Zad.RGS.2012za sajt [Compatibility Mode]
|
|
- Полексија Божовић
- пре 5 година
- Прикази:
Транскрипт
1 n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b
2 Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki tepertur privlčne sile odnosno čln / su znerljivi Ako je veliko, td je -b~ () ečnosti i gsovi postoje kd su privlčne i odbojne sile urvnotežene, konstnt odgovr privlčni b odbojni sil. (3) Kritične konstnte su povezne s vdw konstnt: z < izotere osiluju, prolzeći kroz iniu i ksiu koji konvergirju s približvnje i prvi i drugi izvod su jednki nuli Kritični kopresioni fktor Z / 3/8
3 Druge jednčine stnj So jednčine koje iju dve konstnte ogu biti izrežene u redukovno obliku.
4 rier 1. n der lsove konstnte i b su 1,390 L t ol - i 0,03913 L ol -1 z zot. Izrčunti korekioni čln z: A) zpreinu (u L) z 85,5 olov jedinjenj u blonu od 100 L n teperturi od 300 o C i B) pritisk (u t). A) Korekioni čln je: nb85,5ol 0,03913L/ol11,17 L B) n 1,39 L tol (85,5) ol u 11, 33t (100 L)
5 rier. Ako se neki gs ponš po n der lsovoj jednčini, zokruži tčno tvrñenje: 1)Gs se približv idelno ponšnju pri: ) visoko b) visoko ) niskoj d) ni jedno ) Jednčin z n olov gs glsi: ) n b) ( b) n n ( n b) n b n n ) d) e) ni jedn rier. Koji od sledećih gsov će pokzivti njveće negtivno odstupnje n dijgru / od? ) H O b) F ) CH 4 d) Ne e) Ar
6 rier 3. N teperturi od 300 K i pritisku od 0 t, kopresioni fktor je 0,86. Izrčunti zpreinu (u L) koju zuzi 8, ol gs pod ovi uslovi, Z Z Z 0,86 300K 1 1 0,86 8,314 JK ol 300 K 3 0,00106 / ol t n 8, 10 ol 0,00106 ol 8, 7L
7 rier 4. Jedn ol nekog gs n teperturi od 73K i pritisku od zuzi zpreinu od Ako je 0,50 6 ol -, izrčunti vrednost konstnte b. Iz.d.. jednčine sledi d je b: b p 4, , , , ol 1
8 rier 5. Koristeći n der lsove koefiijente z kiseonik (1,378 L t ol -, b 3, L ol -1 ) izrčunti: ) Bojlovu teperturu b) rdijus olekul gs pretpostvljjući d se olekuli ponšju ko krute sfere. ) 1 tl ol 1,378 57, K B br 3, Lol 8,06 10 LtK ol b) b 3, ol 9 3 vol 1, N 4 6,0 10 ol A r 3 1/ 3 1/ ol 1,3 10 1,47 10 v 4π 4π
9 rier 6. Kritične konstnte z ugljendioksid su: 7, , 94,0 3 /ol i 304, K. Izrčunti vn der lsove koefiijente i proeniti rdijus olekul gs (dti sve u SI). Rešenj: b /8 4, /ol 7R /64 0,37 6 ol - v ol b/4n A 4, ol -1 /4 6, ol -1 1, r 3 1/3 30 1/3 10 ol (,39 10 ) 1,33 10 v 4π
10 rier 7. Izrčunti pritisk 1,0 ol etn koji se ponš ko: ) u idelno gsno stnju; b) pre vn der lsovoj jednčini pod sledeći uslovi: i) n 73,15 K i,414 L i ii) n 1000 K i (5,489L ol - t, b6, L/ol) Doći!
