Microsoft Word - MATRICE.doc

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - MATRICE.doc"

Транскрипт

1 MARICE (EORIJA) Z prvougonu ( kvrtnu ) šemu rojev (i,,,m j,,,n ): n n m m mn kžemo je mtri tip m n. Brojevi su elementi mtrie. ip mtrie je vrlo itn stvr : k kžemo je mtri tip m n, to znči on im m vrst i n kolon. Primer: Mtri Mtri -5 A 8 B 6 - je tip jer im ve vrste tri kolone. je tip jer im vrste i kolone. Mtrie se njčešće oeležvju ovim srenjim zgrm [ ], li vs ne zuni, neki profesori ih oeležvju i mlim zgrm ( ) koriste se još i. Vi rite onko kko kže vš profesor... Ako mtri im isti roj vrst i kolon ( n n ), z nju kžemo je kvrtn mtri re n. Mtri či su svi elementi jenki nuli nziv se nul- mtri. [ ] 0 0 0,, 0 0 it ef Mtri - A efinisn s A ( ) A je suprotn mtri z mtriu A. Kvtrn mtri re n z koju je ii ( po glvnoj gonli su jeinie sve ostlo nule) nziv se jeiničn mtri re n i oznčv se s I n I [ ], I, I it Neki profesori jeiničnu mtriu oeležvju s E. Vi rite onko kko kže vš profesor...

2 Ako su svi elementi kvrtne mtrie re n ispo glvne gonle jenki nuli, tkv se mtri nziv gornj trougon mtri. N primer : je gornj trougon mtri re. Ako su svi elementi kvrtne mtrie re n izn glvne gonle jenki nuli, tkv se mtri nziv onj trougon mtri. N primer : je onj trougon mtri re. Dve mtrie A i B su jenke ko i smo ko su istog tip i imju jenke ogovrjuće elemente. Sirnje i ouzimnje mtri Vžno: Mogu se sirti ( ouzimti ) smo mtrie istog tip! Primer Nek su te mtrie -5 A i B Nji mtriu AB i A-B. Njpre primetimo su mtrie A i B istog tip, to jest oe imju vrste i kolone. o nm govori i će mtri koj je njihov zir tkoje iti tip. Sirju se tko što sirmo mesto s mestom krenemo o mest n prvoj vrsti i koloni 5 it (-5) A B 0 ( ) 0 6 Anlogno rimo i ouzimnje: (-5) 0 A B 0 ( )

3 Množenje mtrie sklrom (rojem) Vžno: Mtri se množi rojem tko što se SVI elementi mtrie pomnože tim rojem! Pzite, ove često oñe o greške jer smo, ko se sećte,rekli se eterminnt množi rojem tko što se smo jen vrst ili kolon pomnoži tim rojem, ko mtrie svki element množimo tim rojem. Primer Nek je t mtri - A 6 0. Oreiti mtriu A. Nrvno, ko množenj mtrie sklrom tip mtrie se ne menj. - A (-) -6 A Množenje mtri Vžno : Proizvo ve mtrie je efinisn smo ko je roj kolon prve mtrie jenk s rojem vrst ruge mtrie! Ako reimo uzmemo je mtri A tip m n mtri B tip n p on će mtri, reimo C, koj se o njihovim množenjem iti tip m p. A B C tip orejujemo ( m n ) ( n p) m p ( ko se skrte unutršnji) Primer Dte su mtrie : - A 0 i 0 B -.Oreiti njihov proizvo AB.

4 Njpre viimo koji tip će imti mtri koj se o njihovim proizvoom: A je tip, ok je B tip p će mtri njihovog proizvo iti tip ( ) ( ). Dkle imće ve vrste i ve kolone. 0 - A B 0. Kko s rčunti? Immo kle mest prv vrst prv kolon prv vrst rug kolon 0 rug vrst prv kolon rug vrst rug kolon - prv vrst prv kolon omo : (-). - prv vrst rug kolon omo: rug vrst prv kolon : rug vrst rug kolon :. 0. (-).(-) (-)06-

