untitled

Величина: px
Почињати приказ од странице:

Download "untitled"

Транскрипт

1 Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u jednom ili drugom smeru. Prolem složenih odstupnj pojvljuje se u dv vid: ) kod nlegnj dvju ilindričnih delov istih nzivnih mer zzori i preklopi, ) kod ređnj dvju ili više tolerisnih kot u vidu ln n jednom mšinskom delu ili ko nlegnje dveju rvni koje pripdju rzličitim delovim jednog sklop. od svkog sklop rzlikuju se: torelisne kote, ko dužinske mere koje se propisuju d i se ostvrile ordom i koje se morju kontrolisti d li zdovoljvju dte tolernije i rezultujuć ili funkionln mer koj se ne kontroliše već nstje u rezulttu. d z D tolerisne kote: d,d rezultujuć mer: z tolerisn kontrolisn kot!!! Primer rednog kotirnj - mx = mx + mx -min = min + min Primer: A = T + T = mx min gde je A - visin polj odstupnj rezultujuče mere - = 50 ± 0,300 = 0 ± 0,00»»» = 70 ± 0,400

2 Osnovi konstruisnj Primer prlelnog kotirnj Primer : = 70 ± 0,300 =0 ± 0,00 mx = mx min min = min mx A = T +T = mx - min A Visin polj odstupnj rezultujuće mere Rezultujuć mer često je rstojnje krjnjih površin koje pripdju rzličitim delovim jednog sklop. Primer: =50 ± 0,400 = 0 ± 0,00 = 5 ± 0,50 3 = 30 ± 0,300 mx = 3mx min min = = (30+0,300)-(5-0,50)-(0-0,00) mx = 5+0,550 3 min = 3min - mx mx = = (30-0,300)-(5+0,50)-(0+0,00) min = 5-0,550 A = 0,550 = 00µ m T + T + T = 0, , , 00= 00µ m 3 Iz npred izloženog proizilzi d sve dužinske mere koje orzuju merni ln nisu rvnoprvne.

3 Osnovi konstruisnj 3 I. ere psolutno tčne = + = = Unošenje treće mere nepotreno, li ne dovodi do kontrdiktornih rezultt II. Ako se rdi o tolerisnim kotm. rezultujuć mer = mx min min = min mx mx i - tolerisne - kontrolisne kote. rezultujuć mer = mx min min = min mx mx 3. rezultujuć mer = mx min min = min mx mx doijju se tri grupe rezultt koji ne slede jedn iz drugog. Zključk: Od tri kote (dužine) toleristi se mogu smo dve -»» to su tolerisne kote, treć se ne može i ne sme propisivti, već nstje u rezulttu ko rezultujuć ili funkionln mer.

4 Osnovi konstruisnj 4 erni ln dkle predstvlj veći roj tolerisnih kot koje se nstvljju jedn n drugu u jednom ili drugom smeru ztvr je rezultujuć ili funkionln mer. x rezultujuć mer -»» sirnje gornjih oduzimnje donjih grničnih mer tolerisnih kot. in rezultujuć mer -»» sirnje donjih oduzimnje gornjih grničnih mer tolerisnih kot Visin polj odstupnj rezultujuće mere jednk je ziru visin tolerisnih polj komponentnih kot Inverzni zdtk zdt: trži se: rezultujuć mer i jedn ili više komponentlnih kot. komponentln kot koj nedostje. Odstupnj rezultujućih mer tre d ostnu u određenim, unpred propisnim grnim, li se ove grnie ne mogu uneti n rtež ko tolernije određenih kot ilo zto što one predstvljju rstojnje rzličitih delov sklop ili što je merenje ovih kot nezgodno - zmen kot Rstojnje rzličitih delov sklop Grnie odstupnj se ne mogu uneti n rtež zto što predstvljju rstojnje rzličitih delov sklop ) Primer: A B Dto: tolerisn kot = 0 ± 0,00 Odrediti tolernije kote tko d rstojnje površine A i B iznosi: 30 ± 0,300 Rstojnje A - B -»» rezultujuć mer

