KORELISANOST REZULTATA MERENJA
|
|
- Lana Lukić
- пре 5 година
- Прикази:
Транскрипт
1 Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj Prof r Brko Božć, plgeož
2 SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje ODREDJIVANJE GREŠAKA ARGUMENATA AKO JE POZNATA GREŠKA FUNKCIJE
3 Zko preos grešk merej grešk fukcje Posmtrjmo jeostvu fukcju : Drekt merej () Tč vreost o Pot koefcjet Greške merej - e e Z T = Mereje - Grešk ( e ) ( e ) ( e e ) T ( e ) ( e ) ( e e ) T ( e ) ( e ) ( e e ) T () Fukcje merej (3) meom (3) u ():
4 T T T e e e e e e (4) Po efcj: = e e Ooso, meom (4) u (5) : (5) e ( e e ) ( e e ) ( e e ) (6) Rvojem (6) obj se: ( e ) e e ( e ) ( e ) e e ( e ) (7) ooso: (e e e ) (e e e ) (e e e e e e ) (8) Ako u (8) upotrebmo smbol br, obj se sleeć r: e ee e ( ) ( ) ( ) (9) Ir u grm se mogu pst ko:,,, respektvo, tko sle: (0)
5 U ru (0) čl je kovrjs očv međusobu vsost promeljv U mtrčom oblku r (0) gls: K () ge je: K - vrjs-kovrjco mtrc (l kovrjco mtrc, mtrc kovrjs l spero mtrc) fukcje Ukolko je fukcj o evs merej,,,, t je: K Z skup o m fukcj evs merej,,,, r () gle: () K m m m m m (3) Ukolko su fukcje elere, rvojem u Tejlorov re (korst se smo prv stepe) vrš se jov lercj Nko lercje kovrjco mtrc fukcje gls:
6 m m m m m m K (4) Ir (3) (4) pot su ko ko preos vrjs - opšt slučj U ob slučj, r se mogu smbolčo prkt ko: t K A K A ge je K mtrc kovrjs o, K - mtrc kovrjs merej = K Ko elerog sstem ječ, ko lercje, mtrc koefcjet A prestvlj mtrcu prcjl vo u oosu epote prmetre Ukolko su merej međusobo evs, mtrc K je jgol (ejgol člov su jek ul), r (4), ukolko postoj fukcj s evs velč,, obj sleeć r: (5) (6) Ir (6) pot je ko ko preos vrjs - specjl slučj Poje člov r (6 - vo fukcje po pojem promeljvm) repreetuju poječ opros ukupoj grešc
7 Ako su j vrjse slučj promeljv j, ko su potve, t je r j r j j (7) koefcjet korelcje ve slučje promeljve j j Vž teorem: rj (8) pr čemu je r = ± smo ko među slučj promeljv j postoj ler ve s verovtoćom, tj k je P( j = c +) =, ge su c provolje kostte Ukolko kofcjete korelcje r j poređmo u oblku (9), obj se korelco mtrc R, oblk: R r r r r r r (9) koj sle oos: t R F K F (0) ge je: F = g(/ / ) : Merej () Ako je t P ck mtrc P oblk () vektor slučj promeljv s kovrjcoom mtrcom K()=K, t prestvlj mtrcu tež slučj promeljv (c = cost)
8 PRIMER : Nek je s evs slučj promeljv efs ko merej už eke be Vrjs sreje vreost X=/( ) gls: K() KX, KX X ZADATAK : Nek je A= B + C ek su B C ve međusobo evse velče Nć vrjsu o A ZADATAK : Nek su meje be A = 4000 m (s A = 005), B = 000 m (s B = 003) C=000 m (s C = 005) Oret premu be jeo stro ostupje REŠENJE: V=8000 m 3, s V = m 3 ZADATAK 3 : S A B mere je vertkl ugo =300 s s = kos už D=00000 m s s D = 005 m Srčut orotlu užu jeo stro ostupje REŠENJE: D H =99863, s D =005 m ( r =3438)
9 ОДРЕЂИВАЊЕ ГРЕШАКА АРГУМЕНАТА АКО ЈЕ ПОЗНАТА ГРЕШКА ФУНКЦИЈЕ У геодезији се често сусрећемо са случајем одређивања грешака аргумената (параметара) при познатој грешци њихове функције Решења овог проблема има више, али се тражи оптимално које подразумева минимизирање норме вектора стандардних грешака аргумената Поред оптималног решења, за приближнe прорачуне, користи се и приближно решење
10 ОДРЕЂИВАЊЕ ГРЕШАКА АРГУМЕНАТА АКО ЈЕ ПОЗНАТА ГРЕШКА ФУНКЦИЈЕ - Оптимално решење Нека су j k k,,, () Средње вредности резултата мерења различитих променљивих реализованих у и-том узорку 3 3 k k 3k Вредност функције гласи: (,,, ) (3) 3 Различите променљиве Нека су o стандардна одступања појединачних резултата мерења k Сходно закону преноса грешака, варијансе од износе: o (4) Уколико закон преноса грешака применимо на (3), варијанса гласи: o (5) са функције
