Microsoft Word - Analiticka - formule.doc

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - Analiticka - formule.doc"

Транскрипт

1 . Rtojnje izmeñu dve tčke d( A, B ( + (. Deljenje duži u dtoj zmei Ako je tčk M (, unutšnj tčk duži AB, gde je A(, i ko je dt zme AM AM : MB to jet (, u kojoj tčk M deli duž AB, ond e koodinte tčke M čunju o MB ocim + + M (, i + + M (, A(, B(, 3. Sedin duži Ako je tčk M (, edin duži AB ( A(, ond e njene koodinte čunju o fomuli + + M (, i M (, A(, B(, 4. Povšin tougl eko koodint temen Nek u A(,, B(, i C( 3, 3 temen dtog tougl ABC odeñen omoću nznčenih koodint u odnou n vougli koodintni item O, td je ovšin tougl dt ocem P ( 3 + ( ( može i eko deteminnte( nvno, ko je uoznt njihovim izčunvnjem P 3 3 Pv i ošti ( imlicitni olik je + + c 0 ii eklicitni olik je k+ n k- koeficijent vc ( k tgα, gde je α ugo koji v gdi ozitivnim meom oe n - je odečk n - oi iii + je egmentni olik m n m je odečk n oi n je odečk n oi v Pv koz tčku A(, koeficijentom vc k je : k( vi Pv koz tčke A(, je : ( vii Pimećujete d je ond k

2 Kkv može iti meñuon oložj dve ve u vni? Mogu d e eku Tčku eek nlzimo ešvjući item od te dve jednčine! Ako omtmo ve k+ n i k+ n ond je ugo od kojim e eku dt fomulom: k k tgα + k k Ako e te dve ve eku od vim uglom, ond je k k ( ulov nomlnoti Mogu d udu lelne Pve k+ n i k+ n u lelne ko je k k ( ulov lelnoti Ako u A + B + C 0 i A + B + C 0 jednčine dveju vih koje e eku u tčki O, td je : A + B + C + ( A + B + C 0 jednčin men vih centom u tčki O. Rtojnje tčke ( 0, 0 od ve + + c 0 je : d + + c + Kužnic Kužnic (kužn linij je ku tčk u vni ooinom d u ve tčke tog ku n jednkom tojnju ( od jedne tlne tčke (C, cent te vni. Ošt jednčin kužnice je: ( + ( q Ako je kužnic dt u oliku d e q + q f d e f možemo koititi fomulice USLOV DODIRA ( Kužnice i ve k+ n je ( k + ( k q+ n Ako tžimo tngentu iz neke tčke VAN kužnice neohodno je koititi ulov dodi. Ali ko temo nći tngentu š u tčki dodi čije koodinte znmo možemo koititi gotovu fomulicu: ( ( + ( q( q

3 Eli je ku tčk u vni ooinom d je zi tojnj m koje tčke od dveju dtih tčk(žiž tln oj. M(, + - F(-c,0 F(c,0 - u otezi ( diju vektoi elie i vži z ilo koju tčku n elii + ( kontntn oj, F ( c,0, F ( c,0 u žiže elie, gde je c - je velik oluo, odnono je velik o - je ml oluo, odnono je ml o c e je ekcenticitet ( još kod elie vži d je e< Glvn jednčin elie je Eli i v + ili + Slično ko kod kužnice, d i odedili meñuoni oložj ve i elie, ešvmo item jednčin: k+ n i + - Ako item nem ešenj, ond e v i eli ne eku, to jet k + < n - Ako item im dv ešenj, ond v eče eliu u dvem tčkm k + > n - Ako item im jedno ešenje, v je tngent elie i zdovoljv USLOV DODIRA: Nomen k + n Ako nm tže tngentu elie u dtoj tčki ( 0, 0 n elii ( koj id elii, ond immo gotovu fomulu: 0 0 t : + 3

