Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja

Величина: px
Почињати приказ од странице:

Download "Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja"

Транскрипт

1 Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva do sada obražena svojstva realnih funkcija i nastavlja se na seminar 12. Obraživati emo ga do kraja semestra. Od novih stvari nuºno je poznavati sljede e: Posljedica predznaka derivacije na rast ili pad funkcije. Derivacija funkcije f u nekoj to ki odgovara nagibu tangente grafa u toj to ki: pozitivna derivacija (f(x) > 0, x I) odgovara rastu funkcije na intervalu I, a negativna derivacija (f(x) < 0) njenom padu. Kriti ne to ke od f su takve to ke x D(f) da je f neprekidna u x i jo² vrijedi jedno od sljede eg: f nije derivabilna u x, dakle x / D(f ), vrijedi f (x) = 0 (tada se x naziva stacionarna to ka). Lokalni ekstremi su lokalni minimumi i maksimumi: Lokalni maksimum M = f(x 0 ) je to ka takva da je f(x) < f(x 0 ) za svaki x x 0 iz neke ε-okoline oko x 0. Lokalni minimum m = f(x 0 ) je to ka takva da je f(x) > f(x 0 ) za svaki x x 0 iz neke ε-okoline oko x 0. Globalni maksimum M G = f(x 0 ) je to ka takva da x D(f) vrijedi M G f(x). Ujedno je to maksimum slike funkcije. Globalni minimum m G = f(x 0 ) je to ka takva da x D(f) vrijedi m G f(x).ujedno je to minimum slike funkcije. Nuºan uvjet za ekstrem. Ako je f neprekidna funkcija i x lokalni ekstrem funkcije tada je x kriti na to ka ili je x na rubu D(f). Prvi dovoljan uvjet za ekstrem. Neka je f derivabilna funkcija i neka f mijenja predznak u to ki x D(f), ali ne na rubu domene tada moºemo zaklju iti da je f(x) lokalni ekstrem. Ako je promjena predznaka od f iz pozitivnog u negativni, tada je rije o lokalnom maksimumu, a ako je promjena predznaka od f iz negativnog u pozitivni tada je rije o lokalnom minimumu. Drugi dovoljan uvjet za ekstrem. Neka je f derivabilna funkcija i x kriti na to ka i f (x) 0 tada f ima lokalni ekstrem u x. Pritom, ako f (x) > 0 tada je f(x) lokalni minimum, a ako je f (x) < 0 tada je f(x) lokalni maksimum. Konveksnost i konkavnost (nazivi su obrnuti u knjizi prof. Ugle²i a). Funkcija je konveksna ako svaka duºina koja spaja dvije to ke s grafa funkcije leºi itava iznad grafa te funkcije, a konkavna ako svaka spojnica dvije to ke s grafa leºi ispod istog grafa. Za dvaput derivabilnu funkciju vrijedi: f (x) 0 za x I = f je konveksna na intervalu I f (x) 0 za x I = f je konkavna na intervalu I Obrati²te ili ineksijska to ka je to ka na grafu funkcije u kojoj funkcija prelazi iz konkavne u konveksnu ili obrnuto. Ako funkcija f ima ineksiju u to ki x i ako postoji f (x), tada je nuºno da je f (x) = 0. Da bi funkcija imala ineksiju u to ki x dovoljno je da druga derivacija mijenja predznak prolaskom kroz x.

