MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički

Величина: px
Почињати приказ од странице:

Download "MLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički"

Транскрипт

1 MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti probleme oim koji se e bve mtemtikom izv redove stve, pojvljuju se podjedko tjecjim z sve rzrede, p ih je zto vrlo vžo zti. Metode kojim se rješvju kreću se od oih jjedostvijih x 0) p do korištej vrlo komplicirih ejedkosti z koje se od učeik koji ih primjejuju e očekuje d ih zju dokzti. Svođeje kvdrt Prv metod rješvj ovih zdtk u teoriji je vrlo jedostv, li primjeri će pokzti d se korištejem te ejedkosti mogu riješiti i kompliciriji zdci. Primjeom ejedkosti x 0 rzličite izrze može se riješiti izeđujuće mogo zdtk. Kroz sljedećih ekoliko primjer i zdtk proći ćete osove ideje koje bi treble biti dovolje z rješvje većie zdtk ovog tip. Rješej zdtk prilože su krju dokumet, li svkko se preporuč d ih prije gledj u rješej pokušte smostlo riješiti. Zdci koji su u ktegoriji Zdci z smostl rd emju rješej, jer se od vs očekuje d ih smostlo riješite. Primjer. Dokžite d z rele brojeve, b vrijedi: b b Kod zdtk ovog tip uvijek je koriso prvo ejedkost zpisti u ekvivletom obliku koji s dese stre ejedkosti im 0. D ejedkost ekvivlet je s b b 0. Primjeom formule z kvdrt biom d ejedkost poprim oblik b) 0. Budući d je x 0 z svki x, p od i z x = b, dobive je ejedkost toč, kko je o ekvivlet početoj, zključujemo d je b b. Primjer. Dokžite d z rele brojeve, b, c vrijedi: b c b bc c Poovo zpišimo ejedkost u ekvivletom obliku koji s dese stre ejedkosti im 0. Kod ovog primjer tkođer ćemo se zbog lkšeg rčuj riješiti zivik možejem cijelog izrz s. Tko dolzimo do b c b bc c 0. Potrebo je još jedio primijeiti formulu z kvdrt triom te dolzimo do ejedkosti koj je ekvivlet početoj, oblik je x 0, odoso b c) 0. Primjer. b b) bc b c) c c ) 6bc Ko i u prv dv primjer, du ejedkost pokušt ćemo svesti ejedkost x 0, kko bismo to postigli, prvi je kork rješvje zgrd iz zdtk. Tko dobivmo ejedkost ekvivletu početoj: b b b c bc c c 6bc 0. Treb uočiti d je 6bc = bc bc bc. Tkv m je rstv korisiji jer se izlučivjem iz drugog i petog čl dobiv b c ) bc = b bc c ). Sd treb iskoristiti uvjet zdtk, to je d su, b, c > 0, p iz tog slijedi d je b c) 0. Postupimo li logo i s ostlim človim, dobivmo ejedkost koj je ekvivlet početoj: b c) b c ) c b) 0. Preostje još zključiti kko je dobive ejedkost toč jer zbrjjem izrz većih od 0 dobivmo izrz koji je tkođer veći od 0.

