(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)
|
|
- Judita Levstik
- пре 5 година
- Прикази:
Транскрипт
1 VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku p je njbolje d se njpre podsetite kko izgledju grfici osnovnih funkcij. ( imte fjl n sjtu) Immo dv osnovn tip područj integrcij: ) Ako je područje integrcije omedjeno s leve i desne strne prvm = i = b ( recimo < b) s donje i gornje strne neprekidnim funkcijm ( ) i ( ) gde je ( ) ( ), ond immo: b ( ) ( ) p je: z (, ) dd= b d ( ) ( ) z(, ) d Pogledjmo sliku: ( ) ( ) ( ) ( ) b b Ovo je češć situcij, kd rešvmo njpre integrl po d, gde ćemo tretirti ko konstntu, ztim rešvmo običn integrl po - su.
2 ) U ovoj drugoj situciji, područje integrcije je omedjeno odozdo i odozgo s prvm = c i = d, gde je c<d, s leve i desne strne su funkcije izržene preko - s : ( ) i ( ) gde je ( ) ( ). Pogledjmo sliku: d c d ( ) ( ) c ( ) ( ) Znči: Ako je oblst odreñen nejednkostim: ( ) ( ) c d ond je : z (, ) dd= d c d ( ) ( ) z(, ) d Ovde se prvo rdi integrl po d ztim integrl po d. Koji ćete tip koristiti zvisi od konkretne situcije. Ncrtte sliku, ndjete preseke p krenete u rd...
3 Primer. Odrediti grnice integrcije dvojnog integrl z(, ) dd z ob moguć poretk integrcije ko je oblst trougo s temenim O(,); A(,) i B (,) Njpre ćemo ncrtti sliku: = B(,) O(,) A(,) Prvu kroz tčke O i B smo nšli ko jednčinu prve kroz dve dte tčke ( ko neznmo npmet d je odredimo) : = ( ) P immo: = ( ) = Ajmo d odrdimo grnice z prvi poredk, pogledjmo sliku: = ide = je - os gledmo odozdo ngore
4 Z grnice po su gledmo s lev udesno. Prvo nilzimo n nulu, p n. kle :. Kd gledmo po, njpre nilzimo n osu, znmo d je to =. S gornje strne je prv =, p je Oblst je: Ovde bi zdti integrl rešvli po grnicm : b ( ) z(, ) dd= d z(, ) d= d z(, ) d ( ) Z drugi poredk integrcije immo: gledmo s lev n desno ide od = = Sd ide od do gledjući odozdo ngore, p je. Z grnice gledmo s lev udesno. Njpre nilzimo n prvu = ztim n prvu =, p je Oblst je sd: Zdni integrl bi rešvli po grnicm: d ( ) z(, ) dd= d z(, ) d= d z(, ) d c ( ) Primer. Odrediti grnice integrcije dvojnog integrl z(, ) dd z ob moguć poretk integrcije ko je oblst prlelogrm s temenim A(,); B(,); C(,7) i (,5) Crtmo sliku:
5 7 C(,7) 6 5 (,5) B(,) A(,) Trebju nm jednčine prvih kroz AB i kroz C. Koristimo ko mlopre = ( ) i dobijmo d je: AB: = C: = + Sd možemo rzmišljti o prvom poretku integrcije: 7 6 C(,7) =+ 5 (,5) A(,) B(,) = ide od do + ide od do Oblst je + integrl bi rešvli ko: b ( ) + z(, ) dd= d z(, ) d= d z(, ) d ( ) I ovo bi bio lkši nčin z rešvnje 5
6 Z drugi poredk integrcije bi situcij bil mlo tež. Nrvno, njpre ćemo jednčine prvih AB i C izrziti preko -s. AB: = = C: = + = Pogledjmo sd slike: ide od do (,5) C(,7) B(,) = ide od do (,5) C(,7) B(,) ide od 5 do C(,7) = = (,5) B(,) A(,) A(,) A(,) ide od do / ide od do slik. slik. slik. Morli bi oblst integrcije d podelimo n tri del: : Zdti integrl bi rešvli: 5 : 5 7 : d ( ) 5 7 z(, ) dd= d z(, ) d= d z(, ) d+ d z(, ) d+ d z(, ) d c ( ) 5 6
7 Primer. Odrediti grnice integrcije dvojnog integrl z(, ) dd z ob moguć poretk integrcije ko je Oblst ogrničen linijm = i = Kriv = jeste kružnic li je prvo mormo srediti... =... / () = ( ) + = + = + + = odmh ndjemo i preseke...njih uvek dobijmo rešvjući sistem jednčin: = = =...() = = ( ) = = = = = = = Crtmo sliku: = ( ) + = 7