5 Osnovi konstruisnj 5 = 30 ± 0,300 mx = mx min; min = min mx; mx = mx + min = (30 + 0,300) + (0 0,00) = , 00 min = min + mx = (30 0,300) + (0 + 0,00) = 50 0, 00 = 50 ± 0, 00 T = 0, 00; T = 0, 400; T+ T = 0, 600 = A Zdtk je moguće rešiti ko je A > T ) Zmen kot Prelz s prlelnog n redno kotirnje dte: dve tolerisne kote i ( prlelno kotirnje ) vezne z istu rvn Izvršiti zmenu kot tko d se umesto prlelnog doije redno kotirnje ( d se pri tome tolernije zdtih kot i ne promene) = 3 =? 3 Zmen kot smo ko su visine tolernijskih polj kot i rzličite; ot kojoj odgovr već visin tolernijskog polj pretvr se u rezultujuću meru, umesto rezultujuće mere uvodi se tolerisn kot. Ako je T > T zdtk se svodi n određivnje kote 3 tko d rezultujuć mer im odstupnj koj su jednk odstupnjim tolerisne kote. = 3 = + = 3mx mx 3mx mx = + = 3min min 3min min

6 Osnovi konstruisnj 6 odvde je: = 3mx mx mx = 3min min min Primer: = 50 ± 0,300; = 0 ± 0,00; = 30 ± 0, 400 3mx 3min = (50 + 0,300) (0 + 0,00) = , 00 = (50 0,300) (0 0,00) = 30 0, 00 3 = 30 ± 0, 00 3 Ako i zdtk io formulisn sledećim podim: ) = 50 ± 0,00 = 0 ± 0,300 3mx 3min = (50 + 0,00) (0 + 0,300) = 30 0,00; min = (50 0,300) (0 0,00) = , 00; mx ) = 50 ± 0, 00 = 0 ± 0, 00 -»» 3mx 3min = 30 = 30 Prelz s rednog n prlelno kotirnje 3 < = 30 ± 0, 00 = 40 ± 0,500 3 = 70 ± 0,700 3 = 3 = = 3mx 3mx min min = = 3min 3min mx min = + = (40 + 0,500) + (30 0,00) = ,300 3mx mx min = + = (40 0,500) + (30 + 0,00) = 70 0,300 3min min mx

7 Osnovi konstruisnj 7 3 = 70 ± 0,300 = 70 ± 0, Umesto uskih tolernij -»» ompenzirti - elstični elementi - pločie od tnkih limov erni Ln Primer: Z pločiu prikznu n slii odrediti tolernije koje tre propisti z dužinske mere i koje će oezediti isprvnu funkiju pločie? x y + x = y = 40 ± 0,4 =70 ± 0, ) x x = Tolerisne kote: i Rezultujuć mer : x + + x = 0 x = 0 x = x mx mx mx = min min min = mx mx mx = x x min min min min mx = =0 =0 +0, +0,5 +0,-0,5-0,4 = =0 =0-0, -0, -0,-0, +0, + =

8 Osnovi konstruisnj 8 ) y Tolerisne kote: i y Rezultujuć mer : + y + = 0 y = 0 y = y mx mx min = = y min min mx = y =70 40 =30 min mx min mx min min +0, +0,4-0,3 = y =70 40 =30-0, -0,4 +0,3 = 30 ± 0. 3

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme

Више

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo

Више

Microsoft Word - integrali IV deo.doc

Microsoft Word - integrali  IV deo.doc INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen

Више

Microsoft Word - MATRICE ZADACI ii deo

Microsoft Word - MATRICE ZADACI ii deo MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n

Више

Ime i prezime: Matični broj: Grupa: Datum:

Ime i prezime: Matični broj: Grupa: Datum: Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti

Више

Microsoft Word - 16ms321

Microsoft Word - 16ms321 Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.

