Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc
|
|
- Milena Ђукић
- пре 5 година
- Прикази:
Транскрипт
1 PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo n dv prvougl rougl : D i D. Možemo uočii d sv ri prvougl 0 rougl imju ise uglove α, β i γ = 90, p su medjusono slični. Iz njiove sličnosi proizilzi proporionlnos odgovrjući srni koj može d se formuliše ko : i) Hipoenuzin visin je geomerijsk sredin odsečk koje sm odse n ipoenuzi, o jes = p ii) Ke je geomerijsk sredin ipoenuze i ližeg odsečk ipoenuze, o jes = p i = ( ovo je Euklidov sv) iii) Trougo je prvougli ko i smo ko je + = ( ovo je Pigorin eorem) Dkle, sd z prvougli rougo znmo sledeće formule: + = p+ = = p = p = p = p = = + p = + = O= + + oim P= ili P= površin = ipoenuzin visin R= = poluprečnik opisne kružnie koji se nlzi n sredini ipoenuze + r= poluprečnik upisne kružnie
2 Primer. Odredii nepozne elemene skup {,,, p,, } ko je pozno: i) ii) p= 6m = 9m = 30m = 3m i) p= 6m = 9m Korisimo formulie ko šo prvo prondjemo onu gde nm se jvljju di elemeni: + = p+ = = p = p = + p = + = p= 6m = 9m p+ = = 6+ 9 = 5m = p = 6 9 = 3 = m = p = 5 6= 5 = 0m = = 5 9 = 5 3 = 5m ii) = 30m = 3m + = = = = = 338m = p p= = p= 50m p+ = = p = = 88m = p = 50 8 = 00 = 0m
3 Primer. Dokzi d u prvouglom rouglu vži jednkos: = + Krenućemo od desne srne jednkosi i doći do leve: + + = u rojiou immo + = p o zmenimo + + = = preimo rojil ispod imenio( osoin dvojnog rzlomk) + + = = = = znmo d je = ipoenuzin visin + + = = = = = ovim je dokz zvršen. Primer 3. U jednkokrkom rpezu osnovi 6m i 9m upisn je kružni. Izrčuni poluprečnik kružnie. D njpre nrmo sliku i posvimo prolem: D =9m =6m - Pošo se rdi o ngennom čevorouglu, znmo d zir nsprmni srni mor ii jednk. To ćemo iskorisii d ndjemo dužinu krk. 3
4 + = 6+ 9= 5 = 5 = m Sd primenimo Pigorinu eoremu d nñemo dužinu visine: = = = 576 = = = m Znmo d je poluprečnik upisne kružnie jednk polovini visine: r= r= r= 6m i evo rešenj. Primer. Dokzi d u svkom prvouglom rouglu z ežišne duži vži jednkos: + = 5 Nrjmo njpre sliku : Idej je d dv pu primenimo Pigorinu eoremu. Prvo primenjujemo n oeleženi rougo: = +
5 Sd n drugu srnu: = + Serimo ove dve jednkosi: = + seremo i... = + + = = = = 5( + ) + = U rojiou zmenimo = Ovde mlo prepkujemo: + = 5 Znmo d je + = 5 = s iz Pigorine eoreme... 5
6 Primer 5. ko su i osnovie, i d kri, d i d dijgonle rpez, d vži: d + d = + d +. Dokzi. Ko i uvek, nrmo sliku i ržimo ideju: D d d d I ovde ćemo uporeii Pigorinu eoremu. Izrzimo visinu rpez s iz žuog i iz rvenog rougl, p o uporedimo: D D d d d d D m n = d = d = d = + d = + ( + )( ) d = + ( + ) ( ) d = + ( ) = d m = d n d n = d m d = d + n m d = d + ( n+ m)( n m) d = d + ( n+ m) ( n m) d = d + ( n m) Sd ćemo sri ove dve jednkosi: d = + ( ) seremo i... d = d + ( n m) d + d = + d + ( ) + ( n m) d + d = + d + ( ) + ( n m) ispred zgrde... d + d = + d + ( + n m) preummo ovo u zgrdi... d + d = + d + ( m+ n ) d + d = + d + ( m + n ) pogledjmo sliku: ovi uokvireni dju d + d = + d + ( + ) d + d = + d + 6
7 Evo pr primer konsrukij rženi duži. Primer. De su duži i. Konsruisi geomerijsku sredinu i duži, o jes konsruisi Njpre ćemo nri dve proizvoljne duži: Nji zim spojimo ( posvimo jednu do druge), šo je prikzno n slii. slik. slik. slik 3. Ndjemo sredinu duži + i opišemo polukrug ( slik.). Iz mes presek duži podignemo normlu (slik 3.) T norml je rešenje, o jes on je geomerijsk sredin di duži. Zšo? P znmo d se enr opisne kružnie kod prvouglog rougl nlzi n sredini ipoenuze d je visin geomerijsk sredin odsečk... 7
8 Primer. Konsruisi duž čij dužin u odnosu n du jediničnu duž ( vi kd veže uzmie jediničnu duž m) iznosi: ) 5 ) 7 ) 5 Idej kod ovog ip zdk je d se podkoreni roj npiše ko proizvod dv roj ( ilo koj) i d se primeni znnje o konsrukiji geomerijske sredine: 5= 5 3 Dkle, uzmemo duži od 5m i 3 m, nrmo i jednu do druge, ndjemo sredinu( n m) i opišemo polukrug. Iz mes presek ove dve duži izdignemo normlu do presek s polukrugom i njen vrednos je = 5 5m 3m ) 7 Slično: 7 = 7 7 = 7 7m m 8