5 S ovo uimo gore: Nrvno, vi ne morte rite ovoliko postupno, k se izvežte, sve će ići mnogo rže... Z proizvo mtri vže zkoni: ) ( A B) C A ( B C) ) A ( B C) A B A C i ( B C) A B A C A ) α( A B) ( α A) B A( α B) α je sklr ( roj) ) I A A I ge je I jeiničn mtri Vžno: Z mtrie u opštem slučju ne vži komuttivnost množenj A B B A Ako je A mtri tip m n, on se njen trnsponovn mtri A o k u mtrii A kolone i vrste zmene mest. ip mtrie A je on nrvno n m. Primer 5 Ako je reimo A 0 0 0, on je A Ako je reimo B B Mtri A z koju je A A nziv se simetričn mtri.( nrvno, mtri A mor iti kvrtn) Primer Ako je A 0 5 5, k zmenimo mest kolone u vrste, omo A Dkle, ov mtri je simetričn! 5

6 Z operu trnsponovnj vže sleeće osoine: ) ( A ) A ) ( α A) α A α je sklr ) ( A B) A B ko su mtrie A i B istog tip ) ( A B) B A Dlje se mormo upoznti s eterminntm. Ov tem je orñen u posenom fjlu eterminnte, mi ćemo vs posetiti n neke njvžne stvri. Determinntu kvrtne mtrie A n n n n nn oeležvmo s et (A) ili A zpisujemo :. et A..... n... n... n n nn Znči eterminnte, z rzliku o mtri, pišemo u zgrm. Determinnt je roj mtri je šem! Nećemo vs viti s teorom, već ćemo n pr primer ojsniti kko se rčunju eterminnte: DRUGOG REDA Rčunju se tko što pomnožimo elemente n tkozvnoj glvnoj gonli, p o tog ouzmemo pomnožene elemente n sporenoj gonli. Primer: (-) - (-5) -5 6

7 REĆEG REDA Determinnte trećeg re možemo rzviti po ilo kojoj vrsti ili koloni. Njpre svkom elementu oelimo preznk ili -, i to rimo neizmenično: Smo vs posetimo: vrste su, kolone Ako reimo hoćemo rzvemo po prvoj vrsti, ili ko reimo rzvmo po rugoj koloni: Njolje je,nrvno, rzvmo po onoj koloni ili vrsti ge im njviše nul! Primer: Izrčunj vrenost eterminnte Njpre izn svkog roj npišite preznke:, ili ko vm je lkše smo izn rojev u vrsti ili koloni po kojoj ste rešili rzvete eterminntu. Mi smo rešili po rugoj vrsti jer im jen nul (moglo je i po trećoj koloni, sve jeno). Dkle: ( - )(5 - ) - 565

8 8 Drugi nčin z rčunnje eterminnti trećeg re, meju učeniim vrlo populrn, je SARUSOVO prvilo. Pore te eterminnte opišu se prve ve kolone, p se elementi množe jući im znke ko n slii: Primer: Izrčunj vrenost eterminnte Dkle, n o nčin smo oili isti rezultt,p vi oerite smi št vm je lkše. ČEVROG REDA Možemo je rzviti po ilo kojoj vrsti ili koloni! I ove slično ko z eterminnte trećeg re prvo npišemo preznke svim ili smo onoj vrsti ili koloni po kojoj ćemo rzvmo eterminntu. Mi ćemo, reimo, rzvemo eterminntu po prvoj koloni:

9 9 Nrvno, s i trelo rzvemo svku o ove četiri eterminnte trećeg re... Složićete se ovo ne š lko. Nučimo zto osoine eterminnt koje će nm pomoći u rešvnju ztk. OSOBINE DEERMINANAA. Determinnt menj znk ko ve vrste ili kolone izmenjju svoj mest.. Vrenost eterminnte se ne menj ko sve vrste i kolone promene svoje uloge.. Determinnt se množi rojem, k se tim rojem pomnože svi elementi m koje (li smo jene) vrste ili kolone. Ornuto, zjenički fktor element jene vrste ili kolone može se izvući ispre eterminnte N primer: k k k k k k k it. ili m m m m. Ako je u eterminnti svki element neke k-te vrste (kolone) zir v ili više sirk, on je on jenk ziru ve ili više eterminnt, koje imju iste elemente ko i t eterminnt, osim element k-te vrste (kolone). N primer: m m m m m m

