Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa

Величина: px
Почињати приказ од странице:

Download "Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisa"

Транскрипт

1 Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice ni druge zbirke formula oblika knjiºica), pribor za pisanje. Ne e se bodovati ne itko pisani dijelovi testa. U slu aju utvrženog prepisivanja, ostvareni se bodovi pripisuju s negativnim predznakom. Rje²enja zadataka 1 4 predajte odvojeno od rje²enja zadataka 5 6. Kako bi se mogla denirati funkcija koja svim studentima pridruºuje postignute bodove na kolokviju, poºeljno je da se na predanim papirima nalazi Va²e ime i prezime i Va²a ²ifra! 1.(10) Ispitajte lokalne ekstreme funkcije 2.(15 = 7 + 8) Zadan je skup P R 3, (a) Dokaºite da je P ploha u R 3. f(x, y, z) := x 2 + 3xy + 4y 2 + z ln z z + 1. P... x 2 y 2 = z. (b) Odredite jednadºbu tangencijalne ravnine na plohu P u sjeci²tu plohe P sa x-osi. 3.(10) Izra unajte integral (x + 1) dx dy dz, S gdje je skup S R 3 zadan sa x 2 + y z 3 S... x 0 y 0. 4.(15 = 8 + 7) Zadano je vektorsko polje F : R 3 R 3, Zadana je i krivulja γ : [0, 1] R 3, (a) Izra unajte integral F (x, y, z) := ( x, y, z). γ(t) := (b) Izra unajte rotaciju vektorskog polja F. ( 1, e t2, e t2). γ F dγ. Da biste vidjeli 5. i 6. zadatak, okrenite list!

2 5.(15) Odrežena ovisnost opisana je formulom h(c) = RT c ( 1 + Bc ). ρgm M Iznosi konstanti u gornjoj formuli su R = 8,3145 J K 1 mol 1, T = 298,0 K, ρ = 0,980 g cm 3, g = 9,81 m s 2, dok iznosi M i B nisu poznati. Mjerenjima dobiveni su sljede i podaci: c/(g L 1 ) 1,25 3,80 7,12 9,27 h/cm 0,283 2,09 5,07 8,05 Polaznu jednadºbu interpretirajte kao jednadºbu pravca te koriste i metodu najmanjih kvadrata izra unajte M i B. 6.(15) Iz drvenog uspravnog elipti kog valjka stolar ºeli napraviti posudu maksimalnog (slobodnog) volumena. Pritom treba zadovoljiti uvjete designer -a: Za prostor za olovke potrebno je odstraniti uspravnu pravokutnu piramidu ija osnovica leºi na jednoj od osnovica valjka i to tako da su stranice pravokutne osnovice paralelne osima elipse. Ako su duljine osi osnovice valjka 10 cm i 7 cm, te ako je visina valjka 5 cm, koje su dimenzije osnovice izrezane piramide i koja joj je visina?

3 Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice ni druge zbirke formula oblika knjiºica), pribor za pisanje. Ne e se bodovati ne itko pisani dijelovi testa. U slu aju utvrženog prepisivanja, ostvareni se bodovi pripisuju s negativnim predznakom. Rje²enja zadataka 1 4 predajte odvojeno od rje²enja zadataka 5 6. Kako bi se mogla denirati funkcija koja svim studentima pridruºuje postignute bodove na kolokviju, poºeljno je da se na predanim papirima nalazi Va²e ime i prezime i Va²a ²ifra! 1.(10) Ispitajte lokalne ekstreme funkcije 2.(15 = 7 + 8) Zadan je skup P R 3, (a) Dokaºite da je P ploha u R 3. f(x, y, z) := x x ln x y 2 2yz 4z P... y 2 x = z 2. (b) Odredite jednadºbu tangencijalne ravnine na plohu P u sjeci²tu plohe P sa y-osi. 3.(10) Izra unajte integral (y 1) dx dy dz, S gdje je skup S R 3 zadan sa x 2 + y z 2 S... x 0 y 0. 4.(15 = 8 + 7) Zadano je vektorsko polje F : R 3 R 3, Zadana je i krivulja γ : [0, 1] R 3, (a) Izra unajte integral F (x, y, z) := (x, 2y, z). γ(t) := (b) Izra unajte rotaciju vektorskog polja F. ( e t2, 1, e t2). γ F dγ. Da biste vidjeli 5. i 6. zadatak, okrenite list!