Више

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205) VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n

Више

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc) EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij

Више

Microsoft Word - 26ms281

Microsoft Word - 26ms281 Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo) VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe

Више

Microsoft Word - GEOMETRIJA 3.4..doc

Microsoft Word - GEOMETRIJA 3.4..doc 4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.

Више

1. Realni brojevi

1. Realni brojevi .. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo

Више

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc) VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku

Више

Microsoft Word - FINALNO.doc

Microsoft Word - FINALNO.doc Ako pronñeš cestu ez preprek, zpitj se d li t cest igdje vodi. Projektn nstv Osnovn škol Ivn Gundulić DUBROVNIK MEMENTO (mtemtik) Plnirli smo: Nprviti pregled elementrnih sdržj iz mtemtike s primjerim

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo

Више

1

1 Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi

Више

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,

Више

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - INTEGRALI  ZADACI.doc INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod

Више

Microsoft Word - 26ms441

Microsoft Word - 26ms441 Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,

Више

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i

Више

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c

Више

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički

MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti

Више

Microsoft Word - rokovi_2019.docx

Microsoft Word - rokovi_2019.docx 4..019. pismeni ispit 1. Materijalna toča mase 0.5 miruje na hrapaoj osini (α=15 i μ=0.3), ad na nju počne djeloati osa sila (t) oja se mijenja prema priazanom dijaramu. Treba odrediti dijarame R(t), a(t)

Више

PLB146 Manual

PLB146 Manual SRPSKI PLB-146M Uputstvo z montžu UPUTE ZA OTVARANJE PAKIRANJA! Pžljvo otvorite kutiju, izvdite njezin sdržj i rsporedite g n krton ili neku drugu zštitnu površinu (d biste izbj egli oštedenj).! Prem popisu

Више

Microsoft Word - Integrali III deo.doc

Microsoft Word - Integrali III deo.doc INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o

Више

trougao.dvi

trougao.dvi Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi

Више

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D, Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri

Више

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test

Више

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart

Univerzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart Univerzitet u Nišu Prirodno - mtemtički Fkultet Deprtmn z mtemtiku Višestruko osigurnje - Mster rd - Mentor: dr Mrij Milošević Niš, Mrt 213. Student: An Jnjić 2 Sdržj 1 Uvod 5 2 Osnovni pojmovi 7 2.1 Motivcioni

Више

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode]

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode] ODREĐIVANJE REDOSLEDA POSLOVA DŽONSONOV METOD P očetak k k k m in t i1 m a x t i2 ili m in t i3 m a x t i2 R e š e n je tre b a tra žiti n a d ru g i n ač in S vođenje p ro b le m a n x3 n a fik tiv a

Више

ISPIT_02_X_2014_R

ISPIT_02_X_2014_R IPI IZ RGAKE EMIJE ZA UEE IZIČKE EMIJE Predmetni nstvnik: r M.. Ivnović, docent IME I PREZIME (BAVEZ ŠAMPAIM LVIMA) BRJ IEKA APMEE: (UKLIK E RAIE ZAAKA RAZVJE, BAVEZ E PPIAI A VAKJ RAI) (0) (+) (0) (+)

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

Microsoft Word - IZVODI _3. deo_.doc

Microsoft Word - IZVODI _3. deo_.doc IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...

Више

Zad.RGS.2012za sajt [Compatibility Mode]

Zad.RGS.2012za sajt [Compatibility Mode] n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki

Више

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA

Више

07_JS aktuatori.rev8_lr_bn [Compatibility Mode]

07_JS aktuatori.rev8_lr_bn [Compatibility Mode] Podsećnje... Poluprovodničke komponente koje se koriste u energetskim pretvrčim SW-kontrolisni prekidčki element (trnzistor ili tiristor) D-diod L-induktivnost C-kpcitivnost F1,F2-zštitni elementi (ultr

