Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc
|
|
- Манца Арсић
- пре 5 година
- Прикази:
Транскрипт
1 GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo grafik funkcije = a sin( b+ c. POSTUPAK: i Nacrtamo grafik funkcije = sin ii Uočimo brojeve a,b i c, i nañemo periodu T =. Crtamo grafik b = sin b. iii Odredimo vrednost izraza c i vršimo pomeranje po osi, to jest crtamo grafik sin( b = b+ c iv Vrednost amplitude a nam pomaže da nacrtamo konačan grafik = a sin( b+ c Ovo je jedan način za crtanje grafika. Drugi način je direktno ispitivanje značajnih tačaka, a već smo vam pomenuli da ovde morate znati rešavati trigonometrijske jednačine.( Imate taj fajl, pa se malo podsetite... primer. Nacrtaj grafik funkcije: = sin( + Rešenje I način Iz = sin( + je a=, b=, c= Crtamo prvo grafik osnovne funkcije = sin. slika. - =sin Nadjemo periodu : T = T = T = b
2 Dalje crtamo grafik funkcije = sin slika. - = sin Vrednost izraza c b je c = =. Vršimo pomeranje grafika = sin za b ulevo: slika. - = sin( + I konačno, kako je amplituda a=, to nam govori na razvučemo grafik izmedju - i duž ose. - slika. - - = sin( + II način Zapišemo vrednosti za a,b i c. Nadjemo periodu Ispitujemo gde su nule funkcije. T =. b Tražimo tačke ekstremuma ( maksimum i minimum. a=, b=, c= i T = T = T = b
3 Nule funkcije To su mesta gde grafik seče osu. = sin( + = sin( + = + = + = + = = = Ovde sada dodamo periodu(t= : = + k k Z + = = = = + k k Z Ove tačke nalazimo na osi. Maksimum Kako je amplituda a=, funkcija će imati maksimalnu vrednost za =. = sin( + = sin( + = + = = = = I ovde moramo dodati periodu: Minimum = + k k Z Funkcija će imati minimalnu vrednost za =- = sin( + = sin( + = + = = = = Dodajemo periodu: = + k k Z Sada sklopimo grafik:
4 = sin( + Vidite i sami da ovaj drugi način daje precizniji grafik, ali mora se vladati rešavanjem jednačina. Vi konstruišite grafik kako vaš profesor komanduje... primer. Nacrtaj grafik funkcije: = sin( + 6 c,,, dakle i 6 c a= b= c= T = = = T = = =,dakle = 6 b b b - = sin 7 slika. - = sin 7 slika. - = sin( slika. - 7 slika. - = sin( + 6 Ako bi radili preko ispitivanja :
5 Nule funkcije = sin( + = 6 sin( + = + = + = = = i kad dodamo periodu: = + k 6 + = = kad dodamo periodu: = + k 6 Maksimum = sin( + = 6 sin( + = 6 + = 6 = 6 = dodamo periodu = + k Minimum = sin( + = 6 sin( + = 6 + = 6 = 6 = = + k Da sklopimo grafik:
6 - - = sin( + 6 primer. Nacrtaj grafik funkcije: = cos( + Grafik ove funkcije se konstruiše na isti način kao i za sinusnu funkciju. Razlika je jedino u tome što je početni grafik = cos Za = cos( + je: a=, b=, c= T = = = T = b c c = = = b b Krećemo od grafika = cos : - Dalje crtamo grafik = cos, to jest smanjujemo periodu na. 6
7 - = cos Kako je c =, vršimo pomeranje ovog grafika za udesno: b - = cos( + Amplituda je a=, pa raširimo grafik izmedju - i po osi. - - = cos( + Evo konačnog grafika. primer. Nacrtaj grafik funkcije: = sin + Ovakvu situaciju do sada nismo imali... Ali smo nešto slično radili kod kvadratne funkcije ( pogledaj taj fajl. Broj «van» sinusa nam ustvari predstavlja pomeranje po -osi! Ako je taj broj pozitivan grafik se pomera na gore a ako je taj broj negativan, grafik se za toliko pomera na dole. 7
8 Ovde imamo +, pa ćemo nacrtati grafik funkcije = sin i ceo grafik podići za na gore. = sin - = sin + - primer. Nacrtaj grafik funkcije: = cos Crtamo grafik = cos pa ga spustimo za na dole po osi! = cos -
9 primer 6. Nacrtaj grafik funkcije: = sin cos Rešenje: Ovde nam je prvi posao da spakujemo funkciju na oblik = a sin( b+ c ili = a cos( b+ c. Ovde moramo koristiti formulice iz trigonometrije, a ima i nekih trikova... = sin cos kao trik dodamo = sin cos sad uzmemo ispred zagrade = ( sin cos znamo da je cos = i sin =, zamenimo... = ( cos sin sin cos malo pretumbamo... = ( sin cos cos sin ovo u zagradi je formula sin( = sin cos cos sin = sin( Znači, zadatu funkciju = sin cos smo sveli na oblik = sin( koji znamo da konstruišemo. Ostavljamo vama za trening da probate sami da je konstruišete. primer 7. Nacrtaj grafik funkcije: = sin( + cos( Rešenje: I ovde imamo zeznutu situaciju. Najpre moramo prebaciti kosinus u sinus preko formulice za vezu trigonometrijskih funkcija u I kvadrantu: cos = sin( 9