4 Hieol je ku tčk u vni ooinom d je zlik tojnj m koje tčke od dveju dtih tčk tln oj. (, F(-c,0 - F(c,0 je eln oluo ( je eln o je imginn oluo ( je imginn o u otezi ( diju vektoi i z njih vži, F ( c,0, F ( c,0 u žiže hieole, gde je c + c e je ekcenticitet ( još kod hieole vži d je e > ve i u imtote hieole Glvn jednčin hieole je Pv i hieol ili Slično ko kod kužnice i elie, d i odedili meñuoni oložj ve i hieole, ešvmo item jednčin: k+ n i - Ako item nem ešenj, ond e v i hieol ne eku, to jet k < n - Ako item im dv ešenj, ond v eče hoeolu u dvem tčkm k > n - Ako item im jedno ešenje, v je tngent hieole i zdovoljv USLOV DODIRA: k n Ako nm tže tngentu hieole u dtoj tčki ( 0, 0 n hieoli, ond immo gotovu fomulu: 0 0 t : 4

5 Pol je ku tčk u vni ooinom d je tojnje vke tčke od jedne tlne tčke (žiže jednko odtojnju te tčke od jedne tlne ve (diektie. F (,0 F (,0 je žiž ole. Pv je diekti ole ili + 0. Odtojnje tčke F od diektie oeležv e i nziv e met ole. Koodintni očetk je teme ole. Jednčin ole je Pv i ol Slično ko kod kužnice, elie i hieole d i odedili meñuoni oložj ve i ole, ešvmo item jednčin: k+ n i - Ako item nem ešenj, ond e v i ol ne eku, to jet < kn - Ako item im dv ešenj, ond v eče olu u dvem tčkm > kn - Ako item im jedno ešenje, v je tngent ole i zdovoljv USLOV DODIRA: kn Nomen Ako nm tže tngentu ole u dtoj tčki ( 0, 0 n oli, ond immo gotovu fomulu: ( + 5

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo)

(Microsoft Word - VI\212ESTRUKI INTEGRALI zadaci III deo) VIŠESTRUKI INTEGRALI - ZAACI ( III EO) Izčunvnje povšine u vni pimenom dvostukog integl Povšin olsti u vni O može se nći po fomuli: P = dd Pime. Izčunj povšinu ogničenu sledećim linijm: =, =, i =. Njpe

Више

Microsoft Word - IZVODI _3. deo_.doc

Microsoft Word - IZVODI _3. deo_.doc IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio

Више

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc)

(Microsoft Word - EKSTREMUMI FUNKCIJA VI\212E PROMENLJIVIH _ii deo_.doc) EKSTREMUMI FUNKCIJA VIŠE PROMENLJIVIH ( II deo ) USLOVNI EKSTREMUM Ovde osim funkcije immo dte i uslove. Njčešće je to jedn uslov, li u oiljnijim primerim mogu iti dv i više njih. Ako je recimo dt funkcij

Више

Microsoft Word - PRIMENA INTEGRALA.doc

Microsoft Word - PRIMENA INTEGRALA.doc PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin

Више

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od

IV 3. Prostor matrica datog tipa nad poljem. Neka je dato polje (F, +, ) i neka su m, n N. Pravougaona šema mn skalara iz polja F, koja se sastoji od IV 3 Prostor mtric dtog tip nd poljem Nek je dto polje (F, +, ) i nek su m, n N Prvougon šem mn sklr iz polj F, koj se sstoji od m vrst i n kolon zpisn ko A = 211 22 2n ili A = 21 22 2n m1 m2 mn m1 m2

Више

Microsoft Word - GEOMETRIJA 3.4..doc

Microsoft Word - GEOMETRIJA 3.4..doc 4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.

Више

Pismeni dio ispita iz Matematike 1

Pismeni dio ispita iz Matematike 1 Zenica, 00007 Odediti koeficijent uz 8 u azvoju tinoma 0 + + Rješiti i diskutovati sistem lineanih jednačina u zavisnosti od paameta a: a y + z = + ( a) y + z = 0 y+ a z = Ispitati funkciju i nactati gafik:

Више

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc)

(Microsoft Word - VI\212ESTRUKI INTEGRALI- zadaci _ I deo_.doc) VIŠESTRUKI INTEGRALI - ZAACI ( I EO) vostruki integrli-odredjivnje grnic integrcije Prv stvr s kojom se susrećemo kod dvojnih integrl je odredjivnje grnice integrcije. Z skoro svki zdtk mormo crtti sliku

