ВишеMAT-KOL (Banja Luka) XXIV (3)(2018), DOI: /МК A ISSN (o) ISSN (o) ZAŠTO K
AT-KOL (Banja Luka) XXIV ()(018) 147-151 http://wwwmvblrg/dmbl/dmblhtm DOI: 10751/МК180147A ISSN 054-6969 () ISSN 1986-588 () ZAŠTO KOPLIKOVANO KADA OŢE JEDNOSTAVNO Dr Šefket Arslanagć Sarajev 1 Saţetak
ВишеDRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM
DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 1oţujka-travnja 011 5 razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA UKOLIKO UĈENIK IMA DRUGAĈIJI POSTUPAK RJEŠAVANJA, ĈLAN POVJERENSTVA DUŢAN JE
ВишеMicrosoft PowerPoint Stabilizatori 3 od 3 (16) EKM [Compatibility Mode]
Osnvi elektrnike Predispitne baveze: Redvn phađanje nastave (predavanja+vežbe) 10% Odbranjene labratrijske vežbe 10% Dmaći 20% Klkvijum I (prva nedelja u decembru) 40% Klkvijum II (pslednja nedelja predavanja)
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVN
Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školska 2016/2017. godina TEST
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеMicrosoft Word - Matematika_emelt_irasbeli_javitasi_0911_szerb.doc
Matematika szerb yelve emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIKA SZERB NYELVEN EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Важне информације
ВишеDEALER GENERAL
STANDARD OZNAČAVANJA OVLAŠTENOG CENTRA I KORIŠTENJA HONDA OZNAKA ZA 2012. GODINU 2. siječnja 2012. UVOD POTREBA ZA STANDARDOM Pred Hndu je pstavljen zahtjev da u kviru svjeg pslvanja pstavi kvalitativne
ВишеPrelom broja indd
ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 12 СМЕДЕРЕВО, 7. АВГУСТ 2009. ГОДИНЕ 189. ГРАДОНАЧЕЛНИК На осно ву чла на 69. став 3. За ко на о бу џет ском си стему ( Слу жбе ни гла сник Ре пу бли ке Ср би је, број 54/2009),
ВишеПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п
ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах
Вишеos07zup-rjes.dvi
RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI
ВишеZadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun
Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,
ВишеPRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil
PRIER 1 Srčuti stv cetričo ztegutog štp, u svemu prem sici. Štp je prvougoog poprečog prese b/h = 14/ cm, optereće je silom Zd = 116 N (stlo + sredjetrjo opt.). Nstv izvesti s dve drvee podvezice debljie
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
Вишекон с т ру к ц и ји, п а т и ме и у Л а зи ће в ој с т у д и ји. Д р е в но н а че ло е с т е т и ке си ме т ри ч но с т сп р о в е де но је не с а мо
кон с т ру к ц и ји, п а т и ме и у Л а зи ће в ој с т у д и ји. Д р е в но н а че ло е с т е т и ке си ме т ри ч но с т сп р о в е де но је не с а мо по с р ед с т в ом ју н а к а Но е м и с а, ду ал
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеPetar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2
Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne
ВишеNa osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St
Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac
ВишеX PUNTO BANCO Korisnički priručnik / Pravila 1. PREGLED IGRE Igru Punto Banco igrate u ulozi gledatelja. Djelitelj dijeli karte igraču i kući (djelite
X PUNTO BANCO Krisnički priručnik / Pravila 1. PREGLED IGRE Igru Punt Banc igrate u ulzi gledatelja. Djelitelj dijeli karte igraču i kući (djelitelju). Cilj je pgditi ruku u kjj je zajednička vrijednst
ВишеПре глед ни чла нак doi: /zrpfns Др Ми ла на М. Пи са рић, аси стент са док то ра том Уни вер зи тет у Но вом Са ду Прав ни фа к
Пре глед ни чла нак 343.133 doi:10.5937/zrpfns52-14778 Др Ми ла на М. Пи са рић, аси стент са док то ра том Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду M. Pi sa r ic @ p f.u n s.a c.r
ВишеREKLAMNI MATERIJALI SA ŠTAMPOM
2019 REKLAMNI MATERIJALI SA ŠTAMPOM www.mojpoklon.ba email: office@mojpoklon.ba tel: +387 (0)33 863 333 St. 2 Majica sa štampom, prednja strana M-01 12,00 KM 10+ kom. Dostupno: Model: muški, ženski Boje:
ВишеUNIVERZITET U ZENICI
8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)
ВишеRazvoj ekonomske misli
RAZVOJ EKONOMSKE MISLI EKONOMSKI FAKULTET PODGORICA dr JOVAN ĐURAŠKOVIĆ E K O N O M S K I I M P E R I J A L I Z A M Vdeći teretičar eknmskg imperijalizma Studije završi pd mentrstvm M. Fridmana Prfesr
ВишеРЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/ , 051/ ; p
РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 9 Бањалука, Тел/факс 01/40-110, 01/40-100; e-mail : pedagoski.zavod@rpz-rs.org Датум: 8.04.018. Републичко такмичење
Више