2 Kod rješvj sličih zdtk često ćemo početu ejedkost trsformirti do eke druge z koju će tvrdj vrijediti. Prilikom tkvih trsformcij užo je u svkom korku provjeriti i glsiti d je ov ejedkost ekvivlet ozk ) početoj, jer u suprotom iz kočog izrz z koji ustovimo d vrijedi e mor slijediti tvrdj zdtk. Zimljivo se tkođer pitti kd vrijedi zk jedkosti. Poekd se u zdcim glsi d je potrebo i to odrediti, li čk i kd to u zdtku ije glšeo, preporuč se d pišete jer se zbog tog zju skidti bodovi. Tko u Primjeru jedkost vrijedi z = b, u Primjeru jedkost vrijedi z = b c, u Primjeru jedkost vrijedi z = b = c. Zdtci Zdtk. Nek su, b, c, d reli brojevi tkvi d je d = b c. Dokžite d vrijedi: b) c d) c) b d) d ) b c) 0 Zdtk. Zdtk. Dokžite d z rele brojeve, b, c vrijedi: b) c) b b c) b ) c c ) c b) 4 b c b bc c Zdtk 4. b c) b c ) c b) b c ) Zdtk 5. bc b b c ) c b c Zdtci z smostl rd Zdtk 6. Nek su, b, c reli brojevi tkvi d je b bc c =. Dokžite d vrijedi: b c Zdtk 7. Nek su, b, c reli brojevi tkvi d je bc =. Dokžite d vrijedi: Zdtk 8. Dokžite d z rele brojeve, b, c vrijedi: ) b ) b b ) c ) c c ) ) 4 b ) 4 b 4) b )

3 Nejedkosti među sredim Nejedkosti među sredim su možd i jvžije ejedkosti s kojim ćete se susresti. Zdtci sredjoškolskim tjecjim uvijek se mogu riješiti jihovim korištejem, dok pozvje ekih komplicirijih ejedkosti može biti koriso, li ije i užo. Dokzi ovih ejedkosti su dost kompliciri te ih u ovom treutku e vodimo. Nek je prirod broj veći od te ek su x, x,..., x pozitivi reli brojevi. Td je jihov: hrmoijsk sredi geometrijsk sredi ritmetičk sredi kvdrt sredi H = x x..., x G = x x... x, A = x x... x, x x... x K =. Nejedkosti među sredim odose se čijeicu d z ovko defiire sredie vrijedi K A G H, jčešće se koristi A G. Jedkost se postiže z x = x =... = x. Primjer 4. Dokžite d z rele brojeve, b vrijedi: b b Prvo je potrebo uočiti d se A G ejedkost može primijeiti x =, x = b z 0, b 0, jer su td x, x pozitivi reli brojevi. Z = 0, d se ejedkost svodi b 0, što vrijedi, z b = 0 dobije se logo. Sd možemo primijeiti A G ejedkost iz koje dobivmo b b = b. Možejem dobivee ejedkosti s dobivmo tvrdju zdtk: b b. Jedkost vrijedi z = b, odoso, budući d su, b pozitivi reli brojevi, z = b. Primjer 5. Nek su, b, c pozitivi reli brojevi tkvi d je b c =. Dokžite d vrijedi: b c 9 Budući d su, b, c pozitivi reli brojevi, možemo primjejivti ejedkosti među sredim. Zbog uvjet bc zdtk jprirodije je primijeiti A H ejedkost.. Primjeom uvjet zdtk i može- b c jem dobivee ejedkosti s dolzimo do tržee ejedkosti: b c 9. Jedkost vrijedi z = b = c. Primjer 6. b c b c c b Idej u rješvju ovog zdtk je prvo trsformirti du ejedkost u oblik koji će se jedostvije primijeiti ejedkosti među sredim. Kko bismo mogli efikso primijeiti A H ejedkost, dodt ćemo lijevoj i desoj stri ejedkosti. Tko dobivmo b c b c c b 9