Више

Microsoft Word - IZVOD FUNKCIJE.doc

Microsoft Word - IZVOD FUNKCIJE.doc IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera

Више

Microsoft Word - MATRICE ZADACI ii deo

Microsoft Word - MATRICE ZADACI ii deo MATRICE ZADACI ( II DEO) REŠAVANJE SISTEMA LINEARNIH ALGEBARSKIH JEDNAČINA Siste od jednčin s n nepozntih je njčešće uopšteno dt s: x + x +... + x = b n n x + x +... + x = b... n n x + x +... + x = b n

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

Microsoft Word - integrali IV deo.doc

Microsoft Word - integrali  IV deo.doc INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)

(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205) VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n

Више

DJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk

DJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk DJEČJI VRTIĆ TROGIR TROGIR Trogir, 24. 04. 2019. Klasa: UP/I-034-01-01/19-01/1 Urbroj. 2184-17-19-1 Na temelju članka 1a, 20. i 35. stavka 1. podstavka 4. Zakona o predškolskom odgoju i obrazovanju (NN

Више

Zad.RGS.2012za sajt [Compatibility Mode]

Zad.RGS.2012za sajt [Compatibility Mode] n der lsov jednčin ( ) - b ( ) n nb n b b b n nb n 0 3 b b ) ( 1 b Suirnje rezult priene n der lsove jednčine (1)N visoki tepertur i veliki zprein vdw prelzi u jednčinu idelnog gsnog stnj jer: N visoki

Више

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G

T E O R I J A G R A F O V A Do sada smo koristili grafove za predstavljanje relacija. Međutim, teorija grafova je samostalni i važan deo matematike. G T E O R I J A G R A F O V A Do sd smo koristili grfove z predstvljnje relij. Međutim, teorij grfov je smostlni i vžn deo mtemtike. Grfovi su poseno znimljivi jer pomoću njih možemo modelovti složene proleme

Више

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc

Microsoft Word - PRIMENE SLICNOSTI NA PRAVOUGLI TROUGAO.doc PRIMENE SLIČNOSTI N PRVOUGLI TROUGO Nrjmo jedn prvougli rougo s sndrdnim oeležvnjim:, su kee je ipoenuz je ipoenuzin visin p i su odseči n ipoenuzi koje prvi visin β α α D p β Hipoenuzin visin D deli rougo

Више

trougao.dvi

trougao.dvi Mtemtički fkultet Univerzitet u eogrdu Mster rd Trougo u nstvi mtemtike u osnovnoj i srednjoj školi Mentor: Student: Do. dr Srdjn Vukmirović Drgn Despotović 1048/2014 eogrd, 2015. Sdržj Uvod 2 1 Osnovn

Више

, 2015

, 2015 , 2015 I. О О... 1 ед ет у еђ њ... 1 Ак де ке ло оде, епо ед о т п о то пол т ко, т ко е ко оо њ дело њ... 1 Ауто о ј Ф култет... 2 т ту Ф култет... 2 те ет т Ф култет... 3 О еле ј Ф култет... 4 о Ф култет...

Више

Microsoft Word - KVADRATNA NEJEDNACINA.doc

Microsoft Word - KVADRATNA NEJEDNACINA.doc Kvadatne nejednačine su olia: a a a a c> c c c KVARATNA NEJENAČINA ZNAK KVARATNOG TRINOMA gde je -ealna pomenljiva nepoznata) i a,,c su ealni ojevi, a. U delu vadatna funcija smo analiziali ao može izgledati

Више

1

1 Zdci z poprvni ispit. rzred-tehničri. Izrčunj ) 0- (- 7) - [(-)- (-)]+7 (-7) (8-)-(-)(-) -+ [+ (- )].Izrčunj ) e) 7 7 7 8 7 i) 0 7 7 j) 8 k) 8 8 8 l). 0,.Poredj po veličini, počevši od njvećeg prem njmnjem,,,,.)odredi

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._)

