9. : , ( )

Величина: px
Почињати приказ од странице:

Download "9. : , ( )"

Транскрипт

1 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад

2 Садржаj - Шта ћемо научити (1) 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 2 of 27

3 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 3 of 27

4 Преглед литературе 1. Уџбеник Србољуб Симић, Ратко Маретић - Основе механике, стр of 27

5 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 4 of 27

6 Кинетичка енергиjа (1) Дефинициjа: E k = 1 2 mv 2 = 1 2m v v Количина кретања и кинетичка енергиjа: v 1 v 1 = v 2 v 2 v 1 v 2 v 1 = v 2 K 1 = m v 1 m v 2 = K 2 E k1 = 1 2 mv 2 1 = 1 2 mv 2 2 = E k2. m P 1 P 2 m Структура израза за кинетичку енергиjу: ( ) d 1 dt 2 v 2 = 1 d 2 dt ( v v) = 1 2 ( v v + v v) = v a; ( ) 1 d 2 v 2 = 1 2 d ( v v) = 1 (d v v + v d v) = v d v. 2 4 of 27 de k dt = m v a; de k = m v d v.

7 Кинетичка енергиjа при праволиниjском кретању: E k = 1 2 mv 2 = 1 2 mẋ 2 de k dt = m ẋ ẍ; de k = m ẋ dẋ Кинетичка енергиjа при криволиниjском кретању E k = 1 2 m ( vx 2 + vy 2 ) 1 = 2 m ( ẋ 2 + ẏ 2) = 1 2 mv 2 = 1 2 mṡ2 de k = m (v x a x + v y a y ) = m (ẋẍ + ẏÿ) = m v v = m ṡ s; dt de k = m (v x dv x + v y dv y ) = m (ẋ dẋ + ẏ dẏ) = m v dv = m ṡ dṡ 5 of 27

8 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 6 of 27

9 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 6 of 27

10 Рад силе За разлику од кинетичке енергиjе коjа описуjе стање кретања материjалне тачке, рад силе jе величина коjа се односи на процес кретања. Дефинициjа: A 12 = F d r Jединица мере: 1 Nm = 1 kgm 2 /s 2 = 1 J d r θ F r = x i Рад константне силе: F = F cos θ i + F sin θ j, F = const., θ = const., d r = dx i ( ) A 12 = F cos θ i + F sin θ j dx i = F cos θ x2 x 1 dx x A 12 = F cos θ (x 2 x 1 ) = F cos θ x ako je θ = 0 A 12 = F x, cos θ > 0 A 12 > 0 cos θ < 0 A 12 < 0 F d r A12 = 0 6 of 27

11 A 1 12 > 0 A 2 12 > A1 12 F d r A 12 = 0 7 of 27

12 Пример 6.1 Израчунати рад силе теже током слободног пада материjалне тачке масе m са висине h. Показати да ће извршени рад бити jеднак прираштаjу кинетичке енергиjе материjалне тачке. h y v 0 = 0 Тачка започиње кретање из положаjа P 0 са висине h без почетне брзине, y(0) = y 0 = h, ẏ(0) = v 0 = 0.Током кретања на њу деjствуjе само сила тежине m g = mg j коjа jе константна. На краjу кретања, у положаjу P 1 у ком jе y(t ) = y 1 = 0, брзина тачке jе ẏ(t ) = v 1 = 2gh y = y 1 y 0 = h A 01 = mg y = mgh Прираштаj кинетичке енергиjе као E k = E k1 E k0 E k = 1 2 mv mv 2 0 = 1 2 m ( 2gh) 2 0 = mgh m g v 1 8 of 27 E k = A 01

13 Рад променљиве силе: F = F (t, x, ẋ) θ = θ(t, x, ẋ) d r = dx i A 12 = = 2 1 x2 da = 2 1 x 1 F cos θdx = F d r = x2 x 1 x2 x 1 F x (t, x, ẋ)dx ( ) F cos θ i + F sin θ j dx i Рад силе се без познавања кретања може израчунати када jе: F x = F = const. A 12 = x 2 x 1 F dx = F (x 2 x 1 ) = F x F x = F (x) A 12 = x 2 x 1 F (x)dx = U(x 2 ) U(x 1 ) F x da = F xdx F x F x A 12 x 1 x dx 2 x x 1 x 2 x 9 of 27