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

Microsoft Word - PRIMENA INTEGRALA.doc

Microsoft Word - PRIMENA INTEGRALA.doc PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Zltko Trstenjk Određeni integrl i primjene u geometriji Zvršni rd Osijek, 8. Sveučilište J.J. Strossmyer

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Microsoft Word - Integrali vi deo

Microsoft Word - Integrali vi deo INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Microsoft Word - MATRICE.doc

Microsoft Word - MATRICE.doc MARICE (EORIJA) Z prvougonu ( kvrtnu ) šemu rojev (i,,,m j,,,n ):............ n n m m mn kžemo je mtri tip m n. Brojevi su elementi mtrie. ip mtrie je vrlo itn stvr : k kžemo je mtri tip m n, to znči on

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof.

PRIRODNO-MATEMATIČKI FAKULTET Univerzitet u Nišu MASTER RAD Karamatine pravilno promenljive funkcije i linearne diferencijalne jednačine Mentor: Prof. PRIRODNO-MATEMATIČKI FAKULTET Univerzie u Nišu MASTER RAD Krmine prvilno promenljive funkcije i linerne diferencijlne jednčine Menor: Prof. dr Jelen Mnojlović Suden: Krin Kosdinov Niš, 2015. Sdržj 1 Krmine

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

28. фебруар године СЛУЖБЕНИ ГЛАСНИК ОПШТИНЕ АРИЉЕ Број 6 Ариље, 28. фебруар године Година MMXIX Број 6 САДРЖАЈ 1. Одлука

28. фебруар године СЛУЖБЕНИ ГЛАСНИК ОПШТИНЕ АРИЉЕ Број 6   Ариље, 28. фебруар године Година MMXIX Број 6 САДРЖАЈ 1. Одлука www.arilje.org.rs Ариље, 28. фебрур 2019. године Годин MMXIX Број 6 САДРЖАЈ 1. Одлук о рсписивњу јвног оглс з двње у зкуп и н коришћење пољопривредног земљишт у држвној својини у општини Ариље...2 Н основу

Више

11. јануар године СЛУЖБЕНИ ГЛАСНИК ОПШТИНЕ АРИЉЕ Број 3 Ариље, 11. јануар године Година MMXIX Број 3 САДРЖАЈ 1. Оглас за

11. јануар године СЛУЖБЕНИ ГЛАСНИК ОПШТИНЕ АРИЉЕ Број 3   Ариље, 11. јануар године Година MMXIX Број 3 САДРЖАЈ 1. Оглас за www.arilje.org.rs Ариље, 11. јнур 2019. године Годин MMXIX Број 3 САДРЖАЈ 1. Оглс з прикупљње писних понуд з двње у зкуп и н коришћење пољопривредног земљишт у држвној својини у општини Ариље...2 1 Н основу

Више

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim

Више

Slide 1

Slide 1 Грађевински факултет Универзитета у Београду МОСТОВИ Субструктура моста Вежбе 4 Програм предмета Датум бч. Предавања бч. Вежбе 1 22.02. 4 Уводно предавање - 2 01.03. 3 Дефиниције, системи, распони и материјали

Више

DMDM_Zahtev_za_ovlascivanje

DMDM_Zahtev_za_ovlascivanje Надлежни орган: Министарство привреде Дирекција за мере и драгоцене метале, Мике Аласа 14, 11000 Београд 1. ОПШТИ ПОДАЦИ О ПОДНОСИОЦУ А: 1.1 Пословно име/назив: Адреса седишта: Особа за контакт (телефон):

Више

Microsoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc

Microsoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Више

Републички педагошки завод Бања Лука Инспектор просвјетни савјетник за машинску групу предмета и практичну наставу Датум: јун 2010.године АНАЛИЗА РЈЕШ