(Microsoft Word - RE\212AVANJE SISTEMA JEDNACINA _metoda det._) EŠAVANJE SISTEMA JENAČINA ( METOA ETEMINANTI) U prethodni fjlovi so govorili kko se rešvju sistei upotrebo tric. U ovo fjlu ćeo pokušti d v objsnio kko se prienjuju deterinnte n rešvnje siste linernih

Више

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc KRIVOLINIJSKI INTEGRALI ZADACI ( I DEO) Krivolinijski inegrli prve vrse. Izrčuni krivolinijski inegrl ds ko je deo prve = izmeñu čk (, ) i (,). D se podseimo: b Ako je kriv d u obliku : =() b d je: f (,

Више

о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о о-телеко у к о о ет " те ет" д е е лект о о

о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о о-телеко у к о о ет  те ет д е е лект о о о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о отелеко у к о о ет " те ет" д е е лект о о по т, л, о е, от е т е е л еет л, пол е о у к ед ол

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkij koje sdrže kvdrni rinom Njpre ćemo proučii inegrle oblik: I= i I = Kod njih se kvdrni rinom svede n knonični oblik pomoću formule: b 4 b = + + 4 nrvno, možemo

Више

Microsoft Word - INTEGRALI ZADACI - v deo

Microsoft Word - INTEGRALI ZADACI - v deo INTEGRALI ZADACI (V-DEO) Inegrli nekih funkcij koje sdrže kvdrni rinom b c Njpre ćemo proučii inegrle oblik: I i I b c b c Kod njih se kvdrni rinom b c svede n knonični oblik pomoću formule: b c b b c

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли

Више

Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли

Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли ја нин, моб. 065/858-46-26 за ме њу ју се ре чи ма:

Више

Microsoft PowerPoint - 10_R_A1_B2_C3_D4_ Kinematika materijalne tocke.ppt

Microsoft PowerPoint - 10_R_A1_B2_C3_D4_ Kinematika materijalne tocke.ppt Podjel mehnike Kinemik meijlne oke. dio Mehnik kuo ijel Sik Kinemik Dinmik 3 4 Glilejei pokui kulic n koini Kinemik Kinemik je n mehnike koj pou ibnj meijlnih ijel i poezuje položje ijel emenom, ne nlizijui

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac

Више

SREDNJA ŠKOLA MATEMATIKA

SREDNJA ŠKOLA MATEMATIKA SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....

Више

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx

Microsoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах

Више

Microsoft Word - Integrali III deo.doc

Microsoft Word - Integrali III deo.doc INTEGRALI ZADACI (III-DEO) PARCIJALNA INTEGRACIJA Ako su u i diferencijbilne funkcije od, ond je : ud= u du O meod, prcijln inegrcij, po prilu je n počeku proučnj slbo rzumlji. Mi ćemo pokuši, koliko o

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

IErica_ActsUp_paged.qxd

IErica_ActsUp_paged.qxd Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode]

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode] ODREĐIVANJE REDOSLEDA POSLOVA DŽONSONOV METOD P očetak k k k m in t i1 m a x t i2 ili m in t i3 m a x t i2 R e š e n je tre b a tra žiti n a d ru g i n ač in S vođenje p ro b le m a n x3 n a fik tiv a

Више

Slide 1

Slide 1 DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u f Dinmički sistem Ulzi Izlzi (?) i, ϕ[ i ], ωθ, m m f f U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA

Више

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D,

Stokesov teorem i primjene Stokesov teorem - iskaz pogledati u predavanjima (Teorem 21.7.) Zadatak 1 Izračunajte ukupni fluks funkcije F kroz plohu D, Stokesov teorem i primjene Stokesov teorem - iskz pogledti u predvnjim (Teorem 1.7.) Zdtk 1 Izrčunjte ukupni fluks funkcije F kroz plohu, ko je F zdno s F (x, y, z) ( y, x, x ), je unij cilindr x + y (pri

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . C. Intervl A tvore svi relni brojevi koji su jednki ili veći od i strogo mnji od 7. Intervl B tvore svi relni brojevi koji su strogo veći od i jednki ili veći od 5. Presjek tih intervl tvore relni brojevi