10 5. Ako su svi elementi jene vrste(kolone) jenki nuli, vrenost eterminnte je nul. Primeri: ili Ako elementi u ve vrste ili kolone imju iste vrenosti, vrenost eterminnte je opet nul. Primer: jer su elementi prve i treće vrste jenki. Ako su ve vrste ( kolone ) proporionlne meñu soom, vrenost eterminnte je opet nul. Primer: vrstu jer su prv i treć vrst proporionlne, tj. prv put je treću 0 8. Vrenost neke eterminnte ostje nepromenjen ko se elementim jene vrste(kolone) oju ogovrjući elementi neke ruge vrste(kolone) pomnoženi istim rojem! Ov osm osoin će nm pomoći lkše rešimo eterminnte četvrtog i višeg re. 9. et A et A Ako trnsponujemo mtriu, vrenost njene eterminnte se ne menj. 0

11 Minor ( u ozni M ) element eterminnte re n jeste eterminnt mtrie re n- koj se o izostvljnjem i-te vrste i j-te kolone iz te mtrie. Kofktor ( u ozni A ) element eterminnte re n efinišemo s ( ) i A j M Primer Ako posmtrmo mtriu Minori:, njeni minori i kofktori će iti: M, M, M M, M, M M, M, M Kko smo oili reimo minor M? Oznk nm govori poklpmo prvu vrstu i prvu kolonu:, ono što ostne stvimo u mlu eterminntu. Minor M omo k poklopimo prvu vrstu i rugu kolonu (): Kofktori:, ostje, it. A ( ) M ; A ( ) M ; A ( ) M A ( ) M ; A ( ) M ; A ( ) M A ( ) M ; A ( ) M ; A ( ) M

12 Št možemo primetiti ko kofktor što se tiče znkov? P, zni iu nizmenično, ko k smo rzvli eterminnte: Ako vš profesor ozvoljv, možete izeći pišete ono ( ) i j, već om uzmete znkove neizmenično. Jen o čestih ztk n fkultetim je trženje inverzne mtrie. On se upotreljv z rešvnje sistem jenčin, mtričnih jenčin Njpre ćemo reći nešto o jungovnoj mtrii. Nk je t mtri A n n n n nn, ili skrćeno zpisn A. n n Mtriu A, ge su A kofktori element mtrie A, nzivmo jungovn ( priružen ) mtri z mtriu A i oznčvmo je s : A A... An A A... A n. ja A.. A n A n... Ann Primer: Dt je mtri 5 0 A 0 0. Oreiti njenu jungovnu mtriu ja. Njpre tržimo kofktore On njih porejmo u mtriu

13 5 0 A 0 A A 0 A ( ) A 0 A A 0 A A 0 A A 0 A ( 5) A 0 A A 0 A A 0 A 0 0 S ove vrenosti menjmo u : A A A ja A A A A A A, p je ja 5

14 II nčin z trženje jungovne mtrie K mlo steknete iskustvo, ne morte sve rite postupno, već možete omh tržite jungovnu mtriu. Uzmemo tu mtriu: 5 0 A 0 0 i trnsponujemo je: A u stvimo preznke neizmenično: A Poklpmo mest i sve stvljmo u veliku mtriu ja N tj nčin omh immo ja 5

15 S možemo efinisti i inverznu mtriu. Nk je A kvrtn mtri re n. Ako postoji mtri A re n tkv je A A A A I n, ge je I n jeiničn mtri re n, t kžemo je A inverzn mtri mtrie A. Formul po kojoj tržimo inverznu mtriu je : A ja et A Nrvno, tre reći inverzn mtri postoji ko i smo ko je et A 0. Inverzn mtri je, ko postoji, jeinstven! Primer Oreiti inverznu mtriu mtrie B 5 5 Rimo po formuli: B jb et B Njpre tržimo et B, jer t vrenost mor iti rzličit o nule i postojl inverzn mtri... et B 5 koristimo Srusov postupk... 5 et B 5 5 ( 5) ( ) 5 ( ) ( ) ( ) ( 5) et B Dlje tržimo j B. 5