14 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 10 of 27

15 Пример 6.2 Материjална тачка масе m = 1 kg креће се праволиниjски под деjством силе F = F (t) = 10(1 t) i. Тачка jе започела кретање из координатног почетка брзином ẋ(0) = v 0 = 20 m/s. а) Одредити рад силе F од почетка кретања до тренутка t 1 у ком сила мења смер свог деjства. б) Одредити рад силе F од почетка кретања до тренутка t 2 у ком тачка мења смер кретања. в) Показати да ће рад силе бити jеднак прираштаjу кинетичке енергиjе материjалне тачке. 10 of 27

16 Решавањем диференциjалне jедначине кретања mẍ = F (t) = 10(1 t) може се показати да ће брзина тачке и параметарска jедначина кретања бити: ẋ(t) = t 5t 2. x(t) = 20t + 5t t3 ; (а) (б) Одавде се лако показуjе да сила мења смер деjства у тренутку t 1 = 1s, док тачка мења смер кретања у тренутку t 2 = 1 + 5s. Елементарно померање материjалне тачке jе: dx(t) = ẋ(t) dt = ( t 5t 2 ) dt. 11 of 27

17 На основу тога ће рад силе F (t) од почетка кретања до тренутка промене смера деjства t 1 бити: t1 1 A 01 = F (t) dx(t) = 10(1 t)( t 5t 2 ) dt 0 0 = 10 (20t 5t 2 5t ) t 1 t4 = 112,5 J 0 (в) На исти начин се одређуjе и рад силе од почетка кретања до тренутка промене смера кретања тачке t 2 : A 02 = t2 0 F (t) dx(t) = 200 J. (г) Брзина тачке у тренутку промене смера деjства силе се одређуjе помоћу jедначине (a): 12 of 27 v 1 = ẋ(t 1 ) = 25m/s,

18 а у тренутку промене смера кретања jе v 2 = ẋ(t 2 ) = 0. Одавде следи да jе у првом случаjу прираштаj кинетичке енергиjе: E k1 = E k1 E k0 = 1 2 mv mv 2 0 = 112,5 J, E k2 = E k2 E k0 = 1 2 mv mv 2 0 = 200 J. (д) (ђ) Поређењем jедначина (в) и (г) са jедначинама (д) и (ђ) добиjаjу се жељени резултати: E k1 = A 01 и E k2 = A of 27

19 Рад променљиве силе F x Рад силе у еластичноj опрузи: F x = cx x0 A 20 = F x dx = cxdx x 2 = 1 2 c(x 2 0 x 2 2 ) > 0 F x x < 0 x > 0 x 0 x 1 x = 0 F x = 0 x 2 cx 2 A 20 x 2 x 0 F x = cx 14 of 27

20 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 15 of 27

21 Рад силе на криволиниjском кретању: Декартов координатни систем: A 12 = = da = F d r = (F x dx + F y dy) = (F x i + F y j)(dx i + dy j) F (t, r, v) d r Природни координатни систем: A 12 = = da = F d r = (F t e t + F n e n ) ds e t F t ds = F (t, r, v) d r Рад силе на криволиниjском кретању у општем случаjу зависи од облика путање тачке. 15 of 27

22 Рад резултанте: A 12 = = da = F r d r = ( F 1 + F 2 ) d r F F 1 d r + F 2 d r = A A F of 27

23 Пример 6.3 Одредити рад силе теже на померању материjалне тачке масе m из положаjа P 1 (x 1, y 1 ) у положаj P 2 (x 2, y 2 ). Да ли рад силе теже зависи од облика траjекториjе? y 2 y 1 y P 1 m g P 2 h Сила теже jе у Декартовом координатном систему приказана на следећи начин m g = mg j. У исто време елементарно померање материjалне тачке jе d r = dx i + dy j. Одатле следи да jе елементарни рад силе теже: da = m g d r = mg dy. (а) 17 of 27