4 odoso b c b c b c c b c b Izlučivjem b c i možejem s dobivmo ejedkost ekvivletu početoj: b c) b c c ) 9 b Uočite d sd tvrdj zdtk slijedi izrvo primjeom A H ejedkosti x = b, x = bc, x = c, jer je dobive ejedkost ekvivlet s b) b c) c ) Jedkost vrijedi z b = b c = c, odoso z = b = c. 9 b bc c Ko što se vidi iz Primjer, odoso Primjer 4, moge je ejedkosti moguće riješiti više či. Tko se i Primjer 5 može riješiti primjeom A G ejedkosti. Zbog uvjet zdtk vrijedi: b c = b c) b ) = c b b ) b c c ) c b ) c Primjeom A G ejedkosti svku od zgrd dolzimo do ejedkosti b c) = 9. Nejedkost iz Primjer 6 ziv se Nesbittov ejedkost i postoji mogo rzličitih dokz ove ejedkosti. Zdtci Zdtk 9. ) bc b b c ) c c ) b 0 Zdtk 0. Nek su, b, c pozitivi reli brojevi tkvi d je bc =. Dokžite d vrijedi: b b c c 0 Zdtk. Dokžite d z duljie stric trokut, b, c vrijedi: b c b c c b b c Zdtk. Nek su,,..., reli brojevi i prirod broj, > tkvi d je = =.. = = =. Dokžite d vrijedi:... Zdtk. Nek su,,..., reli brojevi i prirod broj, > tkvi d je... = s. Dokžite d vrijedi: s s... s 4

5 Zdtci z smostl rd Zdtk 4. Nek su, b, c pozitivi reli brojevi tkvi d je b c =. Dokžite d vrijedi: b bc c Zdtk 5. Nek su,,..., reli brojevi i prirod broj, > tkvi d je... =. Dokžite d vrijedi:... Zdtk 6. Nek su,,..., reli brojevi i prirod broj tkvi d je... =. Dokžite d vrijedi: ) )... ) ) Mlo teži zdtci Zdtk 7. Nek su 0 <, b, c < tkvi d je b c =. Dokžite d vrijedi: b bc c c b bc b c Zdtk 8. Nek su, b, c pozitivi reli brojevi tkvi d je bc. Dokžite d vrijedi: Rješej zdtk Rješeje zdtk. Vrijedi Jedkost vrijedi z = b. Rješeje zdtk. Vrijedi b b c c b c b) c d) c) b d) d ) b c) 0 c bd d bc 0 d b) c b) 0 korištejem uvjet zdtk) b) 0. b) c) b b c) b ) c c ) c b) 4 4 b c) 4b c ) 4c b) b) b c) c ) b c b b c c c b 6bc z stvk vidi Primjer.) 5

6 Rješeje zdtk. Vrijedi b c b bc c b c b bc c b b b bc c c c 0 b) b c) c ) 0. Jedkost vrijedi z = b = c. Rješeje zdtk 4. Vrijedi b c) b c ) c b) b c ) b c b c b b c c c b 0 b) c) b b c) b b ) c c ) c c b) 0 b) b ) b c) b c ) c ) c ) 0 b) b) b c) b c) c ) c ) 0 što vrijedi zbog uvjet zdtk. Jedkost vrijedi z = b = c. Rješeje zdtk 5. Budući d je bc b b c c ) b c bcb c)c ) c ) b) b)b c)) b c) b)b c)c ) ko izmžj i fktorizirj dobivmo b c) b bc c) b c ) b bc c b) c b) c c b bc) 0 što vrijedi zbog uvjet zdtk. Jedkost vrijedi z = b = c. Rješeje zdtk 9. Zbog A G ejedkosi vrijedi b b c c b b b bc bc b c c c c bc) bb c) cc b) b c ) bb c ) cc b ) Budući d je ejedkost ekvivlet s tvrdj slijedi po Zdtku Rješeje zdtk 0. Zbog A G ejedkosti vrijedi b c ) bb c ) cc b ) 0 b c b bc c b b c c 0 )b ) b )c ) c ) ) 0 b bc c b c b c. Nejedkost u ovom obliku je dost ezgod z primjeu ejedkosti među sredim, budući d su eki od člov egtivi. Zto ćemo je trsformirti u sljedeći oblik: b bc c ) b ) c ) b c 6. 6

