Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc
|
|
- Renata Popović
- пре 5 година
- Прикази:
Транскрипт
1 EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE EKSTREMNE VREDNOSTI su maksimum i (ili minimum funkcij. Nadjmo prvi izvod i izjdnačimo ga sa 0, 0. Ršnja t jdnačin,,... ( naravno ako ih im mnjamo u počtnu funkciju da dobijmo,,... Dobijn tačk M(, ; M (, ;... su kstrmn vrdnosti funkcij. MONOTONOST FUNKCIJE j rašćnj i opadanj funkcij. U intrvalima ( naravno ako ih im gd j > 0 funkcija RASTE. U intrvalima ( naravno ako ih im gd j < 0 funkcija OPADA.. Odrditi kstrmn vrdnosti i intrval monotonosti funkcija: b Ršnj: Posao nam j dakl da nañmo prvi izvod! u u v v u Ovo j izvod količnika pa idmo po formuli v v ( ( ( ( ( ( ( ( [( ( ] [ ( ( ( Sad prvi izvod izjdnačavamo sa 0. ] Zapamtit da uvk brojilac izjdnačavamo sa 0 jr smo s u oblasti dfinisanosti vć ogradili da u imniocu nij 0.
2 0 0 0 ( Sad ovu vrdnost mnjamo u počtnu funkciju : 0 0 f (0 M (0, Dobili smo tačku kstrma! Za sad n znamo da li j ma ili min. Za monotonost funkcij trbamo da ršimo njdnačin: > 0 ( rast i < 0 (opad Postavljamo sbi pitanj: ( slično kao kod znaka funkcij Od čga nam zavisi znak prvog izvoda? Pogldajmo još jdnom prvi izvod: (. Izraz ( > 0 uvk ( zbog kvadrat pa n utič na razmatranj znaka. Zaključujmo da nam znak prvog izvoda zavisi samo od -. Dakl: > 0 za > 0 < 0... rast < 0 za < 0 > 0... opada Na skici bi to izgldalo: E sad smo sigurni da j naša tačka M (0, maksimum! b ( ( ( ( ( ( ( ( 8 ( 8 ( (
3 Izjdnačavamo prvi izvod sa ( Da rеšimo ovu kvadratnu jdnačinu: 6 b± b ac 8± , a Ob vrdnosti vraćamo u počtnu jdnačinu ( 6 ( M ( 6, 9 6 ( ( M (, Za monotonost razmišljamo od čga nam zavisi znak prvog izvoda! 8 ( a kako ( > 0 uvk, znači da nam znak zavisi samo od 8. Kao i uvk kad imamo kvadratnu njdnačinu koristimo da : Kvadratni trinom ima znak broja a svuda osim izmdju nula! Znači da funkcija rast za > 0 za (, 6 (, Funkcija opada < 0 za ( 6, Sad nam nij tško da kažmo da j : Tačka M ( 6, 9 j tačka maksimuma Tačka M (, j tačka minimuma.
4 . Odrditi kstrmn vrdnosti i intrval monotonosti funkcija: b v 5 ln ln Ršnj: 5 (5 ( ( (5 ( ( (5 izvlačimo - kao zajdnički isprd zagrad ( ( ( 5 7 Sada ovo izjdnačavamo sa 0. ( ali znamo da j > 0 pa zaključujmo da ova funkcija nma kstrmn vrdnosti! Dalj razmišljamo od čga nam zavisi znak prvog izvoda... Kako j ( 0 > uvk i > 0 ostaj nam da znak zavisi samo od 7. Zaključujmo da j funkcija opadajuća stalno! b ( ( ( ( ( ( [ ]
5 Odavd j 0 0 a ršnja ov kvadratn jdnačin su Ov vrdnosti vraćamo u počtnu funkciju : ( M (, ( 6 6 M (, Za odrdjivanj monotonosti opt koristimo znanj iz II godin srdnj da: Kvadratni trinom ima znak broja a svuda osim izmdju nula! Odavd zaključujmo da: > 0 za (, rast < 0 za (, (, opada Onda j tačka M (, tačka minimuma a tačka 6 M (, tačka maksimuma. v ln ln (ln ln (ln(ln ln ln (ln ln ln ln ln pa j ln ln Očigldno j da nmamo kstrmnih vrdnosti jr j u brojiocu samo -. Iz oblasti dfinisanosti funkcij bi našli da j ( ( znaku prvog izvoda: ln 0 > 0 D f (0, (, a to nam govori o > 0 ln > 0 znak zavisi samo od - a onda j funkcija stalno opadajuća! 5
6 . Odrditi kstrmn vrdnosti i intrval monotonosti funkcija: b ln v arc tg Ršnj: Pazit, ovd s radi o izvodu složn funkcij: ( ( 0 0 ( ( Tačka kstrma j dakl M (,. Kako j > 0 uvk, znak nam zavisi od, pa j: > 0 za > 0 > (, rast < 0 za < 0 < (, opada Sad znamo da j tačka M (, minimum dat funkcij. 6
7 7 b ln ovd pazimo, jr j ( izvod količnika! ( ( ( ( ( skratimo po - ( koj j različito od 0 još iz domn ( ( Jasno j da funkcija nma kstrmn vrdnosti.da ispitamo monotonost trba nam tablica. E sad, ako malo razmislimo, vidimo da s ova tablica poklapa sa tablicom za oblast dfinisanosti: (, f D Znači da j funkcija RASTUĆA na clom domnu! Ovo j ono što mi pokušavamo da vas naučimo: Svaka tačka u ispitivanju toka funkcij priča svoju priču i nšto ta priča znači na grafiku ali su opt sv tačk u ispitivanju povzan i n mogu jdna bz drug.
