Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut

Величина: px
Почињати приказ од странице:

Download "Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut"

Транскрипт

1 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na svom papiru. 1. zadatak (i) Denirajte primitivnu funkciju funkcije f. Odgovor zapi²ite pomo u derivacije i pomo u integrala. (ii) Odredite tri primitivne funkcije funkcije f(x) = 2x(x 2). 1 (iii) Koriste i derivacije objasnite za²to vrijedi dx = ln x + c, za x 0. x

2 1. dio, grupa A 1. kolokvij 12. travnja zadatak b (i) Objasnite slikom i rije ima zna enje odreženog integrala a f(x)dx za pozitivnu funkciju f. (ii) Geometrijski interpretirajte odreženi integral 5 0 (x2 6x + 8)dx. (iii) Bez ra unanja integrala odredite i obrazloºite odgovor x 109 dx

3 1. dio, grupa A 1. kolokvij 12. travnja zadatak (i) Koriste i supstituciju rije²ite integral 3 2 4x(3 x 2 ) 6 dx. (ii) Navedite primjer nepravog integrala s beskona nim podru jem integracije i gra ki predo ite integral koji ste uzeli za primjer.

4 1. dio, grupa A 1. kolokvij 12. travnja zadatak (i) Napi²ite formulu za povr²inu podru ja odreženog nejednakostima a x b i g(x) y f(x). Objasnite tu formulu u slu aju kada je f pozitivna, a g negativna funkcija. (ii) Napi²ite i izvedite formulu za volumen tijela nastalog rotacijom oko osi x podru ja omeženog pozitivnom funkcijom f, osi x i pravcima x = a i x = b.

5 1. dio, grupa A 1. kolokvij 12. travnja zadatak (i) Napi²ite jednadºbu (zakon) hlaženja/zagrijavanja tijela u sredini stalne temperature S. (Ne trebate pisati izvod.) Gra ki predo ite promjenu temperature u slu aju kada je po etna temperatura tijela y 0 ve a od temperature sredine. (ii) Napi²ite formulu za teºi²te segmenta [a, b] s funkcijom gusto e mase f(x). Izra unajte teºi²te segmenta [0, 2] ija je funkcija gusto e mase f(x) = 3x.

6 1. dio, grupa B 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na svom papiru. 1. zadatak (i) Denirajte primitivnu funkciju funkcije f. Odgovor zapi²ite pomo u derivacije i pomo u integrala. (ii) Odredite tri primitivne funkcije funkcije f(x) = x(5 x). 1 (iii) Koriste i derivacije objasnite za²to vrijedi dx = ln x + c, za x 0. x

7 1. dio, grupa B 1. kolokvij 12. travnja zadatak b (i) Objasnite slikom i rije ima zna enje odreženog integrala a f(x)dx za negativnu funkciju f. (ii) Geometrijski interpretirajte odreženi integral 6 0 (x2 4x + 3)dx. (iii) Bez ra unanja integrala odredite i obrazloºite odgovor. 5 5 x 201 dx

8 1. dio, grupa B 1. kolokvij 12. travnja zadatak (i) Koriste i supstituciju rije²ite integral 2 3 3x(4 x 2 ) 5 dx. (ii) Navedite primjer nepravog integrala s beskona nim podru jem integracije i gra ki predo ite integral koji ste uzeli za primjer.

9 1. dio, grupa B 1. kolokvij 12. travnja zadatak (i) Napi²ite formulu za povr²inu podru ja odreženog nejednakostima a x b i g(x) y f(x). Objasnite tu formulu u slu aju kada su f i g pozitivne funkcije. (ii) Napi²ite i izvedite formulu za volumen tijela nastalog rotacijom oko osi x podru ja omeženog pozitivnom funkcijom f, osi x i pravcima x = a i x = b.

10 1. dio, grupa B 1. kolokvij 12. travnja zadatak (i) Napi²ite jednadºbu (zakon) hlaženja/zagrijavanja tijela u sredini stalne temperature S. (Ne trebate pisati izvod.) Gra ki predo ite promjenu temperature u slu aju kada je po etna temperatura tijela y 0 manja od temperature sredine. (ii) Napi²ite formulu za teºi²te segmenta [a, b] s funkcijom gusto e mase f(x). Izra unajte teºi²te segmenta [0, 3] ija je funkcija gusto e mase f(x) = 5x.