11 ОДРЕЂИВАЊЕ ГРЕШАКА АРГУМЕНАТА АКО ЈЕ ПОЗНАТА ГРЕШКА ФУНКЦИЈЕ - Оптимално решење o Z poto poto - Стандардна одступања резултата мерења - Стандардно одступање функције Варијанса средње вредности променљиве Непознато? Број мерења у узорку за сваку променљиву Решење (5) се тражи минимизирањем броја мерења односно m Оптимално решењe варијансе највероватније (средње) вредности мерења o o (6) Уколико су стандардна одступања појединих променљивих једнака o Број мерења o (7) (8)
12 ОДРЕЂИВАЊЕ ГРЕШАКА АРГУМЕНАТА АКО ЈЕ ПОЗНАТА ГРЕШКА ФУНКЦИЈЕ - Приближно решење Нека је дата функција (,,, ) аргумената,,, Проблем гласи ако је позната вредност стандардног одступања функције одредити стандардна одступања,,, оцена,,, Варијанса функције Проблем се решава уз услов да сваки члан подједнако доприноси варијанси функције cost k, (k 0) k (9) Број непознатих аргумената функције
13 PRIMER U trouglu su mere uglov =35 =68 str =8 m Nć optmlo rešeje greške rgumt fukcje (Perovć, 989): ko su o = cm, o = o = 0 H = b =3 cm b / 67 j oj s b s (b / )ctg 043 cm / (b / )ctg cm / REŠENJE: 6904 cm 6cm, 3 cm, / 5 3 o 8, 4, / 3 o 644, 5, / 06 o o o Optm l o 7 Ako pođemo o pretpostvke uglove treb mert pr KL KD, o je =4, =, tko b optml broj merej trebo bt jek 9 c b
14 PRIMER Rešeje po prcpu jek utcj s b 07 m s l b l l s l s b b b Pr meom b b 3 b 3 prcp b 3 ctg b ctg 3cm 3 3cm 3 jek 3cm 3 b / ctg b utcj cm (b ctg) / (b ctg) / ctg 43 k Oos optmlog rešej rešej po prcpu jek utcj o o o Ako pođemo o pretpostvke uglove treb mert pr KL KD, o je =4, =, tko b optml broj merej trebo bt jek 0 N osovu reultt rčuj može se ključt ugo treb mert četr put precje o ugl, ooso obrt tkvu metou koj će to obebet ( prmer, povećt broj merej sl)
15 PRIMER 3 Prlkom svođej ekscetrčo mere prvc cetr tčost oređvj ugl e sme bt mj o Srčut tčost merej elemet ekscetrctet, ko je e m =0 m, km 4 km, 0 REŠENJE: e s s l s l e l l s kko cos s je 0 cos e ecos e e e cos s s es / Prmeom ko prostrj grešk m bć ost vr eo m e 0m, m km m cos Pr meom e 3 prcp 3 e 3 ecos mm 8mm jek utcj 000m 8mm 3 0m m mcos90
Zadci za I razred za sve smerove
Zdc I rred sve smerove Isptt d l je tutologj sledeć sk formul p q p q Odredt proporcje Šest uček ured školsko dvoršte d Z kolko d uček vršlo st poso? U l lkoholog pć m l vode Kolko u stom pću m procet
Више12-7 Use of the Regression Model for Prediction
P r c e Pojam Aalza treda Sezoska cklča kompoeta Ideks brojev Vremeske serje Pojam Vremeske serje predstavljaju z mjereja jede promjeljve kroz vrjeme. Aalza vremeskh serja astoj da otkrje razumje regularost
ВишеMicrosoft Word - INTEGRALI.doc
INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l
ВишеПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у
ПО Е ЗИ ЈА И ПРО ЗА Д РА ГА Н ЈО ВА НО ВИ Ћ Д А Н И ЛОВ РЕ Ч И СТ РА Ш Н И Ј Е ОД ВЕ ЈА ВИ Ц Е ОПРА ШТА ЊЕ С МАЈ КОМ До ђе и к ме ни ста рост да ми у коб ном оби ла ску ску пи је дра и скло ни ме пред
ВишеMLADI NADARENI MATEMATIČARI Marin Getaldic Uvod u nejednakosti Nejednakosti su područje koje je u velikoj mjeri zastupljeno na matematički
MLADI NADARENI MATEMATIČARI Mri Getldic Uvod u ejedkosti..05. Nejedkosti su područje koje je u velikoj mjeri zstupljeo mtemtičkim tjecjim, li se u sredjoškolskom grdivu jedv spomije. Tkvi zdtci mogu stvrti
ВишеPRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil
PRIER 1 Srčuti stv cetričo ztegutog štp, u svemu prem sici. Štp je prvougoog poprečog prese b/h = 14/ cm, optereće je silom Zd = 116 N (stlo + sredjetrjo opt.). Nstv izvesti s dve drvee podvezice debljie
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеMicrosoft Word - GEOMETRIJA 3.4..doc
4. UČENIK UME DA IZRAČUNA POVRŠINU I ZAPREMINU PRIZME I PIRAMIDE U SLUČAJEVIMA KADA NEOPODNI ELEMENTI NISU DATI KOCKA D= d = P= 6 V= mrež kocke Kock im 1 ivic dužine. Ml dijgonl ( dijgonl onove) je d =.
ВишеПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п
ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах
ВишеMicrosoft Word - Kvalif_Zadaci_Rjesenja_TOI.docx
Univerzitet u Tuzli ZBIRKA zdtk s prijemnih ispit iz Mtemtike n Fkultetu elektrotehnike u periodu od 0-0 godine (z studijski progrm "Tehnički odgoj i informtik") Tuzl, mj 08 TEHNIČKI ODGOJ I INFORMATIKA
ВишеТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
ВишеUNIVERZITET U ZENICI
8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)
ВишеSlide 1
Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene
ВишеMicrosoft Word - 26ms441
Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,
ВишеMicrosoft Word - Trigonometrijski oblik kompleksnog broja.doc
Trgonometrjsk oblk kompleksnog broja Da se podsetmo: Kompleksn broj je oblka je realn deo, je magnarn deo kompleksnog broja, - je magnarna jednca, ( Dva kompleksna broja su jednaka ako je Za broj _ je
ВишеNa osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2.
Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2. Sta tu ta Ta ko vo osi gu ra nje a. d. o, Kra gu je
ВишеKlasični linearni regresioni model
Klasč lear regreso model (KLRM) - jedostav - Zorca Mladeovć Ključe teme Postavka pretpostavke KLRM Svojstva ocea parametara u KLRM Elemet statstčkog zaključvaja u KLRM Predvđaje u KLRM Ekoomsk fakultet,
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
ВишеISSN COBISS.SR-ID Београд, 11. децембар Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је динара С
ISSN 0353-8389 COBISS.SR-ID 17264898 Београд, 11. децембар 2014. Година LXX број 134 Цена овог броја је 401 динар Годишња претплата је 36.147 динара С А Д Р Ж А Ј М и н и с т а р с т в а Пра вил ник о
ВишеIErica_ActsUp_paged.qxd
Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne
ВишеGlava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13
Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I 17 DOKUMENTACIJA KOJU KONTROLIŠE PORESKA INSPEKCIJA
Више16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић
16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић 4 Наслов оригинала Mary Pope Osborne Hour of the Olympics Са др жај Text Copyright 1998 by Mary Pope
Вишепо пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број
по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеSluzbeni List Broj OK3_Sluzbeni List Broj OK2.qxd
SLU@BENI LIST GRADA KRAQEVA GODINA XLIX - BROJ 5 - KRAQEVO - 24. FEBRUARA 2016. GODINE AK TI GRADONA^ELNIKA GRA DA KRA QE VA 73. Na osno vu ~la na 7. stav 3. Za ko na o oza - ko we wu obje ka ta ( Slu
ВишеПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в
ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те ве: 1.1. Сред ња вред ност ствар не ко ли чи не ни је
ВишеПО Е ЗИ ЈА И ПРО ЗА Ж И ВО РА Д Н Е Д Е Љ КО ВИ Ћ Х Е ДО Н И ЗА М ШТА САМ МО ГАО Мо жда ни ка да не ћу са зна ти шта сам мо гао Да ура дим у жи во ту,