Републички педагошки завод Бања Лука Инспектор просвјетни савјетник за машинску групу предмета и практичну наставу Датум: јун 2010.године АНАЛИЗА РЈЕШ Републички педагошки завод Бања Лука Инспектор просвјетни савјетник за машинску групу предмета и практичну наставу Датум: јун 21.године АНАЛИЗА РЈЕШЕЊА ЗАДАТАКА ОБЈЕКТИВНОГ ТИПА (ОДЈЕЉЕЊЕ 1) Анализа резултата

Више

1. Odrediti: a) Y parametre kola sa dva para krajeva (označenog isprekidanom linijom) b) Ulaznu admitansu kola sa slike. v I1 2 I2 + Vul(t) V I2

1. Odrediti: a) Y parametre kola sa dva para krajeva (označenog isprekidanom linijom) b) Ulaznu admitansu kola sa slike. v I1 2 I2 + Vul(t) V I2 . Odrediti: a) Y parametre kola a dva para krajeva (označeno iprekidanom linijom) b) laznu admitanu kola a like. v + Vul(t) V 0.5 V V 4 (t) a) y y y y y y y y Ekvivalentno kolo za 0 : - V 0.5 V V=0 0 y

Више

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij

Више

ПОЉОПРИВРЕДНИ ФАКУЛТЕТ

ПОЉОПРИВРЕДНИ ФАКУЛТЕТ Tекст конкурс з упис студент н мстер кдемске студије у школској 2019/2020. години УНИВЕРЗИТЕТ У НОВОМ САДУ АКАДЕМИЈА УМЕТНОСТИ Адрес: 21000 Нови Сд, Ђуре Јкшић 7 Телефон: 021/420-187 Фкс: 021/420-187 Студентск

Више

Z-18-61

Z-18-61 РЕПУБЛИКА СРБИЈА ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, пошт.фах 384 тел. (011) 32-82-736, телефакс: (011) 2181-668 На основу члана 12. Закона о метрологији ("Службени лист СЦГ",

Више

Operation manuals

Operation manuals FTXP50M2V1B FTXP60M2V1B FTXP71M2V1B srpski Sdržj Sdržj 1 O dokumentiji 2 1.1 O ovom dokumentu... 2 2 O sistemu 2 2.1 Unutršnj jedini... 2 2.1.1 Displej unutršnje jedinie... 3 2.2 O korisničkom interfejsu...

Више

Operation manuals

Operation manuals srpski Sdržj Sdržj 1 O dokumentiji 2 1.1 O ovom dokumentu... 2 2 O sistemu 3 2.1 Unutršnj jedini... 3 2.2 O korisničkom interfejsu... 3 2.2.1 Komponente: Korisnički interfejs... 3 2.2.2 D iste rdili n

Више

LAB PRAKTIKUM OR1 _ETR_

LAB PRAKTIKUM OR1 _ETR_ UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

PRAVILNIK TAKMICENJA

PRAVILNIK TAKMICENJA PRAVILNIK TAKMIČENJA karting trke 5 6 za otvoreno prvenstvo Srpskog Sportskog Karting Saveza u organizaciji AKK Fokus B.B. iz Bajine Bašte NAGRADA S.S.K.S PONIKVE 2014 Na osnovu odredbi: Karting pravilnika,

Више

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p { Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te

Више

Microsoft Word - IZVODI ZADACI _4. deo_

Microsoft Word - IZVODI  ZADACI _4. deo_ IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Више

PowerPoint Presentation

PowerPoint Presentation Анализа електроенергетских система -основни прорачуни- Падови напона и губици преноса δu, попречна компонента пада напона Δ U, попречна компонента пада напона U 1 U = Z I = R + jx Icosφ jisinφ = RIcosφ

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

На основу члана 41.став 1.тачка 4. Закона о смањењу ризика од катастрофа и управљању ванредним ситуацијама ( Сл.гласник РС, број 87/2018), а у вези чл