2 Priprema Primjer osnovne elementarne funkcije koja ima lokalni ekstrem (minimum), a ujedno i globalni ekstrem (minimum) je kvadratna funkcija. Taj ekstrem se postiºe u nuli. 1. Nacrtati graf kvadratne funkcije i zaokruºiti to ku na grafu koja odgovara tom ekstremu. Provjeriti da je nula kriti na to ka kvadratne funkcije (f (0) = 0). Provjeriti da nula zadovoljava nuºan uvjet za ekstrem, zatim prvi dovoljan uvjet za ekstrem i drugi dovoljan uvjet za ekstrem. Primjer osnovne elementarne funkcije koja nema lokalni ekstrem u kriti noj to ki x = 0 je kubna funkcija f(x) = x Nacrtati graf kubne funkcije i zaokruºiti to ku na grafu koja odgovara spomenutoj kriti noj to ki. Provjeriti da je nula kriti na to ka kubne funkcije (f (0) = 0). Provjeriti da nula zadovoljava nuºan uvjet za ekstrem, ali ne zadovoljava prvi, a niti drugi dovoljan uvjet za ekstrem. Primjeri konveksnih funkcija su: exponencijalna funkcija sa bazama 2 i e, te kvadratna funkcija, a primjeri konkavnih funkcija su prirodni logaritam i logaritam s bazom 2, te drugi korijen. 3. Za spomenute funkcije nacrtati graf funkcije za svaku posebno. Na svakom nacrtanom grafu odabrati dvije to ke sa grafa i spojiti ih duºinom. Provjeriti da nacrtane spojnice leºe iznad grafa za svaku spomenutu konveksnu funkciju, a ispod grafa za svaku spomenutu konkavnu funkciju. 4. Odrediti drugu derivaciju za svaku od ²est gore spomenutih funkcija i provjeriti da za spomenute konveksne funkcije vrijedi f (x) 0 na cijeloj domeni funkcije, a za spomenute konkavne f (x) 0 na cijeloj domeni funkcije.

3 Glavni dio seminara Odreživanje toka funkcije f implicitno zadane odreženim algebarskim izrazom podrazumijeva crtanje skice grafa funkcije na temelju odreživanja sljede eg: (1) domena: D(f), (2) asimptote: ispituju se na rubovima domene ili u to kama prekida, (3) globalna svojstva omeženost: zaklju ak izvodimo iz asimptota, parnost i neparnost: usporežujemo f( x) sa f(x) i f(x), periodi nost: na osnovi periodi nosti trigonometrijskih funkcija. (4) sjeci²ta sa koordinatnim osima: horizontalnom ( za koji parametar x vrijedi f(x) = 0) i vertikalnom (koliko iznosi f(0)), (5) prva i druga derivacija: f i f, (6) kriti ne to ke: nalaze se na D(f) tamo gdje f (x) nije denirana ili je f (x) = 0, (7) monotonost: funkcija raste tamo gdje je f (x) > 0, a pada gdje je f (x) < 0, (8) lokalni ekstremi koji mogu biti: kriti ne to ke u kojima se rast mijenja u pad ili obratno: na osnovu ispitivanja monotonosti (prvi dovoljan uvjet za lokalni ekstrem), a moºe se jo² jednom provjeriti i pomo u druge derivacije (drugi dovoljan uvjet za lokalni ekstrem) i to ke na rubu domene, (9) globalni ekstremi: globalni minimum je najmanji od lokalnih minimuma ili ne postoji ako je funkcija neograni ena odozdo, a globalni maksimum najve i od lokalnih maksimuma ili ne postoji ako je funkcija neomežena odozgo, (10) rije²iti f (x) = 0, a na temelju toga odrediti konveksnost (gdje je f 0), konkavnost (f 0) i to ke ineksije (gdje f mijenja predznak ). Vaºno! Ukoliko se nekoliko pokazatelja na osnovi kojih se crta graf ne uklapa zajedno, sigurno je do²lo do pogre²ke u odreživanju tih pokazatelja pa treba provjeriti odreživanje onih svojstava koja su mežusobno kontradiktorna. Ponekad dio navedenih svojstava zbog kompleksnosti izraza ne moºemo odrediti. Tada ne preostaje drugo ve poku²ati napraviti skicu grafa samo na osnovi onog dijela pokazatelja koji su uspje²no izra unati. Primjer 1. Odrediti tok funkcije f(x) = x x 1. Vidi