Више

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU

Nastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA

Више

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - INTEGRALI  ZADACI.doc INTEGRALI ZADAI ( II DEO) INTEGRAIJA POMOĆU SMENE Ako uvedemo smenu = g( ) ond je d= g`( ) i počeni inegrl f ( ) d posje: f ( ) d= f ( g( )) g`( ) Z poček evo jednog sve: z smenu biri izrz čiji je izvod

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr Prvi razred A kategorija 1. Za prirodan broj n oznaqimo sa x n broj koji se dobije uzastopnim zapisivanjem svih prirodnih brojeva od 1 do n jedan iza drugog (npr. x 14 = 1234567891011121314). Neka je funkcija

Више

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat

Више

Microsoft Word - EIM raspored dopunske nastave.doc

Microsoft Word - EIM raspored dopunske nastave.doc Služba za nastavu RASPORED DOPUNSKE NASTAVE Nastava traje od 11. januara do 31. januara 2007. godine Bosna i Hercegovina, 71000 Sarajevo,Trg Oslobođenja - Alija Izetbegović 1 Tel: +387 (0)33 275 946, 275

Више

Microsoft Word - 19ms101

Microsoft Word - 19ms101 Zadatak 0 (Maino i Medax, sednja škola) Zadana su polukuga svaki polumjea cm (slika). Četveokut F je pavokutnik, a točke i F sedišta su donjih polukugova. Kolika je ploština neobojenog dijela slike?. 8

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Test 2 resen

Test 2 resen Ime: Ide: MTEMTIČO MOELOE TEST. Mooeul ecij e odvij po ledećem dvotupjevitom meizmu: gde je itemedi tivii eul ett Pozti d je pomt ecij pvog ed, o je dugi tupj limitijući: κ b Pozti d je pomt ecij dugog

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) = w k w k 1 Adams-Moultonovi metodi kod kojih je ρ(w)

Више

ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в

ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те ве: 1.1. Сред ња вред ност ствар не ко ли чи не ни је

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

zmijski STUB Džejson Gudvin Prevela Sanja Bošnjak

zmijski STUB Džejson Gudvin Prevela Sanja Bošnjak zmijski STUB Džejson Gudvin Prevela Sanja Bošnjak 4 5 Naslov originala Ja son Go od win The Sna ke Sto ne Copyright 2007, Ja son Go od win All rights re ser ved Translation copyright 2009 za srpsko izdanje,

Више

Н по т ље п т њ по уђ, Veza o za o javlje i jav i poziv za dostavlja je po uda za kratrkoroč e kredite i overdraft kredite, o raća se sa ol o za dosta

Н по т ље п т њ по уђ, Veza o za o javlje i jav i poziv za dostavlja je po uda za kratrkoroč e kredite i overdraft kredite, o raća se sa ol o za dosta Н по т ље п т њ по уђ, Veza o za o javlje i jav i poziv za dostavlja je po uda za kratrkoroč e kredite i overdraft kredite, o raća se sa ol o za dostavlja je sledećih doku e ata i odgovora a pita ja: -

Више

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc

Microsoft Word - Andrea Gelemanovic i Martina Hrkovac - Dvodimenzionalna valna jednadzba.doc Sveučilište u Zgreu Fkultet kemijskog inženjerstv i tehnologije Zvod z mtemtiku Mtemtičke metode u kemijskom inženjerstvu Dvodimenzionln vln jedndž Profesor: Dr.sc. Ivic Gusić Andre Geleović i Mrtin Hrkovc

Више

ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у

ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у коб ном оби ла ску ску пи је дра и скло ни ме пред

Више

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/0 i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac (u

Више

RSS RSS Really Simple Syndication - veoma jednostavno povezivanje - Predstavlja jednostavan način za auto atsko preuzi a je želje ih informacija sa Va

RSS RSS Really Simple Syndication - veoma jednostavno povezivanje - Predstavlja jednostavan način za auto atsko preuzi a je želje ih informacija sa Va RSS RSS Really Simple Syndication - veoma jednostavno povezivanje - Predstavlja jednostavan način za auto atsko preuzi a je želje ih informacija sa Vama interesantnih web sajtova, blogova... Cilj, ideja