11 rier 8. roeniti kritične konstnte gs iz n der lsovih pretr 0,751tL ol - i b0,06 Lol -1 (Sve dti u SI). 3b 3 0,06Lol 7b 10K 8 7Rb 1 0,751L tol 7 (0,06Lol 0,0678Lol 1 ) 1 6, ,5 t 5 3 5, ,75L tol ,08LtK ol 0,06Lol 1 / ol, 6
12 rier 9. Izrčunti pritisk n koe se nlzi 1 ol SO, ko zuzi zpreinu od 10 d 3 n 100 o C, upotrebljvjući jednčinu idelnog gsnog stnj, vn der lsovu jednčinu i Diteričijevu jednčinu. Z SO konstnte su: 6, kol -, b0, kol -1. re jednčini idelnod gsnog stnj pritisk je: 3,10 10 re n der lsovoj jednčini pritisk je: re Diteričijevoj jednčini pritisk je: 5 8, ,15 0,678 3, b 0,01 5, , e b 310,3691 0, e 0,678 31, ,7084 0, ,
13 rier 10. Odrediti zpreinu koju zuzi 1 ol kiseonik n -88 o C i n pritisku od 45,3 10 5, ko je kritičn tepertur 154,4 K kritični pritisk 5, re n der lsovoj jednčini zprein se rčun n osnovu fktor stišljivosti. Fktor stišljivosti se očitv s krive iz vrednosti z redukovni pritisk i teperturu: R 4 3 1, R 0,9 Z 0,8 Z,7 10 ol 1 Z 1,0 3,0 r 1,5 1,3 1, 1,1 1,0 r, r
14 rier 11: Gsovi A, B, C i D se ponšju pre n der lsovoj jednčini s konstnt i b dti u tblii: Gs A B C D (br 6 ol - ) ,05 b ( 3 ol -1 ) 0,050 0,15 0,10 0,0 ) Koji gs i njvišu kritičnu teperturu? b) Koji gs i njveće olekule? ) Koji gs je njpribližniji idelno gsno stnju n S? ) ošto je /b, gs A i njveće i njnje b, to on i njvišu. b) eličin olekul je odreñen konstnto b, p gs B i njveće olekule. ) Gs koji i njniže kritičnu teperturu i pritisk njbliži je IGS. Kko je / b i /b to je gs D njbliži IGS
15 rier 1. Z gs, koji se pokorv n der lsovoj jednčini i i 30 br, 473 K, kopresioni fktor / je veći od jedn z uslove: A) ) 50 br 53 K b) 1 br 373 K ) 500 br 773 K Gs će se približvti idelnosti pri: B) ) niskoj b) niskoj gustini ) nisko kopresiono fktoru d) ni jedno C)Izrčunti konstntu b (L/ol) z ovj gs.
16 A) Z je veće od jedn pri njviše pritisku i njvišoj teperturi, tj. 500 br i 773 K koje su veće od kritičnih B) Gs se približv idelnosti pri niskoj gustini tj. pritisku C) Iz vrednosti kopresionog fktor u kritičnoj tčki ože d se nñe konstnt b: 3 8, b b 0, / ol 0,164 L / ol
17 rier 13. Z gsoviti CO vn der lsove konstnte su b 0,0486 l ol 1 i 3,658 br l ol. N kojoj teperture će drugi virijlni koefiijent biti jednk nuli B()0 z B - 3,658 br l ol 106, K B Rb 8,314 0,0486 l ol 6-1
18 rier 14. Gs NO i 64 br, 177 K gs CCl 4 i 45 br i 550 K. A) Koji gs i nju konstntu b? B) I nju vrednost konstnte? C) I veću kritičnu zpreinu? D) Se skoro idelno ponš n 300K i 10 br-?
19 A) Kko je: 3b 7b 8 7Rb to je b srzerno odnosu /. Kko je: NO 177,76 64 CCl , b NO b CCl 4
20 B) Kko je konstnt srzern odnosu / to je: NO ,5 CCl , NO CCl4 C) (CCl 4 ) 38, (NO) 8, (CCl 4 )> (NO) D) Gs NO je bliži idelno ponšnju n 300K jer je t tepertur već od njegove kritične teperture.
21 rier 15. Izrziti α (kubni koefiijent širenj) i κ (koefiijent izoterske kopresibilnosti) (i) z ideln gs (ii) z gs z koji vži jednčin stnj: p ( b). R R 1 1 α α (i) p p 1 1 κ κ (ii) b R b R R b R b b b 1 κ α
(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)
VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n
ВишеMicrosoft Word - MATRICE ZADACI ii deo
MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n
ВишеMicrosoft Word - VALJAK.doc
ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke
Више(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)
EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih
Више1. Realni brojevi
.. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)
VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku
ВишеIV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od
IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c
ВишеMicrosoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
ВишеMicrosoft Word - 16ms321
Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.