8 8 v arc tg Još jdna složna funkcija, pa izvod radimo pažljivo. ( ( ( ( ( ( ( ( ( ( ( ( ( pokratimo (- srdimo malo... ( ( Jasno j da nma kstrma a kako j uvk pozitivan, funkcija j stalno rastuća!
INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a
INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matmatik u industrijskom inžnjrstvu, 6.9... Diskutovati po a, b R i ršiti sistm linarnih jdnačina b + by = a. Za linarnu funkciju f(,, 3 = 3 3 izračunati minimum i tačku
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеMicrosoft Word - SISTEMI DIFERENCIJALNIH JEDNACINA,zadaci.doc
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: 7 d Ša j idja kod ovih adaaka? Jdnu od jdnačina difrniramo, o js nañmo ivod l jdnačin i u amnimo drugu jdnačinu. Moramo da
ВишеMicrosoft Word - IZVODI ZADACI _2.deo_
IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici
ВишеMate_Izvodi [Compatibility Mode]
ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки
ВишеMicrosoft Word - ELEMENTARNE FUNKCIJE.doc
ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim
ВишеMicrosoft Word - IZVODI ZADACI _I deo_.doc
. C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ
ВишеMicrosoft Word - KVADRATNA FUNKCIJA.doc
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST
PARNOST i NEPARNOST FUNKCIJE PERIODIČNOST FUNKCIJE PARNOST i NEPARNOST FUNKCIJE Ako je f ( ) = f ( ) funkcija je parna i tada je grafik simetričan u odnosu na y osu Ako je f ( ) = f ( ) funkcija je neparna
ВишеNo Slide Title
Pozicion srdnj vrijdnosti Pozicion srdnj vrijdnosti s odrđuju na osnovu mjsta pozicij koju zauzimaju u sriji. MODUS I MEDIJANA Modus j vrijdnost obiljžja koj u posmatranoj sriji ima najvću rkvnciju najčšć
ВишеKontinuirani sustavi
Signali i sstavi Aditorn vjžb 8. Kontinirani sstavi Zadatak. Kontinirani sstav zadan j modlom na slici. Odrdit difrncijaln jdnadžb koja opisj ovaj sstav i izračnajt odziv na pobd: (t) U cos(ω t) - x x
ВишеMicrosoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc
GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
ВишеMicrosoft Word - Algebra i funkcije- napredni nivo doc
Algebra i funkcije napredni nivo 01. Nenegativna znači da je vrednost izraza pozitivna ili je jednaka 0. ( 1) ( 1)( 1) 0 razlika kvadrata (( x) + x 1+ 1 ) (( x) 1 ) 0 ( + + 1) ( 1) 0 x x+ x x+ x x x +
ВишеMicrosoft Word - Integrali vi deo
INTEGRALI ZADACI ( VI-DEO) Inegracija nekih iracionalnih funkcija Kad smo radili racionalna funkcije, videli smo da,u principu, možemo odredii inegral svake racionalne funkcije. Zao će nam kod inegrala
ВишеMicrosoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n
4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
ВишеMicrosoft Word - IZVODI ZADACI _4. deo_
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеMicrosoft Word - 1. REALNI BROJEVI- formulice
REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMatematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o
Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje;
ВишеMicrosoft Word - ADICIONE FORMULE.doc
ADICIONE FORMULE Zbir uglva ( α+ β ) α csβ+ cs( α+ β ) csβ α + tg( α+ β ) c c ctg( α+ β ) c + c Razlika uglva ( α β ) α csβ cs( α β ) csβ+ α tg( α β ) c c+ ctg( α β ) c c Primećujete da su frmule za razliku
ВишеSKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau
Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog
ВишеKvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx
Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеMicrosoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеSeminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja
Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva
ВишеMicrosoft Word - KRIVOLINIJSKI INTEGRALI zadaci iii deo.doc
KRIVOLINIJSKI INTEGRALI zadai (III deo) Nezavisnos krivolinijskog inegrala od puanje inegraije Sledeća vrñenja su ekvivalenna: ) P (, y, z) d+ Q(, y, z) dy+ R(, y, z) dz ne zavisi od puanje inegraije )
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
ВишеNeprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14
Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost
ВишеBetonske i zidane konstrukcije 2
7. PROVJERA OSIVOSTI ZIĐA U OSIA I A VERTIKALO OPTEREĆEJE I DJELOVAJE VJETRA PROGRA IZ KOLEGIJA BETOSKE I ZIDAE KOSTRUKCIJE 94 7. Provjra nosivosti ziđa u osima i na vrtialno optrćnj i djlovanj vjtra Slia
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеMicrosoft Word - MATRICE ZADACI III deo.doc
MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
ВишеMicrosoft Word - KUPA-obnavljanje.doc