4 5.(15) Odrežena ovisnost opisana je formulom 3ε 0 P m (T ) N A = 4πε 0 α + µ2 3kT. Iznosi konstanti u gornjoj formuli su N A = 6, mol 1, ε 0 = 8, J 1 C 2 m 1 i k = 1, J K 1, dok iznosi α i µ nisu poznati. Mjerenjima dobiveni su sljede i podaci: T/K P m /(cm 3 mol 1 ) Polaznu jednadºbu interpretirajte kao jednadºbu pravca te koriste i metodu najmanjih kvadrata izra unajte α i µ. 6.(15) Okrugla tikvica moºe se opisati kao staklena kugla s rupom na koju se nastavlja uspravni kruºni, otvoreni, valjak (grlo tikvice). Odredite promjer kuglastog dijela i grla te duljinu grla okrugle tikvice ako ta tikvica treba imati minimalno oplo²je uz ksirani volumen.

5 Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice ni druge zbirke formula oblika knjiºica), pribor za pisanje. Ne e se bodovati ne itko pisani dijelovi testa. U slu aju utvrženog prepisivanja, ostvareni se bodovi pripisuju s negativnim predznakom. Rje²enja zadataka 1 4 predajte odvojeno od rje²enja zadataka 5 6. Kako bi se mogla denirati funkcija koja svim studentima pridruºuje postignute bodove na kolokviju, poºeljno je da se na predanim papirima nalazi Va²e ime i prezime i Va²a ²ifra! 1.(10) Ispitajte lokalne ekstreme funkcije 2.(15 = 7 + 8) Zadan je skup P R 3, (a) Dokaºite da je P ploha u R 3. f(x, y, z) := 1 x 2 + y(1 ln y) + xz z 2. P... x z 2 = y 2. (b) Odredite jednadºbu tangencijalne ravnine na plohu P u sjeci²tu plohe P sa z-osi. 3.(10) Izra unajte integral (1 x) dx dy dz, S gdje je skup S R 3 zadan sa x 2 + y z 5 S... x 0 y 0. 4.(15 = 8 + 7) Zadano je vektorsko polje F : R 3 R 3, Zadana je i krivulja γ : [0, 1] R 3, (a) Izra unajte integral F (x, y, z) := (x, y, 2z). γ(t) := (b) Izra unajte rotaciju vektorskog polja F. ( ) e t2, e t2, 1. γ F dγ. Da biste vidjeli 5. i 6. zadatak, okrenite list!

6 5.(15) Odrežena ovisnost opisana je formulom p(t ) = p exp(2(t r S r H )/(RT )). Iznosi konstanti u gornjoj formuli su p = 750 mmhg i R = 8,3145 J K 1 mol 1, dok iznosi r S i r H nisu poznati. Mjerenjima dobiveni su sljede i podaci: t/ C 150,0 183,1 191,2 200,0 p/mmhg 182,0 605,0 790, Polaznu jednadºbu interpretirajte kao jednadºbu pravca te koriste i metodu najmanjih kvadrata izra unajte r S i r H. 6.(15) šelite izraditi kutiju za pakete oblika kvadra koja s jedne strane ima ksirani zbroj duljine, ²irine i visine iznosa 150 cm, a s druge strane ksiranu duljinu dijagonale 90 cm. Koje su dimenzije te kutije ako ºelite potro²iti ²to manje materijala za njenu izradu?

7 Matematika 2 za kemi are drugi kolokvij, 26. svibnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice ni druge zbirke formula oblika knjiºica), pribor za pisanje. Ne e se bodovati ne itko pisani dijelovi testa. U slu aju utvrženog prepisivanja, ostvareni se bodovi pripisuju s negativnim predznakom. Rje²enja zadataka 1 4 predajte odvojeno od rje²enja zadataka 5 6. Kako bi se mogla denirati funkcija koja svim studentima pridruºuje postignute bodove na kolokviju, poºeljno je da se na predanim papirima nalazi Va²e ime i prezime i Va²a ²ifra! 1.(10) Ispitajte lokalne ekstreme funkcije 2.(15 = 7 + 8) Zadan je skup P R 3, (a) Dokaºite da je P ploha u R 3. f(x, y, z) := 1 + x(ln x 1) + y 2 + 2yz + 2z 2. P... y z 2 = x 2. (b) Odredite jednadºbu tangencijalne ravnine na plohu P u sjeci²tu plohe P sa y-osi. 3.(10) Izra unajte integral (1 y) dx dy dz, S gdje je skup S R 3 zadan sa x 2 + y z 4 S... x 0 y 0. 4.(15 = 8 + 7) Zadano je vektorsko polje F : R 3 R 3, Zadana je i krivulja γ : [0, 1] R 3, (a) Izra unajte integral F (x, y, z) := (x, y, z). γ(t) := (b) Izra unajte rotaciju vektorskog polja F. ( e t2, 1, e t2). γ F dγ. Da biste vidjeli 5. i 6. zadatak, okrenite list!