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan Matematika 2 za kemi are tre i kolokvij, 16 lipnja 2018 Napomene Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice

Више

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir 3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.

Више

Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa

Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa Matematika 2 za kemi are drugi kolokvij, 26. svibnja 2018. Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske

Више

Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja

Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva

Више

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1 Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

Matematika 2 za kemi are prvi kolokvij, 27. travnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan

Matematika 2 za kemi are prvi kolokvij, 27. travnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan Matematika 2 za kemi are prvi kolokvij, 27. travnja 2018. Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

Sluzbeni glasnik Grada Poreca br

Sluzbeni glasnik  Grada Poreca br 18. Na temelju lanka 34. stavak 1. to ka 1. Zakona o komunalnom gospodarstvu ("Narodne novine" broj 36/95, 70/97, 128/99, 57/00, 129/00, 59/01, 26/03, 82/04, 110/04 i 178/04) te lanka 40. Statuta Grada

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

MEHANIKA VOŽNJE - Odsek za puteve, železnice i aerodrome

MEHANIKA VOŽNJE - Odsek za puteve, železnice i aerodrome MEHANIKA VOšNJE Odsek za puteve, ºeleznice i aerodrome Prof dr Stanko Br i Doc dr Stanko ori Doc dr Anina Glumac Graževinski fakultet Univerzitet u Beogradu k. god. 2018/19 Sadrºaj 1 Kotrljanje to ka bez

Више

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij, MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,

Више

1. KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 24. listopada (i) Napi²ite formulu za determinantu i inverz op e matrice drugog reda, te nave

1. KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 24. listopada (i) Napi²ite formulu za determinantu i inverz op e matrice drugog reda, te nave 1 KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 4 lstopada 011 1 () Nap²te formulu a determnantu nver op e matrce drugog reda, te navedte uvjet ( ) 3 7 1 11 1 3 () Provjerte je l matrca B = 1 3 1 5 nverna

Више

Matematika 2

Matematika 2 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i.

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i. Zadatak. (a) (5 bodova) Za Markovljev lanac (X n ) njegovo stanje S neka T (n) u stanje. Dokaºte da za svak n N vrjed P (T (n) < ) = f n, ozna ava n-to vrjeme povratka pr emu je f := P (T () < ). (Napomena:

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

BILANCA iznosi u tisu ama kn AKTIVA A) GOTOVINA I DEPOZITI KOD HNB-a I. Gotovina II. Depoziti kod HNB-a B) DEPOZITI KOD BANKARSKIH INSTITUC

BILANCA iznosi u tisu ama kn AKTIVA A) GOTOVINA I DEPOZITI KOD HNB-a I. Gotovina II. Depoziti kod HNB-a B) DEPOZITI KOD BANKARSKIH INSTITUC BILANCA 30.09.2010 iznosi u tisu ama kn AKTIVA A) GOTOVINA I DEPOZITI KOD HNB-a I. Gotovina II. Depoziti kod HNB-a B) DEPOZITI KOD BANKARSKIH INSTITUCIJA F) VRIJEDNOSNI PAPIRI I DRUGI FINANCIJSKI INSTRUMENTI

Више

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ MOSTAR SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GOD

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ MOSTAR SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GOD SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ MOSTAR SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA 2017. / 2018. GODINA Profesor: Izv. prof. dr. sc. Sandra So e Kraljevi

Више

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ VITEZ SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODI

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ VITEZ SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODI SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET STRU NI STUDIJ VITEZ SMJEROVI MARKETING I MENADŽMENT PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA 2015. / 2016. GODINA Profesor: Izv. prof. dr. sc. Sandra So e Kraljevi

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Diplomski studij DESKTOP APLIKACIJA

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Diplomski studij DESKTOP APLIKACIJA SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Diplomski studij DESKTOP APLIKACIJA ZA RJEŠAVANJE ODREĐENIH INTEGRALA I IZRAČUNA DERIVACIJE

Више

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODINA Profesorica: Izv. prof. dr. sc. Sa