Више

Д а к ле, к а р а к т е р р а т а и њ е г о в а ис т о ри ј ск а и л и с о ц и о ло ш к а у ло г а н ис у би т н и. Би тне с у с т р ахот е и б е см и

Д а к ле, к а р а к т е р р а т а и њ е г о в а ис т о ри ј ск а и л и с о ц и о ло ш к а у ло г а н ис у би т н и. Би тне с у с т р ахот е и б е см и Д а к ле, к а р а к т е р р а т а и њ е г о в а ис т о ри ј ск а и л и с о ц и о ло ш к а у ло г а н ис у би т н и. Би тне с у с т р ахот е и б е см и с а о које р ат доноси. К а о одм аз де, н а п ри

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i

GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i B 1 C 1 paralelne i vai B 1 C 1 = 1 2 BC. 2. Ako su

Више

Slide 1

Slide 1 Завод за унапређивање образовања и васпитања Аутори: Наставни предмет: MилојеЂурић,професор,Техничка школа Шабац, Марија Пилиповић,професор, Техничка школа Шабац, Александар Ђурић,професор,Мачванска средња

Више

Dragana Kostić Digitally signed by Dragana Kostić Date: :13:05 +02'00'

Dragana Kostić Digitally signed by Dragana Kostić Date: :13:05 +02'00' Dragana Kostić 100051288-21 11980835034 Digitally signed by Dragana Kostić 100051288-21119808350 34 Date: 2019.05.14 13:13:05 +02'00' 85 улица НАРОДНОГ ФРОНТА 28 23 16 52 улица

Више

KORELISANOST REZULTATA MERENJA

KORELISANOST REZULTATA MERENJA Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje

Више

ISPIT_01_X_2015_R.cdr

ISPIT_01_X_2015_R.cdr P Z GAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PEZME (BAVEZ ŠAMPAM LVMA) BJ EKA (UKLK E AE ZAAKA AZVJE, BAVEZ E PPA A VAKJ A) APMEE: (0) (+1) (0) (+1) - ZA PAJE ELEMEA U EPJEĆM

Више

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се

Више

PARCIJALNO MOLARNE VELIČINE

PARCIJALNO MOLARNE VELIČINE PARCIJALNE MOLARNE VELIČINE ZATVOREN TERMODINAMIČKI SISTEM-konstantan sastav sistema Posmatra se neka termodinamička ekstenzivna veličina X X (V, U, H, G, A, S) X je u funkciji bilo kog para intenzivnih

Више

Sluzbeni List Broj OK3_Sluzbeni List Broj OK2.qxd

Sluzbeni List Broj OK3_Sluzbeni List Broj OK2.qxd SLU@BENI LIST GRADA KRAQEVA GODINA XLIX - BROJ 5 - KRAQEVO - 24. FEBRUARA 2016. GODINE AK TI GRADONA^ELNIKA GRA DA KRA QE VA 73. Na osno vu ~la na 7. stav 3. Za ko na o oza - ko we wu obje ka ta ( Slu

Више

Ори ги нал ни на уч ни рад 35.07: doi: /zrpfns Рат ко С. Ра до ше вић, аси стент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет

Ори ги нал ни на уч ни рад 35.07: doi: /zrpfns Рат ко С. Ра до ше вић, аси стент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет Ори ги нал ни на уч ни рад 35.07:57.089 doi:10.5937/zrpfns52-19469 Рат ко С. Ра до ше вић, аси стент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду R. R a d o se v ic @ p f.u n s.a c.r

Више

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Kubirmo zdnu nejednkost, što smijemo jer je funkcij f (x) = x 3 bijekcij s R u R. Dobivmo nejednkost: < < 8. Ovu nejednkost zdovoljvju prirodni brojevi, 3, 4, 5, 6 i

Више

у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у

у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у је ов ом п и сц у. Е, с а д, д а л и ћ е С р д и ћ