8 Prvi poredk integrcije će biti: = = po ide od do : integrl bi rešvli: b ( ) z(, ) dd= d z(, ) d= d z(, ) d ( ) Z drugi poredk integrcije, ko i u prethodnim primerim, immo mlo više posl... izrzimo njpre iz = : = = + = Ovo sd rešvmo ko kvdrtnu jednčinu: + =,, b± b c ± 6 ± = = = = ± nm treb = Sd slik: ide od do po = = : integrl je : d ( ) z(, ) dd= d z(, ) d= d z(, ) d c ( ) 8
9 Primer. Promeniti poredk integrcije u integrlu: d z(, ) d Iz dtog integrl d z(, ) d odmh vidimo d se rdi o drugom tipu z poredk integrcije i d je: : Iz = = iz = = Slik: = = ide od do Odlst je sd : integrl : d z(, ) d= d z(, ) d Primer 5. Promeniti poredk integrcije u integrlu: d z(, ) d Sredimo kružnicu i ncrtmo sliku: 9
10 =...() = ( ) + = + + = + = Slik: ide od do = ( ) + = ceo krug = ide od krug do prve = Iz kružnice sd mormo izrziti : =...() = + = b± b c ± ±, = = = = ± = Mormo oblst podeliti n dv del: ide od - do - ide od = do = i idu od do oblst oblst
11 P bi integrl rešvli: d z(, ) d= d z(, ) d+ d z(, ) d Primer 6. Promeniti poredk integrcije u integrlu: d z(, ) d, > Ncrtjmo njpre sliku ( nrvno, prvo sredite jednčine kružnice i prbole): =+ = =+ = = Ofrbn oblst je nš oblst integrcije bi promenili poredk integrcije mormo uočiti tri oblsti: = = + po = po = ide od do ide od do : : +
12 Treći deo bi bio: ide od do po = = : Sd bi smo ovo zpisli Primer 7. U dvojnom integrlu z(, ) dd preći n polrne koordinte ko je oblst krug + se podsetimo njpre kko se prelzi n polrne koordinte ( J je jkobijn): = r cosϕ = r sin ϕ ond je : J = r z (, ) dd = z( r cosϕ, r sinϕ) J drdϕ = dϕ z( r cosϕ, r sinϕ) rdr ` ϕ ϕ r Ncrtjmo sliku i predjimo n polrne koordinte:
13 - - = r cosϕ J = r = r sinϕ Ovo zmenimo u + ( možete pisti i = umesto, nrvno ko dje profesor vš...) + = ( r cos ϕ) + ( r sin ϕ) = r = r= r (cos ϕ+ sin ϕ) = znmo d je cos ϕ+ sin ϕ = kle r ide od d. Pošto nm ovde treb ceo krug, jsno je d ϕ π Immo dkle d je `= r ϕ π p je : z (, ) dd = z( r cosϕ, r sinϕ) J drdϕ = Primer 8. ` π dϕ z( r cos ϕ, r sin ϕ) rdr U dvojnom integrlu z(, ) dd preći n polrne koordinte ko je oblst krug + spkujemo kružnicu njpre, p ćemo ncrtti sliku: + = + = + + = ( ) + =
14 / π / π -/ = r cosϕ J = r = r sinϕ + = ( cos ) ( sin ) cos r ϕ + r ϕ = r ϕ r (cos ϕ+ sin ϕ) = r cosϕ r = r cosϕ r= kle: r cosϕ cosϕ Mormo pziti što se tiče ugl, jer sd nm ne treb ceo krug već ( pogledj sliku): π π ϕ r cosϕ kle immo: `= π π ϕ p je: z (, ) dd = z( r cosϕ, r sinϕ) J drdϕ = ` π π cosϕ dϕ z( r cos ϕ, r sin ϕ) rdr
Microsoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc
KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)
VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe
ВишеMicrosoft Word - INTEGRALI ZADACI.doc
INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo
ВишеMicrosoft Word - VALJAK.doc
ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke
Више(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)
EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij
ВишеMicrosoft Word - Integrali III deo.doc
INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o
Више(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)
EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih
ВишеMicrosoft Word - MATRICE ZADACI ii deo
MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n
ВишеProblem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim
ВишеMicrosoft Word - GEOMETRIJA 3.4..doc
4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.