7 Sd možemo odvojeo promtrti dvije ejedkosti koje u sumi dju tržeu. ) b ) c ) 0 b bc c b c 6 6 b bc c b c Zbog uvjet zdtk, slijedi b bc c b c 6. Jedkost vrijedi z = b = c =. Rješeje zdtk. Uvjet d su, b, c strice trokut zči d je < b c, b < c, c < b, odoso d je b c > 0, b c > 0, c b > 0. Vrijedi b c b c c b = b c b c b c c b c b b c. Primjeom A K ejedkosti svki od izrz, dobivmo b c b c b c) b c ) = b b c c b b c ) c b) = c c b b c c c) b c) =. Jedkost vrijedi z b c = b c = c b, odoso = b = c. Rješeje zdtk. Vrijedi Sd možemo primijeiti A G ejedkost svki od člov, tvrdj zdtk slijedi izrvo iz jihove sumcije i primjee uvjet zdtk. Rješeje zdtk. Vrijedi Iz A H ejedkosti dobivmo s s... s =. s s s s... s s. s s s s... s s s s...s s = =. 7

Microsoft Word - 26ms441

Microsoft Word - 26ms441 Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

Microsoft Word - integrali IV deo.doc

Microsoft Word - integrali  IV deo.doc INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen

Више

Microsoft Word - 26ms281

Microsoft Word - 26ms281 Zdtk 8 (Ivn, tehničk škol) Rcionlizirj rzlomk Rješenje 8 6 +, b b, b b Proširiti rzlomk znči brojnik i nzivnik tog rzlomk pomnožiti istim brojem rzličitim od nule i jedinice n b b n, n, n Zkon distribucije

Више

1. Realni brojevi

1. Realni brojevi .. Skupovi brojev N {, 2,,...,n, n +,...} Skup prirodnih brojev ztvoren je s obzirom n opercije zbrjnj i množenj. To znči d se bilo koj dv broj ili više njih) mogu zbrjti i množiti i ko rezultt opet dobivmo

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

Microsoft Word - MATRICE ZADACI ii deo

Microsoft Word - MATRICE ZADACI ii deo MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA

Више

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D, Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Valentina Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rad Voditelj rada: do SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Vlentin Zemlić LAPLACEOVA TRANSFORMACIJA Diplomski rd Voditelj rd: doc. dr. sc. Mj Resmn Zgreb, studeni 217. Ovj diplomski rd

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c

Више

Microsoft Word - GEOMETRIJA 3.4..doc

Microsoft Word - GEOMETRIJA 3.4..doc 4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

I RAZRED x 1 1. Ako je f 2x 1 2x 2, x 1, naći: f x, 2 f x 2015 (što je, ustvari, f f x ) i f Rešiti u skupu Z: x y 15. Naći sva

I RAZRED x 1 1. Ako je f 2x 1 2x 2, x 1, naći: f x, 2 f x 2015 (što je, ustvari, f f x ) i f Rešiti u skupu Z: x y 15. Naći sva I RAZRED 805 Ako je f,, ći: f, f 05 (što je, ustvri, f f ) i f 4 4 Rešiti u skupu Z: y 5 Nći sv rešej Proizvod dv dvocifre broj zpis je smo pomoću četvorki Koji su to brojevi? Nći sv rešej 4 Ako je skup

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi

Више

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - INTEGRALI  ZADACI.doc INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod

Више

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205) VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n

Више

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo

Више

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z Osječki matematički list 3 03), -3 Luka Marohić Boja Kovačić Boja Radišić Sažetak U člaku se ajprije za svaki priroda broj pokazuje da poliom π x) = x x ima jedistveu pozitivu realu ultočku ϕ. Zatim se

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . C. Prva ejedakost ije istiita. Dijeljejem očite ejedakosti 5 > 7 strogo pozitivim 5 7 brojem 7 dobivamo ejedakost > =. 7 7 Druga ejedakost ije istiita. Razlomci i imaju jedake brojike (oi izose 5 7 ),

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

DM

DM CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc) VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 8. 30. ožujka 019. 5. razred - rješeja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