16 B B B jb B B B B B B 5 B 5 B 5 ( ) 5 B 5 B [ 0] B 5 B 8 ( 5) 5 5 B 5 B [ 9 ( )] 5 B 5 B B 5 B [ ( 5)] 5 5 B 5 B 6 ( 5) 5 5 B 5 B 0 5 B 5 B 0 ( ) 5 5 Porejmo kofktore u mtriu j B. 6

17 jb 0, s se vrćmo u formulu B jb et B, p je : B 0 B 0 Ako z mtriu A postoji inverzn mtri, kžemo je mtri A regulrn mtri. U protivnom, z mtriu A kžemo je singulrn ( neregulrn). Evo nekoliko prvil koj vže z regulrne mtrie: ) ( A ) ( A ) ) ( A B) B A ) ( A A... A ) A... A A n n Ako z kvrtnu mtriu A vži je A A, on nju nzivmo ortogonln mtri. Rng mtrie Njpre kžemo koje su elementrne trnsforme mtri: i) zmen mest ve vrste ( kolone) ii) iii) množenje element jene vrste (kolone) nekim rojem koji je rzličit o nule ovnje elementim jene vrste (kolone) element(ogovrjućih) neke ruge vrste(kolone) koji su prethono pomnoženi proizvoljnim rojem. Mtri A je ekvivlentn s mtriom B ( oznk A B ) ko se o mtrie A može preći n mtriu B primenom končno mnogo ekvivlentnih trnsform.

18 Posmtrjmo neku mtriu A M m n ( mtriu A iz skup mtri M tip m n ) Ako u mtrii A izostvimo neke vrste ili neke kolone ( može istovremeno i vrste i kolone), tko oenu mtriu nzivmo PODMARICA mtrie A. Determinntu kvrtne pomtrie re k mtrie A M m n nzivmo MINOR re k mtrie A. Nek je M skup svih mtri tip m n i N 0 { 0,,,... } skup prironih rojev ( s 0). m n Rng mtrie u ozni rng ( ili r) je preslikvnje: rng M : m n N 0 oreñeno s ) rng( A ) 0 ko je A nul mtri ) rng( A) p, ko postoji minor re p mtrie A koji je rzličit o nule, SVI minori većeg re o p, ukoliko oni postoje, su jenki nuli. Primer. Oreiti rng mtrie A. 6 Rešenje: Retko k možemo omh reći koji je rng te mtrie. Prvi poso nm je koristeći nveene elementrne trnsforme mtri nprvimo ekvivlentnu mtriu koj će ispo glvne gonle imti sve nule! ( tkozvn RAPEZNA mtri) Ko ns su n glvnoj gonli i -, p ispo njih prvimo nule. Z nšu mtriu nule morju iti n UOKVIRENIM mestim: A 6 I reosle prvljenj nul je vrlo itn! 8

19 Nule prvimo njpre n mestu A, ztim n mestu 6 A 6 i n krju A. 6 Neki profesori trže se svki kork trnsform ojšnjv, neki ozvoljvju se omh prve nule n svim mestim u prvoj koloni, p u rugom korku n svim mestim u rugoj koloni, it. Nš svet je ko i uvek poslušte všeg profesor kko on zhtev mi ćemo pokušti vm ojsnimo kork po kork. A. Njpre ćemo zmeniti mest prvoj i rugoj vrsti, nm jeini ue u prvoj vrsti zog lkšeg 6 rčunnj ( ovo ne neophono l olkšv poso...) S prvimo nulu n mestu ge je : Prvu vrstu ćemo pomnožiti s - i srti s trećom vrstom i to upisti u treću vrstu. N mestu ge je ilo iće: ( ) 0 N mestu ge je ilo -6 iće ( ) ( 6) 0 P je. Dlje nm tre nul ge je vojk: Prvu vrstu ćemo pomnožiti s -, srti s rugom vrstom i upisti umesto ruge vrste: N mestu ge je ilo n tj nčin smo oili nulu, n mestu ge je ilo - iće: ( ) ( )