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODINA Profesorica: Izv. prof. dr. sc. Sa SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA 2017. / 2018. GODINA Profesorica: Izv. prof. dr. sc. Sandra So e Kraljevi Predavanja: Konzultacije: Demonstratorica:

Више

Microsoft Word - 12ms101

Microsoft Word - 12ms101 Zadatak 0 (Sanela, Anamarija, maturantice gimnazije) Riješi jednadžbu: = Rješenje 0 α = α α / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k t = + k Vraćamo se supstituciji: t = + k = +

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Problem površine - odredeni integral Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Problem površine - odredeni integrl Mtemtik 2 Ern Begović Kovč, 2019. Litertur: I. Gusić, Lekcije iz Mtemtike 2 http://mtemtik.fkit.hr Uvod Formule z površinu geometrijskih likov omedenih dužinm (rvnim

Више

Z A K O N O SUDSKIM VEŠTACIMA I. UVODNE ODREDBE lan 1. Ovim zakonom ure uju se uslovi za obavljanje vešta enja, postupak imenovanja i razrešenja sudsk

Z A K O N O SUDSKIM VEŠTACIMA I. UVODNE ODREDBE lan 1. Ovim zakonom ure uju se uslovi za obavljanje vešta enja, postupak imenovanja i razrešenja sudsk Z A K O N O SUDSKIM VEŠTACIMA I. UVODNE ODREDBE lan 1. Ovim zakonom ure uju se uslovi za obavljanje vešta enja, postupak imenovanja i razrešenja sudskih veštaka (u daljem tekstu: veštak), postupak upisa

Више

Microsoft Word _Vipnet_komentar_BSA_final.doc

Microsoft Word _Vipnet_komentar_BSA_final.doc Zagreb, 21.11.2011. Hrvatska agencija za poštu i elektroni ke komunikacije Juriši eva 13 HR-10 000 ZAGREB PREDMET: Javna rasprava - Prijedlog odluke kojom se HT-u odre uju izmjene i dopune Standardne ponude

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

tocka Prijedlog Odluke o pri... kupoprodaja Cib commerce.pdf

tocka  Prijedlog Odluke o pri... kupoprodaja Cib commerce.pdf Klasa: 944-05/11-01/57 Urbroj:2168/01-01-02-01-0019-11-13 Pula, 08. rujna 2011. GRADSKO VIJEĆE GRADA PULE Predmet: Prijedlog Odluke o prihvatu ponude i sklapanju ugovora o kupoprodaji - dostavlja se U

Више

Sveu ili²te J. J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Ira tivi Zanimljivi brojevi Zavr²ni rad Osije

Sveu ili²te J. J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Ira tivi Zanimljivi brojevi Zavr²ni rad Osije Sveu ili²te J. J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Ira tivi Zanimljivi brojevi Zavr²ni rad Osijek, 2019. Sveu ili²te J. J. Strossmayera u Osijeku Odjel

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODINA Profesorica: Izv. prof. dr. sc. Sa

SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA / GODINA Profesorica: Izv. prof. dr. sc. Sa SVEU ILIŠTE U MOSTARU EKONOMSKI FAKULTET SMJER MARKETING PREDMET: ISTRAŽIVANJE TRŽIŠTA ŠKOLSKA 2014. / 2015. GODINA Profesorica: Izv. prof. dr. sc. Sandra So e Kraljevi Predavanja: Petak od 12 do 14 Konzultacije:

Више

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се

Више

Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M

Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M. Krsti Mentor: Prof. dr Aleksandar S. Nasti br. indeksa

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 {

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 { Rokovi iz Matematike za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi Rexiti jednaqinu z 4 + i i+ = MATEMATIKA { septembar 5godine x Odrediti prodor prave p : = y = z kroz ravan

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (x) M) ; ome dena odozdol ako postoji m 2 R takav da

Више

Microsoft Word - SIORT1_2019_K1_resenje.docx

Microsoft Word - SIORT1_2019_K1_resenje.docx I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

PowerPoint Presentation

PowerPoint Presentation ZA RAZDOBLJE OD 01.01. DO 31.12 2019. GODINE Zagreb, veljača 2019. E v id e n c ijs k i b ro j P re d m e t B ro jč a n a o z n a k a p re d m e ta iz J e d in s tv e n o g rje č n ik a ja v n e (C P V

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada: prof. dr. sc. Sanja Varošanec Zagreb, srpanj 218.