8 5.(15) Odrežena ovisnost opisana je formulom (a b c B )p exp((a + p)kt) = a(p b + c B ). Poznati su iznosi a = 0,50 mol/l i p = 0,20 mol/l, dok iznosi b i k nisu poznati. Mjerenjima dobiveni su sljede i podaci: t/min 5,00 10,0 12,0 16,0 c B /(mol/l) 0,030 0,055 0,070 0,095 Polaznu jednadºbu interpretirajte kao jednadºbu pravca te koriste i metodu najmanjih kvadrata izra unajte b i k. 6.(15) Okrugla tikvica moºe se opisati kao staklena kugla s rupom na koju se nastavlja uspravni kruºni, otvoreni, valjak (grlo tikvice). Odredite promjer kuglastog dijela i grla te duljinu grla okrugle tikvice ako ta tikvica treba imati maksimalni volumen uz uvjet da joj je oplo²je ksiranog iznosa.

9 Matematika 2 za kemi are drugi kolokvij, 26. svibnja Instructions. You can use a calculator, a typeset or hand-written formulae sheet (booklets and logarithmic tables are not allowed), and writing utensils. The graders will ignore any illegible parts of the test. Please write your solution to Problems 14 and your solution to Problems 56 on separate sheets of paper. Please write your rst name, surname, and identication code of the form K17*** on each sheet of paper that you turn in. 1.(10) Determine the local extrema of the function 2.(15 = 7 + 8) Let P R 3 be dened by (a) Prove that P is a surface in R 3. f(x, y, z) := x 2 + 3xy + 4y 2 + z ln z z + 1. P... x 2 y 2 = z. (b) Find the equation of the tangent plane to P at the intersection of P with the x-axis. 3.(10) Compute the integral (x + 1) dx dy dz, S where the set S R 3 is dened by x 2 + y z 3 S... x 0 y 0. 4.(15 = 8 + 7) Let F : R 3 R 3 be a vector eld dened by F (x, y, z) := ( x, y, z). Let γ : [0, 1] R 3 be a curve in R 3 dened by ( γ(t) := 1, e t2, e t2). (a) Compute the integral (b) Compute the rotation of F. γ F dγ. To see Problems 5 and 6, ip the paper over!

10 5.(15) A specic functional relationship is given by equation h(c) = RT c ( 1 + Bc ). ρgm M The values of the constants are R = 8,3145 J K 1 mol 1, T = 298,0 K, ρ = 0,980 g cm 3, g = 9,81 m s 2, while the values M and B are unknown. The experiment gave rise to the following data: c/(g L 1 ) 1,25 3,80 7,12 9,27 h/cm 0,283 2,09 5,07 8,05 Interpret the given equation as an equation of a line and use the least squares method to determine M and B. 6.(15) A carpenter is cutting a container with maximal content (empty) space from an upright elliptic cylinder. The designer requested that it is to be done this way: From the cylinder an upright rectangular pyramid is to be cut out in such a way that its base lies on one of the two bases of the cylinder and its sides lie parallel to the axes of this elliptic base. If the lengths of the major and minor axis are 10 cm and 7 cm, and the cylinder is of height 5 cm, what are the dimensions of the pyramid base and what is its height?

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan

Matematika 2 za kemi are tre i kolokvij, 16. lipnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan Matematika 2 za kemi are tre i kolokvij, 16 lipnja 2018 Napomene Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske tablice

Више

Matematika 2 za kemi are prvi kolokvij, 27. travnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan

Matematika 2 za kemi are prvi kolokvij, 27. travnja Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisan Matematika 2 za kemi are prvi kolokvij, 27. travnja 2018. Napomene. Dopu²tena pomagala za rje²avanje kolokvija su: kalkulator, tiskane ili rukom pisane tablice s formulama (nisu dopu²tene logaritamske

Више

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut 1. dio, grupa A 1. kolokvij 12. travnja 2019. Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na

Више

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir 3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.