20 S rzmišljmo: Pošto je mtri tip, njen mksimlni rng može iti, jer postoje smo eterminnte rugog re. Ali, koju go uzmemo eterminntu rugog re on će imti u jenoj vrsti oe nule znmo je vrenost tkve eterminnte nul. Rng ove mtrie je znči, u ozni r( A ). Primer. Oreiti rng mtrie Rešenje: A 0 5 Ov mtri je tip, tko postoji eterminnt re, to znči i mksimlni rng može iti. D se ne zlićemo, prvo mi nprvimo nule ispo glvne gonle, n uokvirenim mestim: Zmenićemo rugu i prvu kolonu, jer već immo nulu A s prvimo nulu n mestu ge je ( uokvireno) Seremo prvu i rugu vrstu i to ie u rugu vrstu... N mestu ge je ( uokvireno) iće 0. N mestu ge je iće: N mestu ge je iće : 5 A 0 5 lje prvimo nulu n uokvirenom mestu( ge je ): O treće vrste ouzmemo rugu i to ie u treću vrstu. A

21 S je jsno rng ne može iti tri jer je vrenost eterminnte Ako reimo uzmemo 0, njen vrenost je 0, p je rng ove mtrie : r( A ) Evo još nekoliko stvri koje i trelo znmo o mtrim: ) Ekvivlentne mtrie imju isti rng! ) Ako posmtrmo tri mtrie A,B i C iz skup svih mtri M m n, z njih vži: A A refleksivnost A B B A simetrinost A B B C A C trnzitivnost Ovo nm govori je rel ekvivlene n skupu svih mtri tip m n. ) Nek je A mtri rng p većeg ili jenkog jeinii p. postoje p nezvisnih vrst ( kolon) mtrie A tkvih su ostle vrste (kolone) linerne komine tih p vrst ( kolon). ) Rng mtrie jenk je mksimlnom roju linerno nezvisnih vrst ( kolon) te mtrie.

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2

Више

Microsoft Word - MATRICE ZADACI ii deo

Microsoft Word - MATRICE ZADACI ii deo MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n

Више

Microsoft Word - integrali IV deo.doc

Microsoft Word - integrali  IV deo.doc INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo

Више

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._) EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc) VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku

Више

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc) EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij

Више

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme

Више

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205) VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n

Више

Microsoft Word - Integrali III deo.doc

Microsoft Word - Integrali III deo.doc INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o

Више

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,

Више

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - INTEGRALI  ZADACI.doc INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod

Више

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo

Више

Microsoft Word - GEOMETRIJA 3.4..doc

Microsoft Word - GEOMETRIJA 3.4..doc 4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.

Више

Microsoft Word - 26ms281

Microsoft Word - 26ms281 Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

1. Realni brojevi

1. Realni brojevi .. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo

Више

ALGEBRA I (2010/11)

ALGEBRA I (2010/11) ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

untitled

untitled Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd

Више

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij

Више

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti

Више

Microsoft Word - 26ms441

Microsoft Word - 26ms441 Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

Microsoft Word - 16ms321

Microsoft Word - 16ms321 Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.

Више

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc

Више

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D, Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

Microsoft Word - IZVODI _3. deo_.doc

Microsoft Word - IZVODI _3. deo_.doc IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo) VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe

Више

Microsoft Word - FINALNO.doc

Microsoft Word - FINALNO.doc Ako pronñeš cestu ez preprek, zpitj se d li t cest igdje vodi. Projektn nstv Osnovn škol Ivn Gundulić DUBROVNIK MEMENTO (mtemtik) Plnirli smo: Nprviti pregled elementrnih sdržj iz mtemtike s primjerim

Више

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA

Више

Ime i prezime: Matični broj: Grupa: Datum:

Ime i prezime: Matični broj: Grupa: Datum: Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

trougao.dvi

trougao.dvi Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn

Више

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Zltko Trstenjk Određeni integrl i primjene u geometriji Zvršni rd Osijek, 8. Sveučilište J.J. Strossmyer