10 = sin( + cos( = sin( + sin[ ( ] = sin( + sin[ + ] + = sin( + sin( dalje koristimo formulicu: sin + sin = sin cos + ( = sin cos + + = sin cos sin cos = znamo da je sin = = cos( = cos( I ovo je za trening...ako se ne snalazite, pošaljite nam mejl pa ćemo probati da vam pomognemo, nekako.
Microsoft Word - KVADRATNA FUNKCIJA.doc
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеMicrosoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST
PARNOST i NEPARNOST FUNKCIJE PERIODIČNOST FUNKCIJE PARNOST i NEPARNOST FUNKCIJE Ako je f ( ) = f ( ) funkcija je parna i tada je grafik simetričan u odnosu na y osu Ako je f ( ) = f ( ) funkcija je neparna
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеMicrosoft Word - IZVODI ZADACI _I deo_.doc
. C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ
ВишеMicrosoft Word - Algebra i funkcije- napredni nivo doc
Algebra i funkcije napredni nivo 01. Nenegativna znači da je vrednost izraza pozitivna ili je jednaka 0. ( 1) ( 1)( 1) 0 razlika kvadrata (( x) + x 1+ 1 ) (( x) 1 ) 0 ( + + 1) ( 1) 0 x x+ x x+ x x x +
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
ВишеMicrosoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n
4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft Word - IZVODI ZADACI _2.deo_
IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci iii deo.doc
KRIVOLINIJSKI INTEGRALI zadai (III deo) Nezavisnos krivolinijskog inegrala od puanje inegraije Sledeća vrñenja su ekvivalenna: ) P (, y, z) d+ Q(, y, z) dy+ R(, y, z) dz ne zavisi od puanje inegraije )
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеMicrosoft Word - Integrali vi deo
INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala
ВишеMicrosoft Word - MATRICE ZADACI III deo.doc
MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
ВишеMicrosoft Word - Metoda neodredjenih koeficijenata
Metoda eodredjei oeficijeata Pisali ste am da vam ova metoda ije baš ajjasija, u smislu ao izabrati fuciju za artiularo rešeje. Poušaćemo u ovom fajlu da vam a eolio rimera objasimo to. Da se odsetimo:
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеMicrosoft Word - Lekcija 11.doc
Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на
ВишеMicrosoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеMicrosoft Word - 1.Operacije i zakoni operacija
1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
ВишеMicrosoft Word - IZVODI ZADACI _4. deo_
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
ВишеSeminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja
Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva
ВишеRG_V_05_Transformacije 3D
Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli
ВишеMate_Izvodi [Compatibility Mode]
ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
ВишеMatematikaRS_2.pdf
GIMNAZIJA Informacijsko komunikacijskih tehnologija Razred: drugi NASTAVNI PROGRAM ZA PREDMET: MATEMATIKA; Sedmični broj časova: 3 Godišnji broj časova : 105 Teme: 1. Trigonometrija trougla (18) 2. Stepeni
ВишеMicrosoft Word - INTEGRALI ZADACI.doc
INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod
ВишеMicrosoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc
EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE EKSTREMNE VREDNOSTI su maksimum i (ili minimum funkcij. Nadjmo prvi izvod i izjdnačimo ga sa 0, 0. Ršnja t jdnačin,,... ( naravno ako ih im mnjamo u počtnu funkciju
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеSKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau
Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog
ВишеMicrosoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је
ВишеОрт колоквијум
Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеMicrosoft Word - 1. REALNI BROJEVI- formulice
REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva
ВишеMicrosoft Word - KUPA-obnavljanje.doc
KUPA Kupa je oblo feometrijko telo čija je onova krug, a omotač je deo obrtne konune površi a vrhom u tački S. S r Oa kupe je prava koja prolazi kroz vrh kupe i centar onove kupe. Ako je oa normalna na
ВишеOSNOVNA ŠKOLA, VI RAZRED MATEMATIKA
OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеЗборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху
Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,
ВишеMicrosoft Word - AIDA2kolokvijumRsmerResenja.doc
Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеMicrosoft Word - 7. cas za studente.doc
VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеMicrosoft Word - Trigonometrijski oblik kompleksnog broja.doc
Trgonometrjsk oblk kompleksnog broja Da se podsetmo: Kompleksn broj je oblka je realn deo, je magnarn deo kompleksnog broja, - je magnarna jednca, ( Dva kompleksna broja su jednaka ako je Za broj _ je
ВишеIII разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв
ЗАДАЦИ ФЕРМИОНСКА КАТЕГОРИJА 1. Маjа се пење уз покретне степенице под углом од θ = 30 и дужине L = 10m. Ако jе линеарна брзина степеница v S = m s, а она се у односу на њих креће брзином v M = 1, m s,
ВишеIII разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв
ЗАДАЦИ БОЗОНСКА КАТЕГОРИJА 1. Деjан и Jован играjу кошарку за два различита кошаркашка клуба. У току утакмице, Деjан шутира троjку са удаљености D = 7,5 m. Након што подигне руке при избачаjу, лопта jе
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
ВишеZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
ВишеVjezbe 1.dvi
Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са
ВишеMicrosoft Word - vodic B - konacna
VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi
ВишеMicrosoft Word - INTEGRALI ZADACI - v deo
INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеЧича Глиша Аутор: Зора Гојковић и Валентина Рутовић ПРИПРЕМА ЧАСА И УПУТСТВО ЗА КОРИШЋЕЊЕ ПРЕЗЕНТАЦИЈЕ ЧИЧА ГЛИША За ове часове ликовне културе смо ис
ПРИПРЕМА ЧАСА И УПУТСТВО ЗА КОРИШЋЕЊЕ ПРЕЗЕНТАЦИЈЕ ЧИЧА ГЛИША За ове часове ликовне културе смо искористили веома занимљив сајт на Интернету (www.drawastickman.com). Приликом посете сајту, од посетиоца
ВишеINDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a
INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matmatik u industrijskom inžnjrstvu, 6.9... Diskutovati po a, b R i ršiti sistm linarnih jdnačina b + by = a. Za linarnu funkciju f(,, 3 = 3 3 izračunati minimum i tačku
Вишеs2.dvi
1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani
Више(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)
VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеИспитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит
Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних
ВишеMicrosoft Word - ELEMENTARNE FUNKCIJE.doc
ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
. B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMatematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o
Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje;
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеMicrosoft Word - VEROVATNOCA II deo.doc
VEROVATNOĆA - ZADAI (II DEO) Klasična definicija verovatnoće Verovatnoća dogañaja A jednaka je količniku broja povoljnih slučajeva za dogañaj A i broja svih mogućih slučajeva. = m n n je broj svih mogućih
ВишеMicrosoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt
ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
Више