ПО Е ЗИ ЈА И ПРО ЗА Ж И ВО РА Д Н Е Д Е Љ КО ВИ Ћ Х Е ДО Н И ЗА М ШТА САМ МО ГАО Мо жда ни ка да не ћу са зна ти шта сам мо гао Да ура дим у жи во ту, шта с њим. Ла год но је Н а г а ђа т и, о с ло њ ен
Вишеzmijski STUB Džejson Gudvin Prevela Sanja Bošnjak
zmijski STUB Džejson Gudvin Prevela Sanja Bošnjak 4 5 Naslov originala Ja son Go od win The Sna ke Sto ne Copyright 2007, Ja son Go od win All rights re ser ved Translation copyright 2009 za srpsko izdanje,
ВишеFeng Shui za ljubav MONTAZA 3:Feng Shui_Love Int. Mech.qxd
POVOLJNE I NEPOVOLJNE FENG [UI F O RMULE za LJUBAV ANGI MA VONG POVOLJNE I NEPOVOLJNE FENG [UI FORMULE za LJUBAV Naziv originala: FENG SHUI DOs & TABOOs for love Angi Ma Wong Naziv knjige: Povoljne i nepovoljne
ВишеЗ А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шт
З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шта ва, а на ро чи то њи хо во осни ва ње, упра вља ње,
ВишеPrelom broja indd
ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 8 СМЕДЕРЕВО, 4. ЈУН 2009. ГОДИНЕ 88. СКУПШТИНА ГРАДА СМЕДЕРЕВА На осно ву чла на 32. став 1. тач ка 6, а у ве зи са чла ном 66. став 3. За ко на о ло кал ној са мо у пра ви
ВишеТА ТЈА Н А ЈА Н КО ВИ Ћ ЗА ЕМИ СИ ЈУ РАЗ ГО ВО РИ С ПО ВО ДОМ 204 Мо гу да поч нем? Да? Да кле, пр во на шта по ми слим кад чу јем реч бом бар до ва њ
ТА ТЈА Н А ЈА Н КО ВИ Ћ ЗА ЕМИ СИ ЈУ РАЗ ГО ВО РИ С ПО ВО ДОМ 204 Мо гу да поч нем? Да? Да кле, пр во на шта по ми слим кад чу јем реч бом бар до ва ње је М и р т а. М и р т а, н а гл а в ној аут о буској
ВишеNASTANAK OPASNE SITUACIJE U SLUČAJU SUDARA VOZILA I PEŠAKA TITLE OF THE PAPER IN ENGLISH Milan Vujanić 1 ; Tijana Ivanisevic 2 ; Re zi me: Je dan od n
NASTANAK OPASNE SITUACIJE U SLUČAJU SUDARA VOZILA I PEŠAKA TITLE OF THE PAPER IN ENGLISH Milan Vujanić 1 ; Tijana Ivanisevic 2 ; Re zi me: Je dan od naj zna čaj ni jih de lo va na la za i mi šlje nja vešta
ВишеNa osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St
Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac
ВишеMicrosoft Word - 11ms201
Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (
ВишеПод о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли
Под о де љак а) ВОД НО ПОД РУЧ ЈЕ БАЧ КА И БА НАТ, у та бе лар ном пре гле ду, СЕК ТОР Д.8. КО ВИН, у ко ло ни два, у тре ћем ре ду ре чи: Са во Го ли ја нин, моб. 065/858-46-26 за ме њу ју се ре чи ма:
ВишеPrelom broja indd
ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 12 СМЕДЕРЕВО, 7. АВГУСТ 2009. ГОДИНЕ 189. ГРАДОНАЧЕЛНИК На осно ву чла на 69. став 3. За ко на о бу џет ском си стему ( Слу жбе ни гла сник Ре пу бли ке Ср би је, број 54/2009),
ВишеLjubav mir cokolada prelom.pdf
Ke ti Ke si di LJU BAV, MIR I ^O KO LA DA Edicija KETI KESIDI Ke ti Ke si di je na pi sa la i ilu stro va la svo ju pr vu knjigu sa osam go di na. Ra di la je kao ured ni ca za pro zu u ~a so pi su D`e
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
ВишеTrougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa
Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat
ВишеД И В Н А ВУ К СА НО ВИ Ћ ИГРА 566 ИГРА Жу рио је. Тре ба ло је да пре тр чи, и то без ки шо бра на, ра сто јање од Рек то ра та до Град ске га ле ри
Д И В Н А ВУ К СА НО ВИ Ћ ИГРА 566 ИГРА Жу рио је. Тре ба ло је да пре тр чи, и то без ки шо бра на, ра сто јање од Рек то ра та до Град ске га ле ри је, а да, при том, ка ко при ли ке на ла жу, из гле
ВишеSREDNJA ŠKOLA MATEMATIKA
SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....