9 Primer 3. De su duži čije su dužine i. Konsruisi duž dužine: ) ) = + = ) = + ko kvdrirmo ovu jednkos, doijmo: = + = + Odvde zključujemo d je ržen duž usvri ipoenuz prvouglog rougl čije su kee i. slik. slik. slik 3. Uzmemo proizvoljne duži i. Prenesemo duž i konsruišemo prv ugo ( slik.) N oj poluprvi nnesemo dužinu (slik.) I kd o spojimo eo ržene duži.( slik 3.) ) = Kvdrirmo i doijemo: = = Ovde je dkle ržen duž ke prvouglog rougl s ipoenuzom i keom. slik. slik. slik 3. N duž konsruišemo prv ugo u emenu. Iz emen presečemo u poluprvu dužinom. Doili smo rougo, gde je ke rešenje nšeg zdk. 9
10 Primer. De su proizvoljne duži, i. Konsruisi duž: i) = + ii) = Ovi zdi su usvri kominij preodni, o jes korisi se i geomerijsk sredin i konsrukij prvouglog rougl. Du jednkos prvo mlo preprvimo = + = + kvdrirmo = ( ) + Prvo ćemo konsruisi, zim prvougli rougo s kem i. Hipoenuz og rougl je ržen duž. slik. slik. slik 3. ii) = = = = ( ) kvdrirmo Njpre konsruišemo zim prvougli rougo s keom i ipoenuzom dužine. Sd je ržen duž ke og rougl. N N slik. M slik. M slik 3. 0
11
Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc
KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,
ВишеMicrosoft Word - INTEGRALI ZADACI.doc
INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo
ВишеMicrosoft Word - GEOMETRIJA 3.4..doc
4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.
ВишеMicrosoft Word - VALJAK.doc
ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c
ВишеMicrosoft Word - Integrali III deo.doc
INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)
VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku
ВишеMicrosoft Word - MATRICE ZADACI ii deo
MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n
ВишеMicrosoft Word - IZVODI _3. deo_.doc
IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio
ВишеMicrosoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
Више(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)
EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci iii deo.doc
KRIVOLINIJSKI INTEGRALI zadai (III deo) Nezavisnos krivolinijskog inegrala od puanje inegraije Sledeća vrñenja su ekvivalenna: ) P (, y, z) d+ Q(, y, z) dy+ R(, y, z) dz ne zavisi od puanje inegraije )
ВишеT E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G
T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme
Више(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)
VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)
VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe
Више1
Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi
Вишеuntitled
Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u
ВишеIV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od
IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2
ВишеMicrosoft Word - 16ms321
Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.
Вишеtrougao.dvi
Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn
ВишеMicrosoft Word - 26ms281
Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije
Више(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)
EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih
ВишеMicrosoft Word - Integrali vi deo
INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala
ВишеMLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički
MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti
ВишеMicrosoft Word - 26ms441
Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,
ВишеStokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,
Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri
ВишеPRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof.