ВишеMicrosoft Word - GEOMETRIJA 3.4..doc
4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.
ВишеIme i prezime: Matični broj: Grupa: Datum:
Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti
ВишеSlide 1
DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u f Dinmički sistem Ulzi Izlzi (?) i, ϕ[ i ], ωθ, m m f f U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA
ВишеOrtogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav
Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij
ВишеMicrosoft Word - Analiticka - formule.doc
. Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju
ВишеZadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun
Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
ВишеMicrosoft Word - 26ms281
Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije
ВишеPLB146 Manual
SRPSKI PLB-146M Uputstvo z montžu UPUTE ZA OTVARANJE PAKIRANJA! Pžljvo otvorite kutiju, izvdite njezin sdržj i rsporedite g n krton ili neku drugu zštitnu površinu (d biste izbj egli oštedenj).! Prem popisu
ВишеMicrosoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx
Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA
ВишеMicrosoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc
PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo
ВишеMicrosoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc
Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc
KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,
ВишеZadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun
Zdtk U jednodimenzionlnoj kutiji, širine, nlzi se 000 neutron. U t 0, stnje svke čestice je ψx, 0 Axx. Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b Koliko čestic se nlzi u intervlu 0, ]
ВишеMicrosoft Word - Integrali III deo.doc
INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o
ВишеSlide 1
Kompleksi Prelazni metali Međusobno imaju slične osobine Dosta se razlikuju od alkalih i zemnoalkalnih metala Imaju visoku tačku topljenja,veliku gustinu, uglavnom veliku tvrdoću, dobri su provodnici
ВишеMicrosoft Word - Obrazac_realizacije_4418
ФОНД ЗДРАВСТВЕНОГ ОСИГУРАЊА РЕПУБЛИКЕ СРПСКЕ ТАБЕЛА РЕАЛИЗАЦИЈЕ УГОВОРА/ОКВИРНОГ СПОРАЗУМА Набавка лијекова са Основне болничке листе лијекова број: 07/015-4418/17 1 2 3 4 5 6 7 8 9 10 Остатак Опис Датум
ВишеPetar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2
Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne
Више(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)
EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi
ВишеPowerPoint Presentation
Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеMicrosoft Word - PRIMENA INTEGRALA.doc
PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin
ВишеStokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,
Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri
Вишеtrougao.dvi
Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn
Вишеuntitled
Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u
ВишеDJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk
DJEČJI VRTIĆ TROGIR TROGIR Trogir, 24. 04. 2019. Klasa: UP/I-034-01-01/19-01/1 Urbroj. 2184-17-19-1 Na temelju članka 1a, 20. i 35. stavka 1. podstavka 4. Zakona o predškolskom odgoju i obrazovanju (NN
ВишеUniverzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart
Univerzitet u Nišu Prirodno - mtemtički Fkultet Deprtmn z mtemtiku Višestruko osigurnje - Mster rd - Mentor: dr Mrij Milošević Niš, Mrt 213. Student: An Jnjić 2 Sdržj 1 Uvod 5 2 Osnovni pojmovi 7 2.1 Motivcioni
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеISSN X Билтен Градске општине Барајево БРОЈ Септембар У БАРАЈЕВУ ПРОС АВ ЕНА С АВА И ДАН ОПШТИНЕ ИЗ РАДА СКУПШТИНЕ ГРАДСКЕ ОПШТИНЕ
ISSN 1451-494X Билтен Градске општине Барајево БРОЈ 68-69 Септембар 2017. У БАРАЈЕВУ ПРОС АВ ЕНА С АВА И ДАН ОПШТИНЕ ИЗ РАДА СКУПШТИНЕ ГРАДСКЕ ОПШТИНЕ БАРАЈЕВО ГОДИНА ОД ОР ИРА А ПРВЕ СРПСКЕ В АДЕ У ВЕ
ВишеРЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА СРПСКО ХЕМИЈСКО ДРУШТВО РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ Лесковац, 31. мај и 1. јун
РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА СРПСКО ХЕМИЈСКО ДРУШТВО РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ Лесковац, 31. мај и 1. јун 2014. године ТЕСТ ЗНАЊА ЗА VIII РАЗРЕД Шифра ученика
ВишеOKFH2-12
ELEKTRIČNE OSOBINE Električne osobine atoma i molekula uslovljavaju: ojavu dvojnog relamanja svetlosti ojavu olarizacije rasejane svetlosti dielektrične osobine međumolekulske interakcije ravila izbora
Више1
PROVOđENJE TOPLOTE ovođenje toplote ili kondukcija je način kretanja toplote koji je svojstven čvrsti aterijalia, iako se pojavljuje (ali sa anearljivi inteniteto) i kod luida. Karakteristika aterijala
ВишеМинистарство просветe и спортa Републике Србије
Министарство просветe и спортa Републике Србије Српско хемијско друштво Републичко такмичење из хемије 21.05.2005. Тест за I разред средње школе Име и презиме Место и школа Разред Не отварајте добијени
ВишеRITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi
RITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi rad ih aloga koje ože o ruč o u ositi po potrebi.