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

broj 052_Layout 1

broj 052_Layout 1 18.05.2011. SLU@BENI GLASNIK REPUBLIKE SRPSKE - Broj 52 25 858 На осно ву чла на 18. став 1. За ко на о обра зо ва њу од ра - слих ( Службени гласник Републике Српске, број 59/09) и члана 82. став 2. Закона

Више

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1 kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п

ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци п ПО Е ЗИ ЈА И ПРО ЗА ЗО РА Н КО С Т И Ћ А Р Х И В ЧО ВЈ ЕЧ НО СТ И ДУГ На д е ж д и Пре да мном ни шта не скри ва ти. Јер ја сам ду жан на шој дје ци пје сме ко је би, Бог ће да ти (кад по ста не мо прах

Више

Microsoft PowerPoint - Dopunsko zdravstveno osiguranje - Solaris pptx

Microsoft PowerPoint - Dopunsko zdravstveno osiguranje - Solaris pptx DZO PRIJENOS RIZIKA S OSIGURANIKA NA OSIGURATELJA Morana Krušarovski, dipl.iur. OSIGURANJE Prijenos rizika s osiguranika na osiguratelja Smanjenje financijskih gubitaka OBVEZNA I DOBROVOLJNA OSIGURANJA

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

R E P U B L I K A H R V A T S K A PRIMORSKO-GORANSKA ŽUPANIJA GRAD RIJEKA Poglavarstvo O b r a z l o ž e n j e Prijedloga odluke o davanju u zakup jav

R E P U B L I K A H R V A T S K A PRIMORSKO-GORANSKA ŽUPANIJA GRAD RIJEKA Poglavarstvo O b r a z l o ž e n j e Prijedloga odluke o davanju u zakup jav R E P U B L I K A H R V A T S K A PRIMORSKO-GORANSKA ŽUPANIJA GRAD RIJEKA Poglavarstvo O b r a z l o ž e n j e Prijedloga odluke o davanju u zakup javnih površina i drugih nekretnina u vlasništvu Grada

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

59. Natjecanje mladih tehničara Republike Hrvatske Školsko/Klupsko natjecanje godine Tehnička kultura 5. razred Maketarstvo i modelarstvo Radni

59. Natjecanje mladih tehničara Republike Hrvatske Školsko/Klupsko natjecanje godine Tehnička kultura 5. razred Maketarstvo i modelarstvo Radni 59. Natjecanje mladih tehničara Republike Hrvatske Školsko/Klupsko natjecanje 2017. godine Tehnička kultura 5. razred Maketarstvo i modelarstvo Radni zadatak: Stol za učenje POTREBAN MATERIJAL : Papir

Више

IErica_ActsUp_paged.qxd

IErica_ActsUp_paged.qxd Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne

Више

TFI-POD I polugodište Solaris d.d.

TFI-POD I polugodište Solaris d.d. Prilog 1. Razdoblje izvještavanja: 01.01. do 30.06.2012. Mati ni broj (MB): 03171787 Mati ni broj subjekta (MBS): 060001583 Osobni identifikacijski broj 26217708909 (OIB): Tvrtka izdavatelja: SOLARIS D.D.

Више

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли

Више

ПО Е ЗИ ЈА И ПРО ЗА Ж И ВО РА Д Н Е Д Е Љ КО ВИ Ћ Х Е ДО Н И ЗА М ШТА САМ МО ГАО Мо жда ни ка да не ћу са зна ти шта сам мо гао Да ура дим у жи во ту,

ПО Е ЗИ ЈА И ПРО ЗА Ж И ВО РА Д Н Е Д Е Љ КО ВИ Ћ Х Е ДО Н И ЗА М ШТА САМ МО ГАО Мо жда ни ка да не ћу са зна ти шта сам мо гао Да ура дим у жи во ту, ПО Е ЗИ ЈА И ПРО ЗА Ж И ВО РА Д Н Е Д Е Љ КО ВИ Ћ Х Е ДО Н И ЗА М ШТА САМ МО ГАО Мо жда ни ка да не ћу са зна ти шта сам мо гао Да ура дим у жи во ту, шта с њим. Ла год но је Н а г а ђа т и, о с ло њ ен