24 Укупан рад силе теже током померања тачке из положаjа P 1 у положаj P 2 биће: A 12 = (P2 ) (P 1 ) mg dy = mg y2 y 1 dy = mg(y 2 y 1 ) = mgh. (б) Видимо да рад зависи само од вертикалног растоjања између краjњег и почетног пложаjа, а не зависи од облика путање дуж коjе се тачка кретала. Приметимо да ће рад силе теже бити негативан ако jе y 2 > y 1 (тачка се креће на горе), односно позитиван ако jе y 2 < y 1 (тачка се креће на доле). 18 of 27

25 Пример 6.4 (биће урађен на вежбама) Материjална тачка се креће од координатног почетка P 0 (0, 0) до тачке P 1 (R, R) на два начина: први пут дуж праволиниjске траjекториjе, а други пут дуж траjекториjе облика четвртине круга са центром у тачки C(0, R). Током кретања на тачку деjствуjе пратећа сила чиjи jе интензитет константан, F = const., и коjа увек има правац тангенте на траjекториjу F = F e t. Одредити рад ове силе током кретања тачке дуж сваке од ових траjекториjа. y R P 0 F F ξ P 1 R x 19 of 27

26 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 20 of 27

27 Снага Дефинициjа: P = da dt = F d r dt = F v Jединица мере: 1 J/s = 1 W Снага система сила: ( n ) P r = F n ( r v = F i v = Fi v) = i=1 i=1 n i=1 P i 20 of 27

28 Садржаj - Шта ћемо научити 1. Преглед литературе 2. Кинетичка енергиjа 3. Рад силе Праволиниjско кретање - константна сила Праволиниjско кретање - променљива сила Криволиниjско кретање 4. Снага 5. Закон о промени кинетичке енергиjе 21 of 27

29 Закон о промени кинетичке енергиjе (1) Други Њутнов закон : m a = F, и скаларно га помножимо брзином материjалне тачке v, користећи при томе правило комутативности за скаларни производ вектора: m v a = F v. Израз са леве стране знака jеднакости представља извод кинетичке енергиjе по времену док jе са десне стране знака jеднакости снага силе: de k = P. (1) dt Ово jе први облик закона о промени механичке енергиjе. 21 of 27

30 Закон о промени кинетичке енергиjе (2) Промена кинетичке енергиjе током времена jеднака jе снази силе под чиjим се деjством тачка креће: de k dt = P Други облик закона се добиjа трансформациjом израза (1). Пошто се први извод може третирати као количник две бесконачно мале величине, ова jедначина се може записати као: de k = P dt. Из дефинициjе снаге следи P dt = da, одакле добиjамо други облик закона о промени механичке енергиjе: 22 of 27 de k = da. (2)

31 Закон о промени кинетичке енергиjе (3) Елементарни прирараштаj кинетичке енергиjе материjалне тачке jеднак jе елементарном раду силе коjа деjствуjе на њу: de k = da. Ово се често назива и теорема о промени кинетичке енергиjе у диференциjалном облику. Трећи облик енергиjске jедначине се добиjа интеграциjом израза (2) дуж траjекториjе од почетног положаjа тачке P 1 до краjњег положаjа P 2 : (P2 ) (P 1 ) de k = (P2 ) (P 1 ) da. 23 of 27

32 Закон о промени кинетичке енергиjе (4) При томе треба имати на уму да jе кинетичка енергиjа величина стања, па се њеном интеграциjом добиjа коначни прираштаj: (P2 ) (P 1 ) de k = E k (P 2) (P 1 ) = E k2 E k1 = E k. Са друге стране рад силе jе карактеристика процеса кретања, тако да са десне стране знака jеднакости имамо укупни рад силе. Прираштаj кинетичке енергиjе материjалне тачке на коначном померању jеднак укупном раду силе коjа деjствуjе на њу: E k = A of 27

33 Пример 6.5 За математичко клатно, анализирано у Примеру 5.4, применом закона о промени енергиjе одредити брзину тачке у функциjи положаjа, угла ϕ, као и брзину промене кинетичке енергиjе. ϕ s l S e n e t ϕ m g Решење: Полазећи од израза за брзину, v = ṡ e t = l ϕ e t, можемо израчунати елементарни рад силе тежине m g и силе затезања конца S. Пошто jе: m g = mg sin ϕ e t mg cos ϕ e n и S = S e n, а елементарно померање гласи: добиjамо следеће резултате: d r = v dt = l dϕ e t, 25 of 27 da m g = m g d r = mgl sin ϕ dϕ; da S = S d r = 0. (а)