ВишеZadaci II
Opšti kus fizičke heije Zadaci II ovšinski napon, viskoznost, adsopcija, fizičke osobine olekula Zadatak. ko se voda na 5 o C (gustine,997 gc ) podiže u kapilai adijusa, za 7,6 c, izačunati povšinski napon
ВишеMicrosoft Word - 26ms441
Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,
ВишеZadaci
Hemijski fakultet Univerziteta u Beogradu Prijemni ispit, 30. jun 2013. godine Test iz hemije Ime i prezime:. Redni broj prijave:. Napomena: Test raditi isključivo plavom ili crnom hemijskom olovkom. Vreme
ВишеPowerPoint Presentation
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)
VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe
Више07_JS aktuatori.rev8_lr_bn [Compatibility Mode]
Podsećnje... Poluprovodničke komponente koje se koriste u energetskim pretvrčim SW-kontrolisni prekidčki element (trnzistor ili tiristor) D-diod L-induktivnost C-kpcitivnost F1,F2-zštitni elementi (ultr
ВишеProblem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim
ВишеРЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА СРПСКО ХЕМИЈСКО ДРУШТВО РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ Лесковац, 31. мај и 1. јун
РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА СРПСКО ХЕМИЈСКО ДРУШТВО РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ Лесковац, 31. мај и 1. јун 2014. године ТЕСТ ЗНАЊА ЗА VII РАЗРЕД Шифра ученика
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
ВишеDECA MIG/ MAG Naziv : aparat za zav. STARTWIN 180E Bar- kod : Cena : 48, šifra: D aparat za MIG- MAG zavarivanj
DECA MIG/ MAG 07.2016. Naziv : aparat za zav. STARTWIN 180E Bar- kod : 8011399023435 Cena : 48,985.00 - šifra: D253300 - aparat za MIG- MAG zavarivanje žicom kao i zavarivanje bez gasa uz korišćenje samozaštitne
ВишеMicrosoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]
Dva pristupa u analiziranu kretana materiala: 1. Statistički pristup material se tretira kao skup molekula makroskopski fenomeni se obašnavau kao posledica molekularne aktivnosti računane primenom zakona
ВишеMicrosoft Word - Elektrijada_V2_2014_final.doc
I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата
ВишеMicrosoft Word - FINALNO.doc
Ako pronñeš cestu ez preprek, zpitj se d li t cest igdje vodi. Projektn nstv Osnovn škol Ivn Gundulić DUBROVNIK MEMENTO (mtemtik) Plnirli smo: Nprviti pregled elementrnih sdržj iz mtemtike s primjerim
Више1_Elektricna_struja_02.03
Elektrostatika i električna struja Tehnička fizika 2 01-08/03/19 Tehnološki fakultet Prisustvo na predavanjima 5 bod Laboratorijske vježbe 10 bod Test zadaci 1 10 bod Test zadaci 2 10 bod Test teorija
Више4.1 The Concepts of Force and Mass
Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj
ВишеOKFH2-10
KOLOIDI DISPERZNI SISTEMI Disperzni sistemi sistemi u kojima je jedna ili više supstancija (disperzna faza) u većoj ili manjoj meri usitnjena i ravnomerno raspoređena u okružujućoj sredini (disperzno sredstvo).