PRIRODNO-MATEMATIČKI FAKULTET Univerzie u Nišu MASTER RAD Krmine prvilno promenljive funkcije i linerne diferencijlne jednčine Menor: Prof. dr Jelen Mnojlović Suden: Krin Kosdinov Niš, 2015. Sdržj 1 Krmine
ВишеMicrosoft Word - 11ms201
Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (
ВишеMicrosoft Word - INTEGRALI.doc
INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi
ВишеMicrosoft Word - CLANAKzacasopis[2].doc Sandra Kosic.doc
MAT-KOL (Bj Luk) XIII()(007), Elemer riu ekim ekremlim rolemim dr Koić-Jeremić Uriičko-Grđeviki fkule Bj Luk Ekreme vrijedoi ojediih fukcij mogu e odredii i e ovj jihovih ivod. Z mldog memičr redjoškolc
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеMicrosoft Word - MNOGOUGAO.doc
MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
ВишеMicrosoft Word - IZVODI ZADACI _4. deo_
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Више{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p
{ Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te
ВишеMicrosoft Word - MATRICE.doc
MARICE (EORIJA) Z prvougonu ( kvrtnu ) šemu rojev (i,,,m j,,,n ):............ n n m m mn kžemo je mtri tip m n. Brojevi su elementi mtrie. ip mtrie je vrlo itn stvr : k kžemo je mtri tip m n, to znči on
ВишеMicrosoft Word - Analiticka - formule.doc
. Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju
Више(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i
ВишеMicrosoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt
Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна
ВишеPetar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2
Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne
Вишеuntitled
EORIJA EEKRIČNIH KOA lic primri prmr mrž dv pr rv lic primri i udri prmr imriči mrž dv pr rv Prmri i idli ivi mrž dv pr rv Filri Fourir-ov rd priodič fuci S u olim ložopriodičim icim Fourir-ov rformci
ВишеRepublika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska
Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
ВишеPowerPoint Presentation
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel
ВишеMicrosoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx
Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA
ВишеПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п
ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах
ВишеNa osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2.
Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2. Sta tu ta Ta ko vo osi gu ra nje a. d. o, Kra gu je
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеGlava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13
Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I 17 DOKUMENTACIJA KOJU KONTROLIŠE PORESKA INSPEKCIJA
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеSveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene
Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Zltko Trstenjk Određeni integrl i primjene u geometriji Zvršni rd Osijek, 8. Sveučilište J.J. Strossmyer
Вишеу ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у
у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у је ов ом п и сц у. Е, с а д, д а л и ћ е С р д и ћ
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
ВишеMicrosoft Word - KUPA-obnavljanje.doc
KUPA Kupa je oblo feometrijko telo čija je onova krug, a omotač je deo obrtne konune površi a vrhom u tački S. S r Oa kupe je prava koja prolazi kroz vrh kupe i centar onove kupe. Ako je oa normalna na
ВишеZad.RGS.2012za sajt [Compatibility Mode]
n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki
Више1. Realni brojevi
.. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo
Вишеgt1b.dvi
r t.h en el em 6 SUKLDNOST I SLI NOST Pripremi se za gradivo koje slijedi, rijes i pripremne zadatke koji se nalaze u elektronic kom dijelu udz benika. el em en t.h r Sukladnost je rijec koju c esto susrec
ВишеMicrosoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc
Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
Више16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић
16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић 4 Наслов оригинала Mary Pope Osborne Hour of the Olympics Са др жај Text Copyright 1998 by Mary Pope
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеVremenik pisanih provjera znanja - Rujan OŠ Marčana RAZRED 1. TJEDAN 2. TJEDAN 3. TJEDAN 4. TJEDAN PON UTO SRI ČET PET PON UTO SRI ČET PET PON U
Vremenik pisanih provjera znanja - Rujan 2018. 1. TJEDAN 2. TJEDAN 3. TJEDAN 4. TJEDAN PON UTO SRI ČET PET PON UTO SRI ČET PET PON UTO SRI ČET PET PON UTO SRI ČET PET 3.9. 4.9. 5.9. 6.9. 7.9. 10.9. 11.9.