RMT

RMT VISOKA ŠKOLA STRUKOVNIH STUDIJA ZA INFORMACIONE TEHNOLOGIJE predvč mr Slobod Tomić, dipl. ig. RAČUNARSKA MATEMATIKA skript Beogrd, 0. S A D R ŽA J. UVODNI POJMOVI DISKRETNE MATEMATIKE. 5. Neki zci logičkih

Више

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme

Више

KORELISANOST REZULTATA MERENJA

KORELISANOST REZULTATA MERENJA Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje

Више

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i

Више

Microsoft Word - CLANAKzacasopis[2].doc Sandra Kosic.doc

Microsoft Word - CLANAKzacasopis[2].doc Sandra Kosic.doc MAT-KOL (Bj Luk) XIII()(007), Elemer riu ekim ekremlim rolemim dr Koić-Jeremić Uriičko-Grđeviki fkule Bj Luk Ekreme vrijedoi ojediih fukcij mogu e odredii i e ovj jihovih ivod. Z mldog memičr redjoškolc

Више

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc

Више

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,

Више

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka IZ NASTAVNE PRAKSE Radomir Ločarević Rumujski matematičar Tiberie Popoviciu (906. 975.) dokaao je 965. poatu ejedakost i područja kovekse aalie (vidi [.]), koja ima primjee, medu ostalim, u brojim adatcima

Више

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._) EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

untitled

untitled Osnovi konstruisnj Prolemi torelnije pri konstruisnju Složen odstupnj i merni lni Složen odstupnj su rezultti sirnj ili oduzimnj dveju ili više tolerisnih kot koje se u vidu ln nstvljju jedn n drugu u

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vježbe 6. Jedadžbe diferecija Koriste se u opisu diskretog sustava modelom s ulazo-izlazim varijablama. Određivaje odziva sustava svodi se a problem rješavaja jedadžbi diferecija.

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk 1 U jednodimenzionlnoj kutiji, širine, nlzi se 1 neutron. U t, stnje svke čestice je ψ(x, ) Ax(x ). ) Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b) Koliko čestic se nlzi u intervlu,

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo) VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe

Више

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2

Више

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA

Више

PLB146 Manual

PLB146 Manual SRPSKI PLB-146M Uputstvo z montžu UPUTE ZA OTVARANJE PAKIRANJA! Pžljvo otvorite kutiju, izvdite njezin sdržj i rsporedite g n krton ili neku drugu zštitnu površinu (d biste izbj egli oštedenj).! Prem popisu

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Microsoft Word - Integrali III deo.doc

Microsoft Word - Integrali III deo.doc INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o

Више

SREDNJA ŠKOLA MATEMATIKA

SREDNJA ŠKOLA MATEMATIKA SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....

Више

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun

Zadatak 1 U jednodimenzionalnoj kutiji, širine a, nalazi se 1000 neutrona. U t = 0, stanje svake čestice je ψ(x, 0) = Ax(x a). a) Normirajte valnu fun Zdtk U jednodimenzionlnoj kutiji, širine, nlzi se 000 neutron. U t 0, stnje svke čestice je ψx, 0 Axx. Normirjte vlnu funkciju ψ i ndite [ vrijednost konstnte A. b Koliko čestic se nlzi u intervlu 0, ]

Више

1

1 Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav

Ortogonalni, Hermiteovi i Jacobijevi polinomi Safet Penjić Naučno-istraživački rad* koji je razvijen kao parcijalno ispunjenje obav Ortogonlni, Hermiteovi i Jcobijevi polinomi Sfet Penjić inforrt@gmil.com Nučno-istrživčki rd* koji je rzvijen ko prcijlno ispunjenje obvez prem izbornom predmetu Specijlne funkcije s postdiplomskog studij