4 Ponekad neko svojstvo na temelju kojeg odrežujemo tok funkcije ne moºemo odrediti jer je izraz koji treba rije²iti za nas prekompliciran, ali kada iz podataka koje moºemo izra unati nacrtamo skicu grafa, taj graf nam pokaºe svojstvo koje nismo znali izra unati akgebarski. U sljede em primjeru ne znamo odmah izra unati nulto ke funkcije, ali na osnovi grafa na kraju nam posatje jasno da funkcija nema nulto aka. ( ) e Primjer 2. Odrediti tok funkcije f(x) = arctan e x 1 2x 2 ln e 2x. + 1

5 15 + 8x + x2 Primjer 3. Odrediti tok funkcije f(x) = 9 x 2.. Vidi Primjer 4. Odrediti tok funkcije f(x) = x3 2 x2 4 3x Graf ove funkcije nalazi se na prvoj strani seminara 12.

6 Primjer 5. Odrediti tok funkcije f(x) = x2 + 1 x Vidi sli no na Primjer 6. Odrediti tok funkcije f(x) = 2x + x 2 + x.. Vidi sli no na

7 Primjer 7. Odrediti tok funkcije f(x) = 4 + x 4 x. Primjer 8. Odrediti tok funkcije f(x) = 2 1 x ln x. Vidi

8 Primjer 9. Odrediti tok funkcije f(x) = 1 cos 2 (3x). Primjer 10. Odrediti tok funkcije f(x) = e x tan x.. Vidi

9 Primjer 11. Odrediti tok funkcije f(x) = x e 1 x 2 1. Vidi Primjer 12. Odrediti tok funkcije f(x) = ex x. Vidi Ako ostane vremena odreživati emo tok funkcija koje su bile zadane na pismenim ispitima u toku protekle godine...

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir 3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.

Више

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut 1. dio, grupa A 1. kolokvij 12. travnja 2019. Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1 Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (x) M) ; ome dena odozdol ako postoji m 2 R takav da

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8 2 A) (f () M) ; ome dena odozdol ako postoji m 2 R takav da je

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost

Више

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i prim

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i prim Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i primjene Završni rad Osijek, 2018. Sveučilište J. J. Strossmayera

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan Matematika 2 za kemi are tre i kolokvij, 16 lipnja 2018 Napomene Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

Microsoft Word - ASIMPTOTE FUNKCIJA.doc

Microsoft Word - ASIMPTOTE FUNKCIJA.doc ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

СТЕПЕН појам и особине

СТЕПЕН појам и особине СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Microsoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST

Microsoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST PARNOST i NEPARNOST FUNKCIJE PERIODIČNOST FUNKCIJE PARNOST i NEPARNOST FUNKCIJE Ako je f ( ) = f ( ) funkcija je parna i tada je grafik simetričan u odnosu na y osu Ako je f ( ) = f ( ) funkcija je neparna

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више

Matematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vu

Matematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vu Matematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vujičić 1045/2015 Beograd, 2018. Sadržaj 1 Uvod 2 2 Stepena

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi

Више

Gajo Vučinić

Gajo Vučinić VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL Stručni studij Strojarstva Gajo Vučinić Jednostavni programski alati za crtanje grafa funkcije Završni rad Karlovac, 2017. VELEUČILIŠTE U KARLOVCU STROJARSKI ODJEL

Више

MatematikaRS_2.pdf

MatematikaRS_2.pdf GIMNAZIJA Informacijsko komunikacijskih tehnologija Razred: drugi NASTAVNI PROGRAM ZA PREDMET: MATEMATIKA; Sedmični broj časova: 3 Godišnji broj časova : 105 Teme: 1. Trigonometrija trougla (18) 2. Stepeni

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i.