ВишеMicrosoft Word - INTEGRALI.doc
INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l
ВишеMicrosoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc
PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo
ВишеStokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,
Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi
Више(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)
VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n
ВишеPetar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2
Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne
ВишеIV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od
IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2
ВишеMicrosoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx
Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
ВишеDvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f
ВишеMicrosoft Word - 26ms281
Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije
ВишеMicrosoft Word - IZVODI _3. deo_.doc
IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci iii deo.doc
KRIVOLINIJSKI INTEGRALI zadai (III deo) Nezavisnos krivolinijskog inegrala od puanje inegraije Sledeća vrñenja su ekvivalenna: ) P (, y, z) d+ Q(, y, z) dy+ R(, y, z) dz ne zavisi od puanje inegraije )
ВишеMicrosoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc
Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc
ВишеMicrosoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST
PARNOST i NEPARNOST FUNKCIJE PERIODIČNOST FUNKCIJE PARNOST i NEPARNOST FUNKCIJE Ako je f ( ) = f ( ) funkcija je parna i tada je grafik simetričan u odnosu na y osu Ako je f ( ) = f ( ) funkcija je neparna
Више(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i
ВишеIme i prezime: Matični broj: Grupa: Datum:
Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti
ВишеSveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene
Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Zltko Trstenjk Određeni integrl i primjene u geometriji Zvršni rd Osijek, 8. Sveučilište J.J. Strossmyer
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd
ВишеMicrosoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc
GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo
ВишеMicrosoft Word - PRIMENA INTEGRALA.doc
PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin
ВишеOrtogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav
Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij
ВишеMicrosoft Word - Analiticka - formule.doc
. Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju
ВишеMicrosoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеZadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun
Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
ВишеT E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G
T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme
ВишеMicrosoft Word - MNOGOUGAO.doc
MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
ВишеZad.RGS.2012za sajt [Compatibility Mode]
n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki
Више1. Realni brojevi
.. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo
ВишеZadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun
Zdtk U jednodimenzionlnoj kutiji, širine, nlzi se 000 neutron. U t 0, stnje svke čestice je ψx, 0 Axx. Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b Koliko čestic se nlzi u intervlu 0, ]
ВишеMicrosoft Word - MATRICE.doc
MARICE (EORIJA) Z prvougonu ( kvrtnu ) šemu rojev (i,,,m j,,,n ):............ n n m m mn kžemo je mtri tip m n. Brojevi su elementi mtrie. ip mtrie je vrlo itn stvr : k kžemo je mtri tip m n, to znči on
Вишеuntitled
Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u
ВишеMicrosoft Word - 26ms441
Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet
ВишеMicrosoft Word - KVADRATNA FUNKCIJA.doc
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеMicrosoft Word - 11ms201
Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (
ВишеSlide 1
DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u f Dinmički sistem Ulzi Izlzi (?) i, ϕ[ i ], ωθ, m m f f U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA
ВишеMatematika 2
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije
ВишеMLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički
MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti
Вишеtrougao.dvi
Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn
ВишеSeminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn
Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
Више{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p
{ Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеMicrosoft Word - IZVODI ZADACI _I deo_.doc
. C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
ВишеUniverzitet u Nišu Prirodno - matematički Fakultet Departman za matematiku Višestruko osiguranje - Master rad - Mentor: dr Marija Milošević Niš, Mart
Univerzitet u Nišu Prirodno - mtemtički Fkultet Deprtmn z mtemtiku Višestruko osigurnje - Mster rd - Mentor: dr Mrij Milošević Niš, Mrt 213. Student: An Jnjić 2 Sdržj 1 Uvod 5 2 Osnovni pojmovi 7 2.1 Motivcioni
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
Више1
Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi
ВишеMicrosoft Word - IZVODI ZADACI _2.deo_
IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеMicrosoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt
Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна
ВишеRG_V_05_Transformacije 3D
Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli
ВишеИспитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит
Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних
ВишеPowerPoint Presentation
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel
ВишеMicrosoft Word - 1.Operacije i zakoni operacija
1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеRucka.dft
Средња машинска школа РАДОЈЕ ДАКИЋ АУТОДИЗАЛИЦА ТАРА Милош Мајсторовић Средња машинска Прорачун: школа Аутодизалице " Тара " Пројекат РАДОЈЕ ДАКИЋ Лист ПРОРАЧУН НОСИВОСТИ АУТОДИЗАЛИЦЕ " ТАРА " ПОДАЦИ:
ВишеMicrosoft Word - 1. REALNI BROJEVI- formulice
REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеMicrosoft Word - Drugi dio teorije iz matematike 2
rugi dio eorije i eie Одређени интеграли појам интегралне суме Дефиниција Криволинијски трапез представља фигуру ограничену осом O линијом с којом праве које су паралелне са осом O могу да се секу највише
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеMicrosoft Word - 16ms321
Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеTrougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa
Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је
ВишеMicrosoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]
Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
Више