На основу члана 41.став 1.тачка 4. Закона о смањењу ризика од катастрофа и управљању ванредним ситуацијама ( Сл.гласник РС, број 87/2018), а у вези чл Н основу члн 41.ств 1.тчк 4. Зкон о смњењу ризик од ктстроф и упрвљњу внредним ситуијм ( Сл.глсник РС, број 87/2018), у вези члн 8. и 9. Уредбе о сству и нчину рд Штбов з внредне ситуије ( Сл.глсник РС,

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 000 Београд, Мике Аласа, ПП:, ПАК: 0 0 телефон: (0) -8-7, телефакс: (0) -8-8 На основу члана 9. став. Закона о општем управном

Више

76.1.1

76.1.1 4 СЛУЖБЕНИ ГЛАСНИК РЕПУБЛИКЕ СРПСКЕ - Број 76 14.8.2017. V Задужује се Министарство за избјеглице и расељена лица Републике Српске да са корисницима ових станова закључи уговор о закупу у складу са Законом

Више

Sveučilište u Zagrebu

Sveučilište u Zagrebu Sveučilište u Zgrebu Prirodoslovno- mtemtički fkultet Biološki odjsek Božn Ćvrušić Učink dušik n fotosintetsku učinkovitost i pigmente u lišj Everni prunstri Diplomski rd Zgreb, 2017. Ovj rd, izrđen n

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 202-44-00, телефакс: (011) 21-81-668 Именовано тело број И

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

Satnica.xlsx

Satnica.xlsx ПОНЕДЕЉАК 24.06.2019 64 46 -РИИ -РИИ -РИИ 50 35 -РИИ 17 РИИ 2 -РИИ Сервисно-оријентисане архитектуре 6 Б-ТЕЛ Оптимални линеарни системи 1 -ЕКМ Нови материјали и технологије 1 -ЕЛК РФ електроника 6 Б-ЕМТ

Више

Microsoft Word - PRAVILNIK O GV AK AM cir.doc

Microsoft Word - PRAVILNIK O GV AK AM cir.doc На основу чл. 38.став 1. и чл. 47.став 3. Закона о заштити ваздуха («Службени гласник Републике Српске», број: 53/02) И члана 58. Закона о министарствима («Сл. гласник Републике Српске», бр. 70/02) министар

Више

mikrorem d.o.o. m e r n o r e g u l a c i o n a o p r e m a Uputstvo za korišćenje uređaja ZLR1CP doc /10 "MIKROREM" d.o.o., Braće Spasić 4A,

mikrorem d.o.o. m e r n o r e g u l a c i o n a o p r e m a Uputstvo za korišćenje uređaja ZLR1CP doc /10 MIKROREM d.o.o., Braće Spasić 4A, mikrorem d.o.o. m e r n o r e g u l a c i o n a o p r e m a Uputstvo za korišćenje uređaja CP doc. 0448-10/10 "MIKROREM" d.o.o., Braće Spasić 4A, 32000 ČAČAK e-mail: office@mikrorem.com web: www.mikrorem.com

Више

Matematika 2

Matematika 2 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije

Више

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y

Више

РЕПУБЛИКА СРПСКА ВЛАДА E УРЕДБА О УСПОСТАВЉАЊУ РЕПУБЛИЧКЕ МРЕЖЕ МЈЕРНИХ СТАНИЦА И МЈЕРНИХ МЈЕСТА Бања Лука, децембар године

РЕПУБЛИКА СРПСКА ВЛАДА E УРЕДБА О УСПОСТАВЉАЊУ РЕПУБЛИЧКЕ МРЕЖЕ МЈЕРНИХ СТАНИЦА И МЈЕРНИХ МЈЕСТА Бања Лука, децембар године РЕПУБЛИКА СРПСКА ВЛАДА E УРЕДБА О УСПОСТАВЉАЊУ РЕПУБЛИЧКЕ МРЕЖЕ МЈЕРНИХ СТАНИЦА И МЈЕРНИХ МЈЕСТА Бања Лука, децембар 2012. године На основу члана 11. став 3. Закона о заштити ваздуха ( Службени гласник

Више