ВишеRITAM FORMS POSLOVNI PROCESI RAD S JOPPD OBRASCEM Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito Novi obrazac JOPPD Izmjene kod gla
Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito... 1 2. Novi obrazac JOPPD... 3 3. Izmjene kod glavne blagajne... 7 4. Izmjene kod doprinosa... 7 5. Iz je e kod predložaka vir a a... 9 6. Iz je e kod
ВишеMicrosoft Word - PRAVILNIK O GV AK AM cir.doc
На основу чл. 38.став 1. и чл. 47.став 3. Закона о заштити ваздуха («Службени гласник Републике Српске», број: 53/02) И члана 58. Закона о министарствима («Сл. гласник Републике Српске», бр. 70/02) министар
ВишеMicrosoft Word - INTEGRALI ZADACI.doc
INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod
ВишеMicrosoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]
Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...
ВишеSlide 1
TEHNOLOŠKE OPERACIJE Predavanje Agregatna stanja - faze Osobine atoma i molekula http://hr.wikipedia.org/wiki/datoteka:water-elpot-transparent-3d-balls.png Fizičke veličine: pritisak i temperatura čvrsto
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd
ВишеИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м
ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам
ВишеSTATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva prekl
STATIKA GRAĐEVNIH KONSTRUKCIJA 273 smatra zamišljeni pomak konstrukcije kojim se ona od polaznoga dovodi u neki identični položaj, što se naziva preklapanjem. Preklapanje se ne odnosi samo na geom etrijske,
Више28. фебруар године СЛУЖБЕНИ ГЛАСНИК ОПШТИНЕ АРИЉЕ Број 6 Ариље, 28. фебруар године Година MMXIX Број 6 САДРЖАЈ 1. Одлука
www.arilje.org.rs Ариље, 28. фебрур 2019. године Годин MMXIX Број 6 САДРЖАЈ 1. Одлук о рсписивњу јвног оглс з двње у зкуп и н коришћење пољопривредног земљишт у држвној својини у општини Ариље...2 Н основу
ВишеNaknade za poslove Centra za vinogradarstvo, vinarstvo i uljarstvo koje su propisane pravilnikom Redni broj NAZIV PROPISA broj Narodnih Novina 1. Prav
Naknade za poslove Centra za vinogradarstvo, vinarstvo i uljarstvo koje su propisane pravilnikom Redni broj NAZIV PROPISA broj Narodnih Novina 1. Pravilnik o visini naknade troškova za obavljanje usluga
ВишеRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEM
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i sporta Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 2013. PISANA
ВишеMicrosoft PowerPoint - IR-Raman1 [Compatibility Mode]
Spektar elektromagnetnoga t zračenja 10 5 10 3 10 1 10-1 10-3 10-5 10-7 E(kJ/mol) 10-6 10-4 10-2 1 10 2 10 4 10-8,cm X UV zrake zrake prijelazi elektrona IR mikrovalovi radiovalovi vibracije rotacije prijelazi
ВишеRepublika Hrvatska - Ministarstvo znanosti, obrazovanja i športa
Republika Hrvatska - Ministarstvo znanosti, obrazovanja i športa Agencija za odgoj i obrazovanje - Hrvatsko kemijsko društvo ŠKOLSKO NATJECANJE IZ KEMIJE učeni(ka)ca osnovnih i srednjih škola 2011. PISANA
ВишеМинистарство просвете, науке и технолошког развоја ОКРУЖНО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ 22. април године ТЕСТ ЗА 8. РАЗРЕД Шифра ученика Српско хемијско
Министарство просвете, науке и технолошког развоја ОКРУЖНО ТАКМИЧЕЊЕ ИЗ ХЕМИЈЕ 22. април 2018. године ТЕСТ ЗА 8. РАЗРЕД Шифра ученика Српско хемијско друштво (три слова и три броја) УПИШИ Х ПОРЕД НАВЕДЕНЕ
ВишеMicrosoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
ВишеSlide 1
Dvadeset četvrto predavanje 1 CILJEVI PREDAVANJA Pojačan efekat staklene bašte H 2 O i CO 2 kao apsorberi radijacije sa Zemlje radijaciono forsiranje Posledice globalnog zagrevanja Izvori i potrošnja gasova