ВишеЂУРО ШУШЊИЋ Уни вер зи тет у Бе о гра ду, Фи ло зоф ски фа кул тет, Бе о град УДК :39 КУЛ ТУ РА РЕ ДА И НЕ РЕД У КУЛ ТУ РИ Дра го ми је да го во
Уни вер зи тет у Бе о гра ду, Фи ло зоф ски фа кул тет, Бе о град УДК 111.84:39 КУЛ ТУ РА РЕ ДА И НЕ РЕД У КУЛ ТУ РИ Дра го ми је да го во рим по во дом сјај не књи ге Бо ја на Јо вано ви ћа по све ће
ВишеALGEBRA I (2010/11)
ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije
ВишеISSN X Билтен Градске општине Барајево БРОЈ Септембар У БАРАЈЕВУ ПРОС АВ ЕНА С АВА И ДАН ОПШТИНЕ ИЗ РАДА СКУПШТИНЕ ГРАДСКЕ ОПШТИНЕ
ISSN 1451-494X Билтен Градске општине Барајево БРОЈ 68-69 Септембар 2017. У БАРАЈЕВУ ПРОС АВ ЕНА С АВА И ДАН ОПШТИНЕ ИЗ РАДА СКУПШТИНЕ ГРАДСКЕ ОПШТИНЕ БАРАЈЕВО ГОДИНА ОД ОР ИРА А ПРВЕ СРПСКЕ В АДЕ У ВЕ
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеР А З Г О В О Р ВАЛ ТЕР УГО МАИ ДО БРО РАС ПО ЛО Ж Е Н И П Е СИ М И СТА 138 Ра з го в ор в о д и л а Са ња Ми л и ћ Вал тер Уго Маи је умет нич ко име
Р А З Г О В О Р ВАЛ ТЕР УГО МАИ ДО БРО РАС ПО ЛО Ж Е Н И П Е СИ М И СТА 138 Ра з го в ор в о д и л а Са ња Ми л и ћ Вал тер Уго Маи је умет нич ко име Вал те ра Уга Ле мо са, рођ е ног у А н г о л и, 1971.
ВишеNa osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St
Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/0 i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac (u
ВишеSluzbeni List Broj OK05_Sluzbeni List Broj OK2.qxd
SLU@BENI LIST GRADA KRAQEVA GODINA XLIX - BROJ 28 - KRAQEVO - 20. OKTOBAR 2016. GODINE AK TI GRADONA^ELNIKA GRA DA KRA QE VA 424. Na osno vu ~la na 58. Sta tu ta gra da Kra - qe va ( Slu `be ni list gra
ВишеMno go dr žim do ne ge sta rih lju di u kru gu po ro di ce. Kao dete raz ve de nih ro di te lja, kao sko ro sva de ca raz ve de nih ro di te lja, že l
Mno go dr žim do ne ge sta rih lju di u kru gu po ro di ce. Kao dete raz ve de nih ro di te lja, kao sko ro sva de ca raz ve de nih ro di te lja, že lim da mo ji ro di te lji po no vo bu du za jed no.