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

Microsoft Word - PRIMENA INTEGRALA.doc

Microsoft Word - PRIMENA INTEGRALA.doc PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin

Више

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart Univerzitet u Nišu Prirodno - mtemtički Fkultet Deprtmn z mtemtiku Višestruko osigurnje - Mster rd - Mentor: dr Mrij Milošević Niš, Mrt 213. Student: An Jnjić 2 Sdržj 1 Uvod 5 2 Osnovni pojmovi 7 2.1 Motivcioni

Више

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

Одлука о изменама и допуни Одлуке о општим правилима за извршавање инстант трансфера одобрења 1. У Одлуци о општим правилима за извршавање инстант тра

Одлука о изменама и допуни Одлуке о општим правилима за извршавање инстант трансфера одобрења 1. У Одлуци о општим правилима за извршавање инстант тра Одлук о изменм и допуни Одлуке о општим првилим з извршвње инстнт трнсфер одобрењ 1. У Одлуци о општим првилим з извршвње инстнт трнсфер одобрењ ( Службени глсник РС, број 65/18 у дљем тексту: Одлук),

Више

Microsoft Word - 1. REALNI BROJEVI- formulice

Microsoft Word - 1. REALNI BROJEVI- formulice REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva

Више

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n 4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju

Више

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Microsoft Word - Integrali vi deo

Microsoft Word - Integrali vi deo INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala

Више

IErica_ActsUp_paged.qxd

IErica_ActsUp_paged.qxd Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne

Више

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли

Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли ја нин, моб. 065/858-46-26 за ме њу ју се ре чи ма:

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,

Више

1

1 Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi

Више

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се

Више

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof.

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof. PRIRODNO-MATEMATIČKI FAKULTET Univerzie u Nišu MASTER RAD Krmine prvilno promenljive funkcije i linerne diferencijlne jednčine Menor: Prof. dr Jelen Mnojlović Suden: Krin Kosdinov Niš, 2015. Sdržj 1 Krmine

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

KORELISANOST REZULTATA MERENJA

KORELISANOST REZULTATA MERENJA Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje

Више

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?

Више

Microsoft Word - Analiticka - formule.doc

Microsoft Word - Analiticka - formule.doc . Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju

Више

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I 17 DOKUMENTACIJA KOJU KONTROLIŠE PORESKA INSPEKCIJA

Више

PLB146 Manual

PLB146 Manual SRPSKI PLB-146M Uputstvo z montžu UPUTE ZA OTVARANJE PAKIRANJA! Pžljvo otvorite kutiju, izvdite njezin sdržj i rsporedite g n krton ili neku drugu zštitnu površinu (d biste izbj egli oštedenj).! Prem popisu

Више

untitled

untitled РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

4PHR B_2016_02.book

4PHR B_2016_02.book PHR009-B_06_0.ook Pge Thursy, My 9, 06 :0 PM REFERENTNI VODIČ ZA INSTALATERA PHR009-B_06_0.ook Pge Thursy, My 9, 06 :0 PM Sržj strni Referentni voič z instlter O ovom okumentu O ovom okumentu.... O ovom

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Vjezbe 1.dvi

Vjezbe 1.dvi Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

RMT

RMT VISOKA ŠKOLA STRUKOVNIH STUDIJA ZA INFORMACIONE TEHNOLOGIJE predvč mr Slobod Tomić, dipl. ig. RAČUNARSKA MATEMATIKA skript Beogrd, 0. S A D R ŽA J. UVODNI POJMOVI DISKRETNE MATEMATIKE. 5. Neki zci logičkih

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

0255_Uvod.p65

0255_Uvod.p65 1Skupovi brojeva Skup prirodnih brojeva Zbrajanje prirodnih brojeva Množenje prirodnih brojeva U košari ima 12 jaja. U drugoj košari nedostaju tri jabuke da bi bila puna, a treća je prazna. Pozitivni,

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у

ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у коб ном оби ла ску ску пи је дра и скло ни ме пред

Више

Zad.RGS.2012za sajt [Compatibility Mode]

Zad.RGS.2012za sajt [Compatibility Mode] n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више