34 Реакциjе идеалних веза су по природи такве да су ортогоналне на вектор брзине, односно елементарног померања тачке. Стога jе рад реакциjа идеалних веза увек jеднак нули. Ако се изврши интеграциjа израза (а) за елементарни рад од почетног положаjа ϕ 0 до произвољног положаjа ϕ, онда ће се добити укупан рад сила коjе деjствуjу на материjалну тачку: A = ϕ ϕ 0 ( mgl sin θ) dθ = mgl(cos ϕ cos ϕ 0 ). (б) Тада се применом трећег облика закона о промени енергиjе (??) може добити прираштаj кинетичке енергиjе материjалне тачке: E k = E k E k0 = 1 2 mv mv 2 0 = mgl(cos ϕ cos ϕ 0 ) = A. 26 of 27

35 Одатле се добиjа брзина у функциjи положаjа: v 2 = v gl(cos ϕ cos ϕ 0 ), (в) За одређивање брзине промене кинетичке енергиjе неопходно jе применити први облик закона о промени енергиjе (1) и одредити снагу свих сила коjе деjствуjу на тачку: Тада се лако добиjа: P = m g v + S v = mgl ϕ sin ϕ. de k dt = P = mgl ϕ sin ϕ. 27 of 27

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

( )

(  ) Заштита животне средине Основе механике (кратак преглед предмета) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj 1. Информациjе о предмету

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija

Microsoft PowerPoint - fizika 4-rad,snaga,energija ФИЗИКА 2008 Понедељак, 3. Новембар, 2008 1. Рад 2. Кинетичка 3. Потенцијална 1. 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије 5. Снага 1. Енергетика 2. Рад, и снага људи. Ефикасност

Више

Microsoft PowerPoint - fizika2-kinematika2012

Microsoft PowerPoint - fizika2-kinematika2012 ФИЗИКА 1. Понедељак, 8. октобар, 1. Кинематика тачке у једној димензији Кинематикакретањаудведимензије 1 Кинематика кретање свејеустањукретања кретање промена положаја тела (уодносу на друга тела) три

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014 ФИЗИКА Понедељак, 3. Новембар, 2014 1. Рад 2. Кинетичка енергија 3. Потенцијална енергија 1. Конзервативне силе и потенцијална енергија 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft PowerPoint - predavanje_sile_primena_2013

Microsoft PowerPoint - predavanje_sile_primena_2013 Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да

Више

Microsoft Word - IZVOD FUNKCIJE.doc

Microsoft Word - IZVOD FUNKCIJE.doc IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar,

S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, 2006. 1 Diferencijalni račun ima veliku primenu u ekonomiji, elektrotehnici, astrofizici, astronomiji,

Више

Теориjска механика приредио Jован Марков контакт: 17. април Физика 2, пролећни семинар, Истраживачка станица Петница

Теориjска механика приредио Jован Марков контакт: 17. април Физика 2, пролећни семинар, Истраживачка станица Петница Теориjска механика приредио Jован Марков контакт: jocin.meil@gmail.com 17. април 2019. Физика 2, пролећни семинар, Истраживачка станица Петница 1.1 Генералисане координате Jедан од основних поjмова у класичноj

Више

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

RG_V_05_Transformacije 3D

RG_V_05_Transformacije 3D Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli

Више

3. КРИВОЛИНИЈСКИ ИНТЕГРАЛ

3. КРИВОЛИНИЈСКИ ИНТЕГРАЛ УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ МАШИНСКИ ФАКУЛТЕТ МАТЕМАТИКА 3- ПРЕДАВАЊА Aкадемска 207/208 6. ИНТЕГРАЦИЈА ФУНКЦИЈА КОМПЛЕКСНЕ ПРОМЈЕНЉИВЕ 6.. Интеграл функције комплексне промјенљиве 6.2. Кошијева интегрална