Више

Irodalom Serb 11.indd

Irodalom Serb 11.indd Садржај Реализам 3 Вер на сли ка ствар но сти 5 Де фи ни ци ја 5 Ре а ли зам као стил ски правац или ме тод (ми ме за) 5 Гра ни це и глав не осо би не епо хе ре а ли зма 6 Књи жев ни жан ро ви ре а ли

Више

X /T & l tl &&& ш _ /? У У /гс 1 g*2*3u /^ ^ С С У %. А у^ Я & М. j^zag»»? & У Ъ ^ У л* >. Л У a i z ^ /у'м п p /g А М ^ у А у ^ у /у у? у? 6 ' & 2^ щ

X /T & l tl &&& ш _ /? У У /гс 1 g*2*3u /^ ^ С С У %. А у^ Я & М. j^zag»»? & У Ъ ^ У л* >. Л У a i z ^ /у'м п p /g А М ^ у А у ^ у /у у? у? 6 ' & 2^ щ X /T & l tl &&& ш _ /? У У /гс 1 g*2*3u /^ ^ С С У %. А у^ Я & М. j^zag»»? & У Ъ ^ У л* >. Л У a i z ^ /у'м п p /g А М ^ у А у ^ у /у у? у? 6 ' & 2^ щ е i S / ^ tf /W /s /j/s ///? _ б С М ^ У? '/? г^ У.

Више

FINANCIRANJE UZ 0% KAMATE AUSTRALIAN OPEN PONUDA

FINANCIRANJE UZ 0% KAMATE AUSTRALIAN OPEN PONUDA FINANCIRANJE UZ 0% KAMATE AUSTRALIAN OPEN PONUDA Motor Oprema Kod opreme cijena (kn) PPMV (kn) Cijena s MY2018 (kn) za vozila MY2017 (kn) Cijena za MY2017 (kn) Benzin 1.4 CVVT 73,6 kw (100 KS) LX Fun eco*

Више

Simic.indb

Simic.indb PJESNICI Pjesnici su ~u e nje u svi je tu Oni idu ze mljom i nji ho ve o~i velike i ni je me ra stu po red stva ri Nasloniv{i uho na }u ta nje {to ih okru `u je i mu~i pjesnici su vje~ no trep ta nje u

Више

Ори ги нал ни на уч ни рад : doi: /zrpfns Др Гор да на Б. Ко ва чек Ста нић, ре дов ни про фе сор Уни вер зи тет у Но вом

Ори ги нал ни на уч ни рад : doi: /zrpfns Др Гор да на Б. Ко ва чек Ста нић, ре дов ни про фе сор Уни вер зи тет у Но вом Ори ги нал ни на уч ни рад 347.63:347.627.2 doi:10.5937/zrpfns52-19591 Др Гор да на Б. Ко ва чек Ста нић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду G. Ko va c

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I 17 DOKUMENTACIJA KOJU KONTROLIŠE PORESKA INSPEKCIJA

Више

ISSN COBISS.SR-ID Београд, 11. децембар Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је динара С

ISSN COBISS.SR-ID Београд, 11. децембар Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је динара С ISSN 0353-8389 COBISS.SR-ID 17264898 Београд, 11. децембар 2014. Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је 36.147 динара С А Д Р Ж А Ј М и н и с т а р с т в а Пра вил ник о

Више

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1.

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1. Prvi razred A kategorija Za brojeve a, b, c, x, y i z vaжi {a, b, c} = {x, y, z} = {15, 3, 2014}. Da li broj a bc + x yz mora biti sloжen? (Za m, n, k N je sa m nk oznaqen broj m (nk).) Neka su a, b i

Више

UNIVERZITET U TUZLI Filozofski fakultet Broj: 02/ /17 Tuzla, godine Na osnovu člana 122. Statuta Univerziteta u Tuzli, a u vezi sa

UNIVERZITET U TUZLI Filozofski fakultet Broj: 02/ /17 Tuzla, godine Na osnovu člana 122. Statuta Univerziteta u Tuzli, a u vezi sa Studijski program Komunikologija Nakon što je prijavu kandidata Azre Musić odbacilo kao nepotpunu Naučno-nastavno vijeće utvrďuje slijedeću U prvu godinu drugog studija u akademskoj 2017/2018. godini u

Више