Више

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij, MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

Naziv studija

Naziv studija Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč

Више

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1 Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja

Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

Jasna Kellner

Jasna Kellner 1 Broji. 19 Ne pričaj. 37 Reci "Hvala". 2 Ne kasni. (Budi točan.) 20 Ne razumijem. 38 Reci "Molim". 3 Čitaj. 21 Ne spavaj. 39 Sjedni dolje. 4 Crtaj 22 Ne varaj. 40 Slušaj i ponovi. 5 Razumiješ li? 23 Obriši

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

MAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S

MAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S MAT A MATEMATIKA viša razina MATA.45.HR.R.K.8 Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,

Више

1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:

1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: 1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Reeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren skup, ima u taqki (a, b, c) X lokalni minimum (maksimum)

Више

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Више

MAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT45.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

1. KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 24. listopada (i) Napi²ite formulu za determinantu i inverz op e matrice drugog reda, te nave

1. KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 24. listopada (i) Napi²ite formulu za determinantu i inverz op e matrice drugog reda, te nave 1 KOLOKVIJ IZ MATEMATIKE I, PRVI DIO - GRUPA A 4 lstopada 011 1 () Nap²te formulu a determnantu nver op e matrce drugog reda, te navedte uvjet ( ) 3 7 1 11 1 3 () Provjerte je l matrca B = 1 3 1 5 nverna

Више

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr

Више

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠC Sarajevo); 2. Jasmina Imamović, nas. matematike (KŠC

Више

Na temelju članka 81. Zakona o znanstvenoj djelatnosti i visokom obrazovanju te članka 19. i članka 44. stavak 5. točke 4. Statuta Visoke poslovne ško

Na temelju članka 81. Zakona o znanstvenoj djelatnosti i visokom obrazovanju te članka 19. i članka 44. stavak 5. točke 4. Statuta Visoke poslovne ško Na temelju članka 81. Zakona o znanstvenoj djelatnosti i visokom obrazovanju te članka 19. i članka 44. stavak 5. točke 4. Statuta Visoke poslovne škole PAR, Upravno vijeće Visoke poslovne škole PAR na

Више

Valentinovo 2013-bez odgovora

Valentinovo 2013-bez odgovora strijela bombon čokolada cvijeće golubovi prijatelji ružičasta Valentinovo četrnaest crvena dar kupid ruža srce veljača From the list of words above, fill in the blank boxes below each picture. 14-1- Match

Више

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. A. Prema definiciji, interval a, b] je skup svih realnih brojeva koji su strogo veći od a, a jednaki ili manji od b. Stoga je interval 3, ] skup svih realnih brojeva koji

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

-svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, ap

-svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, ap -svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, apsolutnim polarnim-cilindričnim i apsolutnim polarnim-sferičnim

Више

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2

Petar Stipanovid :: Rješenja 2. pismenog ispita iz MMF1 2010/ I2-1 Ako su Φ = r sin πφ + θ ; F = r 2 sin θ r + r cos φ θ + cos θ φ; M = log 2 Petr Stipnovid :: Rješenj. pismenog ispit iz MMF / I - Ako su Φ = r sin φ + θ ; F = r sin θ r + r cos φ θ + cos θ φ; M = log sin x y+z ; E = ρ z ρ gdje su (r, θ, φ) Krtezijeve koordinte, (r, θ, φ) sferne

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

(Microsoft Word - 1. doma\346a zada\346a)

(Microsoft Word - 1. doma\346a zada\346a) z1 1 Izračunajte z 1 + z, z 1 z, z z 1, z 1 z, z, z z, z z1 1, z, z 1 + z, z 1 z, z 1 z, z z z 1 ako je zadano: 1 i a) z 1 = 1 + i, z = i b) z 1 = 1 i, z = i c) z 1 = i, z = 1 + i d) z 1 = i, z = 1 i e)

Више

n50

n50 N50LUSK Vodič za ažuriranje TV softvera TV Software Update Guide Hrvatski vodič za ažuriranje 1. Korak Provjerite ime modela na stražnjoj strani TV-a. Prije preuzimanja softvera za ažuriranje, molimo provjerite

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

(Geometrijska i algebarska interpretacija presjeka stoıca i valjka ravninom | math.e)

(Geometrijska i algebarska interpretacija presjeka stoıca i valjka ravninom | math.e) eometrijska i algebarska interpretacija presjeka stošca i valjka ravninom... Vol 33.2 1 of 11 math.e Hrvatski matematički elektronički časopis Geometrijska i algebarska interpretacija presjeka stošca i

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJA I PRIMJERI IZ FIZIKE Završni rad Tomislav Kneţević

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више