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

3.11. Судари

3.11. Судари 3.1. Судари Под сударом два тела подразумева се нагла промена стања кретања ти У првој фази, тела се релативно приближавају и сударају уз еластичну или нееластичну деформацију, док им брзине опадају до

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode] Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА

Више

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

PowerPoint Presentation

PowerPoint Presentation МОБИЛНЕ МАШИНЕ II предавање 4.2 \ ослоно-кретни механизми на точковима, кинематика и динамика точка Кинематика точка обимна брзини точка: = t транслаторна брзина точка: = t Услов котрљања точка без проклизавања:

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

3_Elektromagnetizam_09.03

3_Elektromagnetizam_09.03 Elektromagnetizam Tehnička fizika 2 14/03/2019 Tehnološki fakultet Elektromagnetizam Elektromagnetizam je grana klasične fizike koja istražuje uzroke i uzajamnu povezanost električnih i magnetnih pojava,

Више

Matematicke metode fizike II - akademska 2012/2013.g.

Matematicke metode fizike II - akademska 2012/2013.g. Besselove funkcije y(x) = m=0 a m x m+σ, x 2 y + xy + (x 2 ν 2 )y = 0 σ 2 = ν 2 (1 ± 2ν)a 1 = 0; n(n ± 2ν)a n + a n 2 = 0 za n 2. J ν (x) = n=0 Besselove funkcije prve vrste reda ν. ( 1) n ( x ) ν+2n n!γ(ν

Више

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних

Више

Matematika 2

Matematika 2 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Dva pristupa u analiziranu kretana materiala: 1. Statistički pristup material se tretira kao skup molekula makroskopski fenomeni se obašnavau kao posledica molekularne aktivnosti računane primenom zakona

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14 8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode] 6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

PowerPoint Presentation

PowerPoint Presentation Nedjelja 6 - Lekcija Projiciranje Postupci projiciranja Projiciranje je postupak prikazivanja oblika nekog, u opštem slučaju trodimenzionalnog, predmeta dvodimenzionalnim crtežom. Postupci projiciranja

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

PARCIJALNO MOLARNE VELIČINE

PARCIJALNO MOLARNE VELIČINE PARCIJALNE MOLARNE VELIČINE ZATVOREN TERMODINAMIČKI SISTEM-konstantan sastav sistema Posmatra se neka termodinamička ekstenzivna veličina X X (V, U, H, G, A, S) X je u funkciji bilo kog para intenzivnih

Више

Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji

Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji doc dr Nenad Vuković, Institut za hemiju, Prirodno-matematički fakultet u Kragujevcu JONIZACIJA ELEKTRONSKIM UDAROM Joni u

Више

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзина аутомобила пре предузетог кочења Vo = 68 km/, успорење

Више

Proracun strukture letelica - Vežbe 6

Proracun strukture letelica - Vežbe 6 University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović

Више

7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б)

7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б) 7. а) ( 5 + 5 ) ; б) ( 5 8 5 6 ) ( 2 5 ) ; в) ( 9 + ) 6 ; г) 5 ( 2 + 2 29 ). 8. а) ( г) 2 2 + ) ( + 2 ) ; б) 2 ( + 2 ) + 2 ; в) ( 0 + 5 ) ( 2 ( 7 6 )) ; 7 2 + ( + ( 8 6 ( 2 ) 2 )) ; д) ( 2 5 ( 2 + 7 0

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0

M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0 M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0.8 kn m, L=4m. 1. Z i = Z A = 0. Y i = Y A L q + F

Више

Microsoft Word - Drugi dio teorije iz matematike 2

Microsoft Word - Drugi dio teorije iz matematike 2 rugi dio eorije i eie Одређени интеграли појам интегралне суме Дефиниција Криволинијски трапез представља фигуру ограничену осом O линијом с којом праве које су паралелне са осом O могу да се секу највише

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

Otpornost materijala

Otpornost materijala Prethodno predavanje Statika je deo mehanike koji se bavi: OdreĎivanjem uslova ravnoteţe krutih tela koja su izloţena mehaničkom dejstvu Slaganjem sila i svoďenjem sistema na prostiji Korišćeni i definisani

Више

Microsoft Word - IZVODI ZADACI _4. deo_

Microsoft Word - IZVODI  ZADACI _4. deo_ IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Више