ВишеПредлог новог закона о рачуноводству реквијем за рачуновође 1. Уводне напомене У го ди ни Вла да Ре пу бли ке Швај цар ске одо бри ла је до на ц
Предлог новог закона о рачуноводству реквијем за рачуновође 1. Уводне напомене У 2016. го ди ни Вла да Ре пу бли ке Швај цар ске одо бри ла је до на ци ју Ре пу бли ци Ср би ји у из но су од 3.400.000
ВишеMicrosoft Word - Matematika_kozep_irasbeli_jav_utmut0513V28_szerb.doc
Matematika szerb nyelven középszint 0513 ÉRETTSÉGI VIZSGA 005. május 8. MATEMATIKA SZERB NYELVEN МАТЕМАТИКА KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA МАТУРСКИ ИСПИТ СРЕДЊЕГ СТЕПЕНА Az írásbeli vizsga időtartama: 180
ВишеН А РОД Н А С КУ П Ш Т И Н А 41 На осно ву чла на 112. став 1. тач ка 2. Уста ва Ре пу бли ке Ср би је, до но сим У К АЗ о про гла ше њу Закона о по т
Н А РОД Н А С КУ П Ш Т И Н А 41 На осно ву чла на 112. став 1. тач ка 2. Уста ва Ре пу бли ке Ср би је, до но сим У К АЗ о про гла ше њу Закона о по твр ђи ва њу Спо ра зу ма из ме ђу Ре пу бли ке Ср би
ВишеMicrosoft Word - Elektrijada_2008.doc
I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна
ВишеFTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva
Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara
ВишеPowerPoint Presentation
REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel
ВишеUniverzitet u Ni²u Prirodno matemati ki fakultet Departman za matematiku Linearni regresioni modeli i problemi njihove primene Master rad Student: Mil
Uverztet u N²u Prrodo matemat k fakultet Departma za matematku Lear regreso model problem jhove prmee Master rad Studet: Mla Nkol Metor: dr Aleksadar Nast N², oktobar 2014. 2 Sadrºaj Predgovor....................................
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеПре глед ни чла нак ( ) doi: /zrpfns Ми лош Д. Де но вић, сту дент док тор ских сту ди ја Уни вер зи тет у При шти ни са п
Пре глед ни чла нак 35.077.3(497.115) doi:10.5937/zrpfns51-12946 Ми лош Д. Де но вић, сту дент док тор ских сту ди ја Уни вер зи тет у При шти ни са при вре ме ним се ди штем у Ко сов ској Ми тро ви ци
ВишеNi ti ni ja Paus.pdf
Ni ti ni ja Kamij Lorans Ni ti ni ja Pre ve la sa francuskog Iza be la Ni ko di je vić Mono i Manjana 2007. Naslov originala Camille Laurens Ni toi ni moi Copyright P. O. L. éditeur, 2006 Izdavač Mono
ВишеМ И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле
М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
ВишеОри ги нал ни на уч ни рад : doi: /zrpfns Др Зо ран В. Ар сић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав
Ори ги нал ни на уч ни рад 347.725:347.72.033 doi:10.5937/zrpfns52-19023 Др Зо ран В. Ар сић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду Z. Ar sic @ p f.u n s.a
Вишео ло ш ке п ри р о де. И з д а в а ч и с у од би ја л и д а ш т а м п а ју њ е г о в е к њи г е 1, поз о р и ш н е т р у п е д а и зв од е њ е г ов е
о ло ш ке п ри р о де. И з д а в а ч и с у од би ја л и д а ш т а м п а ју њ е г о в е к њи г е 1, поз о р и ш н е т р у п е д а и зв од е њ е г ов е д р ам е 2, док кри ти ча ри углав ном (с и з узе тком
ВишеIrodalom Serb 11.indd
Садржај Реализам 3 Вер на сли ка ствар но сти 5 Де фи ни ци ја 5 Ре а ли зам као стил ски правац или ме тод (ми ме за) 5 Гра ни це и глав не осо би не епо хе ре а ли зма 6 Књи жев ни жан ро ви ре а ли
ВишеDJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk
DJEČJI VRTIĆ TROGIR TROGIR Trogir, 24. 04. 2019. Klasa: UP/I-034-01-01/19-01/1 Urbroj. 2184-17-19-1 Na temelju članka 1a, 20. i 35. stavka 1. podstavka 4. Zakona o predškolskom odgoju i obrazovanju (NN
ВишеСтојан Л. Продановић Обнова ПАМЋЕња
Стојан Л. Продановић Обнова ПАМЋЕња Уредник Зоран Колунџија Рецензенти Ге не рал-пот пу ков ник Ми ле Но ва ко вић про фе си о нал ни офи цир у пен зи ји Јо ви ца Про да но вић, ка ри јер ни ди пло ма
ВишеMicrosoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]
Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa
Више1. KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 24. listopada (i) Napi²ite formulu za determinantu i inverz op e matrice drugog reda, te nave
1 KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 4 lstopada 011 1 () Nap²te formulu a determnantu nver op e matrce drugog reda, te navedte uvjet ( ) 3 7 1 11 1 3 () Provjerte je l matrca B = 1 3 1 5 nverna
ВишеДра го Да мја нац
Дра го Да мја нац Би бли о те ка: Све до че ња Дра го Да мја нац БИО САМ ХР ВАТ СКИ ЗА ТО ЧЕ НИК Цр на Ло ра Био сам хр ват ски за то че ник УВОД За о штра ва њем по ли тич ке си ту а ци је и на ста ја
ВишеОри ги нал ни на уч ни рад 35.07: doi: /zrpfns Рат ко С. Ра до ше вић, аси стент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет
Ори ги нал ни на уч ни рад 35.07:57.089 doi:10.5937/zrpfns52-19469 Рат ко С. Ра до ше вић, аси стент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду R. R a d o se v ic @ p f.u n s.a c.r
Вишеmama_ispravljeno.indd
3 KAKO DA BUDETE U ALI SON MA LO NI Prevela Branislava Radević-Stojiljković Sadržaj Uvod Nikada nećete čuti da majka ovo kaže detetu Vre me je za za ba vu Poznate mame Majka priroda: grešnice i svetice
ВишеЛ А ЗА К. Л А ЗА РЕ ВИ Ћ ВУ Л Е Ж У РИ Ћ ПО БРА Т И М И I Че га ту има де струк тив ног? С ке р л и ћ Јед но га лет њег ју тра ода џи је у ми ни стар
Л А ЗА К. Л А ЗА РЕ ВИ Ћ ВУ Л Е Ж У РИ Ћ ПО БРА Т И М И I Че га ту има де струк тив ног? С ке р л и ћ Јед но га лет њег ју тра ода џи је у ми ни стар ству Н., као и обично, око с е да м с а т и по п р
ВишеMicrosoft Word - MNOGOUGAO.doc
MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,
Више2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (
2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8 2 A) (f () M) ; ome dena odozdol ako postoji m 2 R takav da je
ВишеUDK: 171/ FILOZOFIJA I DRUŠTVO XXV (2), DOI: /FID N Originalan naučni rad Aleksandar Nikitović Institut za filozofiju i
UDK: 171/172.000.141 FILOZOFIJA I DRUŠTVO XXV (2), 2014. DOI: 10.2298/FID1402235N Originalan naučni rad Aleksandar Nikitović Institut za filozofiju i društvenu teoriju Univerzitet u Beogradu Platon, filosof
ВишеNermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh
Slicnost trouglova Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a,, c su stranice trougla suprotne vrhovima A, B, C redom. -m a, m, m c su tezisnice iz vrhova A, B, C redom. -h a, h, h c su
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеODLOMAK, Zovi me svojim imenom.pdf
www.strik.rs NA S L OV OR IG I NA L A André Aciman Call Me by Your Name U R E DN IC A Ljubica Pupezin 2007 by André Aciman All rights reserved. 2018, ŠTRIK, za srpski jezik Sva prava zadržana. Nijedan
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ
Вишеу ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у
у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у је ов ом п и сц у. Е, с а д, д а л и ћ е С р д и ћ