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska

Republika Srbija MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školska Republik Srbij MINISTARSTVO PROSVJETE, NAUKE I TEHNOLOŠKOG RAZVOJA ZAVOD ZA VREDNOVANJE KVALITETA OBRAZOVANJA I ODGOJA PROBNI ZAVRŠNI ISPIT školsk 2017/2018. godin TEST MATEMATIKA UPUTSTVO ZA RAD Test

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

Title

Title . Numerički izovi i redovi Često u svakodevom govoru koristimo termie iz i red, a da pri tome i e razmišljamo o jihovom kokretom začeju. Kada kažemo iz, podrazumijevamo skupiu objekata uredeih po pricipu

Више

Ime i prezime: Matični broj: Grupa: Datum:

Ime i prezime: Matični broj: Grupa: Datum: Lom i refleksij svjetlosti Cilj vježbe Primjen zkon geometrijske optike (lom i refleksij svjetlosti). Određivnje žrišne dljine tnke leće direktnom metodom. 1. Teorijski dio Zrcl i leće su objekti poznti

Више

Microsoft Word - 16ms321

Microsoft Word - 16ms321 Zdtk 3 (4, 4, TUPŠ) Duljine strni trokut jesu.5 m, 0 m i 8.5 m. Rzlik duljin njdulje i njkrće strnie njemu sličnog trokut iznosi 4.8 m. Kolik je duljin treće strnie (strnie srednje duljine) sličnog trokut?.

Више

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc) EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij

Више

Microsoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc

Microsoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Више

trougao.dvi

trougao.dvi Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Rzvoj mtod u 940-, 960-tim (Boing) (https://www.simscl.com/blog/05//75-yrs-of-th-finitlmnt-mthod-fm/) U počtku prvnstvno z sttičku nlizu mhnik čvrstih tijl, li dns i z dinmičku, prnos toplot, tčnj fluid,...

Више

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Zlatko Trstenjak Određeni integral i primjene Sveučilište J.J. Strossmyer u Osijeku Odjel z mtemtiku Sveučilišni preddiplomski studij mtemtike Zltko Trstenjk Određeni integrl i primjene u geometriji Zvršni rd Osijek, 8. Sveučilište J.J. Strossmyer

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

Microsoft Word - FINALNO.doc

Microsoft Word - FINALNO.doc Ako pronñeš cestu ez preprek, zpitj se d li t cest igdje vodi. Projektn nstv Osnovn škol Ivn Gundulić DUBROVNIK MEMENTO (mtemtik) Plnirli smo: Nprviti pregled elementrnih sdržj iz mtemtike s primjerim

Више

58. Federalno takmičenje iz matematike učenika srednjih škola

58. Federalno takmičenje iz matematike učenika srednjih škola 58. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 4.0.018. godine PRVI RAZRED Zadatak 1 Ako su, i realni brojevi takvi da je 0, dokazati da vrijedi

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut 1. dio, grupa A 1. kolokvij 12. travnja 2019. Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil PRIER 1 Srčuti stv cetričo ztegutog štp, u svemu prem sici. Štp je prvougoog poprečog prese b/h = 14/ cm, optereće je silom Zd = 116 N (stlo + sredjetrjo opt.). Nstv izvesti s dve drvee podvezice debljie

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

Microsoft Word - ELEMENTARNE FUNKCIJE.doc

Microsoft Word - ELEMENTARNE FUNKCIJE.doc ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim

Више

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja

Више

Microsoft Word - PRIMENA INTEGRALA.doc

Microsoft Word - PRIMENA INTEGRALA.doc PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

BTE14_Bruno_KI

BTE14_Bruno_KI s više procesih jediica F = 100 kg/mi w KClF = 0,2 w vodef = 0,8 =? w KCl =? w vode =? 1 2 1 V =? w vodev =1,0 C =? w KClC = 0,33 w vodec = 0,67 3 B =? w KClB = 0,5 w vodeb = 0,5 P =? w KClP = 0,95 w vodep

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више