ВишеMicrosoft Word - PRIMENA INTEGRALA.doc
PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin
ВишеОри ги нал ни на уч ни рад : doi: /zrpfns Др Зо ран В. Ар сић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав
Ори ги нал ни на уч ни рад 347.725:347.72.033 doi:10.5937/zrpfns52-19023 Др Зо ран В. Ар сић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду Z. Ar sic @ p f.u n s.a
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеУпорна кап која дуби камен
У БЕ О ГРА ДУ, УПР КОС СВЕ МУ, ОБ НО ВЉЕ НЕ ПЕ СНИЧ КЕ НО ВИ НЕ Упор на кап ко ја ду би ка мен Би ло је то са др жај но и гра фич ки јед но од нај бо љих из да ња на ме ње них пре вас ход но по е зи ји
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеК Р И Т И К А НО ГО ВЕ Н ЕО Т У ЂИ ВЕ Д РУ ГО СТ И Рај ко Пе тров Но го, Со нет и смрт, Срп ска књи жев на за дру га, Бе о град 2017 Смрт. Ве чи та ми
К Р И Т И К А НО ГО ВЕ Н ЕО Т У ЂИ ВЕ Д РУ ГО СТ И Рај ко Пе тров Но го, Со нет и смрт, Срп ска књи жев на за дру га, Бе о град 2017 Смрт. Ве чи та ми сао. При ја тељ из де тињ ства. На су шна хра на мо
ВишеPLB146 Manual
SRPSKI PLB-146M Uputstvo z montžu UPUTE ZA OTVARANJE PAKIRANJA! Pžljvo otvorite kutiju, izvdite njezin sdržj i rsporedite g n krton ili neku drugu zštitnu površinu (d biste izbj egli oštedenj).! Prem popisu
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
ВишеХ а л и ло ви ће в а л и т е р а р н а с у г е с т и ја д а смо з а б о р а ви л и д а с е ч у д и мо, а са мим тим за бо ра ви ли да ми сли мо и ства
Х а л и ло ви ће в а л и т е р а р н а с у г е с т и ја д а смо з а б о р а ви л и д а с е ч у д и мо, а са мим тим за бо ра ви ли да ми сли мо и ства ра мо; за бо ра ви ли да се оду шевља ва мо, опа жа
ВишеMicrosoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc
GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo
ВишеПре глед ни чла нак ( ) doi: /zrpfns Ми лош Д. Де но вић, сту дент док тор ских сту ди ја Уни вер зи тет у При шти ни са п
Пре глед ни чла нак 35.077.3(497.115) doi:10.5937/zrpfns51-12946 Ми лош Д. Де но вић, сту дент док тор ских сту ди ја Уни вер зи тет у При шти ни са при вре ме ним се ди штем у Ко сов ској Ми тро ви ци
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ВишеМ И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле
М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се
Вишепо пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број
по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли
ВишеTrougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa
Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat
ВишеSKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)
SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?
ВишеД а к ле, к а р а к т е р р а т а и њ е г о в а ис т о ри ј ск а и л и с о ц и о ло ш к а у ло г а н ис у би т н и. Би тне с у с т р ахот е и б е см и
Д а к ле, к а р а к т е р р а т а и њ е г о в а ис т о ри ј ск а и л и с о ц и о ло ш к а у ло г а н ис у би т н и. Би тне с у с т р ахот е и б е см и с а о које р ат доноси. К а о одм аз де, н а п ри
ВишеMicrosoft Word - KVADRATNA FUNKCIJA.doc
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеOPTIČKE ILUZIJE ili OPTIČKE VARKE 1/25 AH
OPTIČKE ILUZIJE ili OPTIČKE VARKE 1/25 Ponekad nam naše oči kažu da je nešto ravno, a nije; da je jedan predmet veći od drugog, a nije i sl. Možemo li svojim očima baš uvek verovati? Proverimo to u sledećim
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у
ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у коб ном оби ла ску ску пи је дра и скло ни ме пред
ВишеУДК :34 Пре глед ни рад СОЦИЈАЛНА ПОЛИТИКА број 2/2014. год. 49. стр Мар та Ж. Сје ни чић Ин сти тут дру штве них на у ка, Бе
УДК 364-782.42-056.34:34 Пре глед ни рад СОЦИЈАЛНА ПОЛИТИКА број 2/2014. год. 49. стр. 45-65. Мар та Ж. Сје ни чић Ин сти тут дру штве них на у ка, Бе о град ПРА ВИ ОКВИР РЕ ЛЕ ВАН ТАН ЗА ДЕ ИН СТИ ТУ
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n
4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju
ВишеPro log J a, Be a tri sa Sa voj ska, maj ka sam če ti ri kra lji ce. Ko ja dru ga že na u isto ri ji sve ta sme to za se be re ći? Ni jed na, tvr dim,
Pro log J a, Be a tri sa Sa voj ska, maj ka sam če ti ri kra lji ce. Ko ja dru ga že na u isto ri ji sve ta sme to za se be re ći? Ni jed na, tvr dim, ni ti će ijed na ika da. Je ste, hva lim se. Što i
ВишеNASTANAK OPASNE SITUACIJE U SLUČAJU SUDARA VOZILA I PEŠAKA TITLE OF THE PAPER IN ENGLISH Milan Vujanić 1 ; Tijana Ivanisevic 2 ; Re zi me: Je dan od n
NASTANAK OPASNE SITUACIJE U SLUČAJU SUDARA VOZILA I PEŠAKA TITLE OF THE PAPER IN ENGLISH Milan Vujanić 1 ; Tijana Ivanisevic 2 ; Re zi me: Je dan od naj zna čaj ni jih de lo va na la za i mi šlje nja vešta
Више