KUPA Kupa je oblo feometrijko telo čija je onova krug, a omotač je deo obrtne konune površi a vrhom u tački S. S r Oa kupe je prava koja prolazi kroz vrh kupe i centar onove kupe. Ako je oa normalna na
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet
Вишеkvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1
kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc
Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеMicrosoft Word - 12ms101
Zadatak 0 (Sanela, Anamarija, maturantice gimnazije) Riješi jednadžbu: = Rješenje 0 α = α α / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k t = + k Vraćamo se supstituciji: t = + k = +
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеNeodreeni integrali - Predavanje III
Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne
ВишеMatematikaRS_2.pdf
GIMNAZIJA Informacijsko komunikacijskih tehnologija Razred: drugi NASTAVNI PROGRAM ZA PREDMET: MATEMATIKA; Sedmični broj časova: 3 Godišnji broj časova : 105 Teme: 1. Trigonometrija trougla (18) 2. Stepeni
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеMatematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vu
Matematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vujičić 1045/2015 Beograd, 2018. Sadržaj 1 Uvod 2 2 Stepena
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
ВишеПроцена максималних вредности годишње температуре ваздуха у Бањалуци
Процена екстремних годишњих температура у Бањалуци, Сарајеву и Мостару Највиша дневна температура ваздуха у Бањалуци, Мостару и Сарајеву за период 1960-2011 је приказана у сљедећој табели 1: Табела бр.
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - VEROVATNOCA II deo.doc
VEROVATNOĆA - ZADAI (II DEO) Klasična definicija verovatnoće Verovatnoća dogañaja A jednaka je količniku broja povoljnih slučajeva za dogañaj A i broja svih mogućih slučajeva. = m n n je broj svih mogućih
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.
MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
ВишеCIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro
CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
ВишеZadatak 3.1 Navesti kineti~ke jedna~ine za sistem sa ~etiri nivoa, predstavljen na slici, uzimaju}i u obzir da je brzina neradijacionih prelaza S32 i
Zadaak 3.. avsi kiničk jdnačin za sism sa čiri nivoa prdsavljn na slici uzimajući u obzir da j brzina nradijacionih prlaza S 3 i S 0 vlika. S 3 3 03 A 30 30 S 30 A S A 0 S 0 0 Izvsi izraz za fakor pojačanja
ВишеMicrosoft Word - integrali IV deo.doc
INTEGRALI ZADAI ( IV DEO) Integrcij rcionlne funkcije P( ) Rcionln funkcij je oblik Q( ). Može biti prv i neprv. Prv rcionln funkcij je on kod koje je mksimlni stepen polinom P() mnji od mksimlnog stepen
ВишеMicrosoft Word - PRIMENA INTEGRALA.doc
PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin
ВишеMicrosoft PowerPoint - jkoren10.ppt
Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni
ВишеMicrosoft Word - Drugi razred mesecno.doc
ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: МАТЕМАТИКА Разред: Други Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. ПРИРОДНИ
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
Више(Microsoft Word - Vietove formule. Rastavljanje kvadratnog trinoma na lenear\205)
VIETOVE FORMULE. RASTAVLJANJE KVARATNOG TRINOMA NA LINEARNE ČINIOCE Brojev su rešenj kvdrtne jednčine + + ko i so ko je + i Ove dve jednkosti zovu se Vietove forule. Čeu one služe? Osnovn prien je d n
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
ВишеAlgebarska topologija VAN KAMPENOV TEOREM Algebarska topologija VAN KAMPENOV TEOREM 10. Slobodni produkt grupa Slobodni produkt grupa 3 VA
lgbarska topologija 77 lgbarska topologija 79 10. Slobodni produkt grupa Slobodni produkt grupa 3 VN KMPENOV TEOREM Slobodni produkt grupa Van Kampnov torm Primjna na ćlijsk komplks Žlimo za danu familiju
ВишеMicrosoft PowerPoint - 09 PEK EMT Optimizacija 4 od 4-Algoritam (2012).ppt [Compatibility Mode]
Da s odstimo i i i: Odrditi vrdosti aramtara oa [,... ] o ć garatovati da odziv (x, ima žu vrdost * (x. Mtod: raž miimuma fuci grš E(x,; (orma za vatitativu rocu odstuaa dobiog od žog odziva. E(x, (x,
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеMicrosoft Word JEDINICE ZA MERENJE-formulice
JEDINICE ZA MERENJE DUŽINA Osnovna jedinica za merenje dužine je metar. Manje i veće jedinice koje koristimo su: kilometar km km=m m= km=, km metar m decimetar dm m=dm dm= m=,m centimetar cm m=cm cm =
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
Више