ВишеMicrosoft Word - Test 2009 I.doc
Ime i prezime (ŠTAMPANIM SLOVIMA!!!) jedinstveni matični broj građana (prepisati iz lične karte) broj prijave Test za prijemni ispit iz hemije 1. Hemijska promena je: a) rastvaranje NaCl b) sublimacija
ВишеMate_Izvodi [Compatibility Mode]
ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки
ВишеMLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički
MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti
ВишеKvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji
Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji doc dr Nenad Vuković, Institut za hemiju, Prirodno-matematički fakultet u Kragujevcu JONIZACIJA ELEKTRONSKIM UDAROM Joni u
ВишеMicrosoft PowerPoint - fizika 9-oscilacije
Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања = 5 поена (са више од 3 одсуствовања са предавања се не могу добити) Лабораторијске вежбе = 10 поена обавезни сви поени односно
ВишеNumeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs
Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy
ВишеMicrosoft PowerPoint - fizika 7-fluidi-dinamika-2014
ФИЗИКА 2014. Понедељак, 23. новембар 2014. године Статика флуида Густина и притисак флуида Промена притиска са дубином флуида Паскалов принцип Калибрација, апсолутни притисак и мерење притиска Архимедов
ВишеSTRELIČARSKI SAVEZ SRBIJE, BEOGRAD REVIZIJA SAGLASNOSTI Izveštaj revizora o ispunjenju ugovorenih obaveza Redovnog programa za godinu Konsultant
STRELIČARSKI SAVEZ SRBIJE, BEOGRAD Izveštaj revizora o ispunjenju ugovorenih obaveza Redovnog programa za 2017. godinu Konsultant - Revizija doo REVIZIJA POREZI RAČUNOVODSTVO KONSALTING www.konsrev.rs
ВишеIPPC zahtev[1] [Compatibility Mode]
ПРИМЕНА IPPC ДИРЕКТИВЕ У СРБИЈИ ЗАХТЕВ ЗА ИЗДАВАЊЕ ИНТЕГРИСАНЕ ДОЗВОЛЕ qзакон о интегрисаном спречавању и контроли загађивања животне средине (Сл. Гласник РС, број 135/2004) Уређује услове и поступак издавања
ВишеOtpornost materijala
Prethodno predavanje Statika je deo mehanike koji se bavi: OdreĎivanjem uslova ravnoteţe krutih tela koja su izloţena mehaničkom dejstvu Slaganjem sila i svoďenjem sistema na prostiji Korišćeni i definisani
ВишеREPUBLIKA HRVATSKA BJELOVARSKO BILOGORSKA ŽUPANIJA GRAD DARUVAR GRADONAČELNIK KLASA: /19-01/01 URBROJ: 2111/ / Daruvar, 02. siječnj
REPUBLIKA HRVATSKA BELOVARSKO BILOGORSKA ŽUPANIA GRAD DARUVAR GRADONAČELNIK KLASA: 406-09/19-01/01 URBRO: 2111/01-02-02/1-19-1 Druvr, 02. siječnj 2019. g. N temelju člnk 28. Zkon o jvnoj nbvi (NN RH, broj
ВишеPowerPoint Presentation
Prečišćavanje otpadnih gasova Pregled SISTEMI ZA PREČIŠĆAVANJE OTPADNIH GASOVA SISTEMI ZA UKLANJANJE ČESTICA SISTEMI ZA UKLANJANJE GASOVITIH POLUTANATA 10 Emisija u svetu (Mt/god) CO VOCs SOx NOx ČESTICE
ВишеUNIVERZITET U TUZLI Filozofski fakultet Broj: 02/ /17 Tuzla, godine Na osnovu člana 122. Statuta Univerziteta u Tuzli, a u vezi sa
Studijski program Komunikologija Nakon što je prijavu kandidata Azre Musić odbacilo kao nepotpunu Naučno-nastavno vijeće utvrďuje slijedeću U prvu godinu drugog studija u akademskoj 2017/2018. godini u
ВишеT E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G
T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme
ВишеОдлука о изменама и допуни Одлуке о општим правилима за извршавање инстант трансфера одобрења 1. У Одлуци о општим правилима за извршавање инстант тра
Одлук о изменм и допуни Одлуке о општим првилим з извршвње инстнт трнсфер одобрењ 1. У Одлуци о општим првилим з извршвње инстнт трнсфер одобрењ ( Службени глсник РС, број 65/18 у дљем тексту: Одлук),
Више