Више

TUMA OZNAKA lokacija zahvata-

TUMA OZNAKA lokacija zahvata- 32 31 30 29 27 2 71 70 79 TUMA OZNAKA lokacija zahvata- luka Pola išta Županijska lu ka uprava Kor ula 7 Trg Petra Šegedina 7, 2020 Kor ula Trnjanska 37, Zagreb Tel.: +38 (0)1 11 87 Fax: +38 (0)1 1 87

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

A i F-SUO BEGLUCI.pdf

A i F-SUO BEGLUCI.pdf S T U D I J A UTJECAJA NA OKOLIŠ POVRŠINSKOG KOPA BEGLUCI Zagreb, 2007. NOSITELJ ZAHVATA: GRA AC KAMEN d.o.o. S T U D I J A UTJECAJA NA OKOLIŠ POVRŠINSKOG KOPA BEGLUCI Voditelj izrade Studije: Dekan: Doc.dr.sc.

Више

Microsoft Word - van sj Zakon o privrednoj komori -B.doc

Microsoft Word - van sj  Zakon o privrednoj komori -B.doc ZAKON O PRIVREDNOJ KOMORI BR KO DISTRIKTA BiH Na osnovu lana 23 Statuta Br ko Distrikta Bosne i Hercegovine ( Slu beni glasnik Br ko Distrikta BiH broj 1/00) Skup tina Br ko Distrikta na vanrednoj sjednici

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

Sadrºaj 1 Uvod 2 2 Prikupljanje i organizacija podataka Populacija i uzorak Izvori podataka

Sadrºaj 1 Uvod 2 2 Prikupljanje i organizacija podataka Populacija i uzorak Izvori podataka Sadrºaj 1 Uvod 2 2 Prikupljanje i organizacija podataka 5 2.1 Populacija i uzorak............................. 5 2.2 Izvori podataka............................... 6 2.3 Tipovi varijabli...............................

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

Naziv studija

Naziv studija Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč

Више

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna 1. zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne snage osnovnog harmonika. Induktivnost prigušnice jednaka je L = 10 mh, frekvencija mrežnog

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

glasnik044.pdf

glasnik044.pdf ANEKS (lista radiofrekvencija i uslova njihovog korištenja bez odobrenja i dozvola izdatih od strane RAK-a) 9-90 SRD: induktivne EN 300 330 72 dbµa/m na 10 m 9-315 9-10,6 GHz UWB (ultra-širokopojasne)

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski

Више

To ka 13. Dodatne mjere poticanja gospodarstva u vrijeme recesije u godini: a) Informacija o smanjenju zakupnina za poslovne prostore u vlasništ

To ka 13. Dodatne mjere poticanja gospodarstva u vrijeme recesije u godini: a) Informacija o smanjenju zakupnina za poslovne prostore u vlasništ To ka 13. Dodatne mjere poticanja gospodarstva u vrijeme recesije u 2010. godini: a) Informacija o smanjenju zakupnina za poslovne prostore u vlasništvu Grada Rijeke na upravljanju Odjela gradske uprave

Више

Microsoft Word - prijemni 2011.ekonomika.doc

Microsoft Word - prijemni 2011.ekonomika.doc Univerzitet u Beogradu TEHNI KI FAKULTET U BORU M A T E R I J A L ZA PRIPREMU PRIJEMNOG ISPITA NA TEHNI KOM FAKULTETU U BORU IZ PREDMETA OSNOVI EKONOMIKE POSLOVANJA 1.1. Privredno društvo predstavlja:

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/0 i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac (u

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Microsoft Word - STATUT za 44 sednicu skupstine cir doc

Microsoft Word - STATUT za 44  sednicu skupstine cir doc Na osnovu lana 592. stav 2. i 3. Zakona o privrednim društvima ("Sl. glasnik RS", br. 36/2011 u daljem tekstu: Zakon), na predlog Upravnog odbora Energoprojekt Visokogradnja a.d. sa 17. sednice održane

Више