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i. Zadatak. (a) (5 bodova) Za Markovljev lanac (X n ) njegovo stanje S neka T (n) u stanje. Dokaºte da za svak n N vrjed P (T (n) < ) = f n, ozna ava n-to vrjeme povratka pr emu je f := P (T () < ). (Napomena:

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa

Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa Matematika 2 za kemi are drugi kolokvij, 26. svibnja 2018. Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske

Више

Microsoft Word - vodic B - konacna

Microsoft Word - vodic B - konacna VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M

Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M Univerzitet u Ni²u Prirodno - matemati ki fakultet Departman za matematiku KLASTER ANALIZA U STATISTIƒKOM ZAKLjUƒIVANjU Master rad Student: Katarina M. Krsti Mentor: Prof. dr Aleksandar S. Nasti br. indeksa

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. A. Pomnožimo zadanu jednadžbu s. Dobivamo: Dijeljenjem s 5 dobivamo x 3 (4 3 x) = ( x), x 3 6 + x = 4 x, x + x + x = 4 + 3 + 6, 5 x = 3. 3 x =. 5. C. Odredimo najprije koordinate

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

Sveu ili²te J.J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Nata²a Galiot Algebarska struktura grupa Zavr²

Sveu ili²te J.J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Nata²a Galiot Algebarska struktura grupa Zavr² Sveu ili²te J.J. Strossmayera u Osijeku Odjel za matematiku Sveu ili²ni preddiplomski studij matematike Nata²a Galiot Algebarska struktura grupa Zavr²ni rad Osijek, 2017. Sveu ili²te J. J. Strossmayera

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij, MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

MIKROEKONOMIJA Usmeni

MIKROEKONOMIJA Usmeni MIKROEKONOMIJA Usmeni Bok, Drago nam je što si odabrao/la upravo Referadu za pronalazak materijala koji će ti pomoći u učenju! Materijali koje si skinuo/la s naše stranice nisu naše autorsko djelo, već

Више

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Saže

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Saže ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 57 66 Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Sažetak Cilj je ovog rada približiti neke osnovne pojmove

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc

Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE EKSTREMNE VREDNOSTI su maksimum i (ili minimum funkcij. Nadjmo prvi izvod i izjdnačimo ga sa 0, 0. Ršnja t jdnačin,,... ( naravno ako ih im mnjamo u počtnu funkciju

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

Microsoft Word - Lekcija 11.doc

Microsoft Word - Lekcija 11.doc Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. A. Prema definiciji, interval a, b] je skup svih realnih brojeva koji su strogo veći od a, a jednaki ili manji od b. Stoga je interval 3, ] skup svih realnih brojeva koji

Више

OpenStax-CNX module: m Kriptografija * Jasmin Ahmeti This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

OpenStax-CNX module: m Kriptografija * Jasmin Ahmeti This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution OpenStax-CNX module: m37068 1 Kriptografija * Jasmin Ahmeti This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 1. Uvod Kroz celu povijest ove anstva

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o

Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje;

Више

Zajedni ki sveu ili²ni poslijediplomski doktorski studij matematike Sveu ili²ta u Zagrebu, Sveu ili²ta J. J. Strossmayera u Osijeku, Sveu ili²ta u Rij

Zajedni ki sveu ili²ni poslijediplomski doktorski studij matematike Sveu ili²ta u Zagrebu, Sveu ili²ta J. J. Strossmayera u Osijeku, Sveu ili²ta u Rij Zajedni ki sveu ili²ni poslijediplomski doktorski studij matematike Sveu ili²ta u Zagrebu, Sveu ili²ta J. J. Strossmayera u Osijeku, Sveu ili²ta u Rijeci i Sveu ili²ta u Splitu Jurica Peri Nova metoda

Више

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

Microsoft Word - 12ms101

Microsoft Word - 12ms101 Zadatak 0 (Sanela, Anamarija, maturantice gimnazije) Riješi jednadžbu: = Rješenje 0 α = α α / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k t = + k Vraćamo se supstituciji: t = + k = +

Више

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010. MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je

Више

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Reeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren skup, ima u taqki (a, b, c) X lokalni minimum (maksimum)

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више