Вишеbroj 068_Layout 1
2 SLU@BENI GLASNIK REPUBLIKE SRPSKE - Broj 68 7.07.2011. - из кредитних средстава не могу се плаћати: царине, порези и друге накнаде за радове, услуге и робу финансиране по Пројекту и - затезна камата:
ВишеУпорна кап која дуби камен
У БЕ О ГРА ДУ, УПР КОС СВЕ МУ, ОБ НО ВЉЕ НЕ ПЕ СНИЧ КЕ НО ВИ НЕ Упор на кап ко ја ду би ка мен Би ло је то са др жај но и гра фич ки јед но од нај бо љих из да ња на ме ње них пре вас ход но по е зи ји
ВишеPopoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka
IZ NASTAVNE PRAKSE Radomir Ločarević Rumujski matematičar Tiberie Popoviciu (906. 975.) dokaao je 965. poatu ejedakost i područja kovekse aalie (vidi [.]), koja ima primjee, medu ostalim, u brojim adatcima
ВишеMicrosoft Word - SVODJENJE NA I KVADRAT.doc
SVODJENJE NA I KVADRAT Ka št sm videli d sada, trignmetrijske funkcije uglva I kvadranta izračunavaju se na isti način ka trignmetrijske funkcije štrih uglva pravuglg trugla. Pkazaćem da se prek frmula,
Вишеби ти и Си мо Ма та вуљ али нам па жљи во чи та ње 95. пи сма пре пи ске са Са ви ћем от кри ва да то ни је Ма та вуљ! (Не смем да ка жем шта сам све
би ти и Си мо Ма та вуљ али нам па жљи во чи та ње 95. пи сма пре пи ске са Са ви ћем от кри ва да то ни је Ма та вуљ! (Не смем да ка жем шта сам све про чи тао не бих ли от крио ко је кор бру дер ме ђу
ВишеISTRAŽIVAČKI FORUM Pravosuđe i ljudska prava Poglavlje 23 Beograd, februar 2012.
ISTRAŽIVAČKI FORUM Pravosuđe i ljudska prava Poglavlje 23 Beograd, februar 2012. SADRŽAJ: Uvod..................................................4 1. Us po sta vlja nje ne za vi snosti sud stva u Sr bi
ВишеПре глед ни чла нак :342.7( ) doi: /zrpfns Др На та ша Љ. Де ре тић, до цент Уни вер зи тет у Но вом Са ду Прав ни фа кул
Пре глед ни чла нак 314.15:342.7(37+497.11) doi:10.5937/zrpfns52-19604 Др На та ша Љ. Де ре тић, до цент Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду N. D e re t ic @ p f.u n s.a c.r
ВишеDJEČJI VRTIĆ VOJNIĆ
BILJEŠKE UZ OBRAZAC PR-RAS IZVJEŠTAJ O PRIHODIMA I RASHODIMA, PRIMICIMA I IZDACIMA Bilješka br. 1 Dječji vrtić Vojnić je za razdoblje od 01.01.2018. do 31.12.2018. godine ostvario ukupne prihode poslovanja
ВишеМИЛОШ НЕМАЊИЋ Српско социолошко друштво, Београд DOI /kultura N УДК (497.11) 198/ (497.11) 198/... оригиналан научни рад
Српско социолошко друштво, Београд DOI 10.5937/kultura1340196N УДК 316.72(497.11) 198/... 316.752(497.11) 198/... оригиналан научни рад КУЛ ТУ РА СР БИ ЈЕ НА РАС КР ШЋУ 20. И 21. ВЕ КА НЕ ДО ВР ШЕ НИ МО
Више2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (
2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (x) M) ; ome dena odozdol ako postoji m 2 R takav da
ВишеОри ги нал ни на уч ни рад 349.2(497.11) 19/20 doi: /zrpfns Др Се над Р. Ја ша ре вић, ре дов ни про фе сор Уни вер зи тет у Но вом Са д
Ори ги нал ни на уч ни рад 349.2(497.11) 19/20 doi:10.5937/zrpfns52-19391 Др Се над Р. Ја ша ре вић, ре дов ни про фе сор Уни вер зи тет у Но вом Са ду Прав ни фа кул тет у Но вом Са ду S. Ja sa re v ic
ВишеПре глед ни чла нак :347.74(497.11) doi: /zrpfns Др Дра жен С. Ми љић Уни вер зи тет у Ба њој Лу ци d ra ze n.mi u nibl.r
Пре глед ни чла нак 35.077.2:347.74(497.11) doi:10.5937/zrpfns51-13936 Др Дра жен С. Ми љић Уни вер зи тет у Ба њој Лу ци d ra ze n.mi ljic @ u nibl.r s УПРАВ НИ УГО ВО РИ ПРЕ МА ЗА КО НУ О ОП ШТЕМ УПРАВ
Више