ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
|
|
- Mirka Kos
- пре 5 година
- Прикази:
Транскрипт
1 ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi: (a) (3n + ) = n(3n + 7), (b) (n )(n + ) = n n Odredite, ako postoje, infimum, supremum, minimum i maksimum sljedećih skupova: (a) S = { 7n +, n N}, (b) S = { x + x + 3, x R}. RJEŠENJA. (a) Dokazujemo prvu inkluziju: (A\B) (B\A) (A B) (A C B C ). x (A \ B) (B \ A) (x A \ B) (x B \ A) (x A x / B) (x B x / A) x A x / B (jer općenito A A B) (x A x B) (x / A x / B) x (A B) x (A C B C ) x (A B) (A C B C ) x B x / A (x A x B) (x / A x / B) x (A B) x (A C B C ) x (A B) (A C B C )
2 x (A B) (A C B C ) (A \ B) (B \ A) (A B) (A C B C ). Dokazujemo drugu inkluziju: (A \ B) (B \ A) (A B) (A C B C ). x (A B) (A C B C ) x (A B) x (A C B C ) (x A x B) (x / A x / B) (x A eliminira x / A, a x B eliminira x / B, pa nam ostaju samo dvije mogućnosti) x A x / B x A \ B x B x / A x B \ A x (A \ B) x (B \ A) x (A \ B) (B \ A) (A B) (A C B C ) (A \ B) (B \ A). Dokazali smo obje inkluzije, dakle vrijedi (A \ B) (B \ A) = (A B) (A C B C ). (b) Dokazujemo prvu inkluziju: A \ (B \ C) (A C) (A \ B). x A \ (B \ C) x A x / (B \ C) x A (x (B \ C)) x A (x B x / C) x A (x / B x C) x A x / B x A \ B x A x C x A C x (A C) x (A \ B) x (A C) (A \ B) A \ (B \ C) (A C) (A \ B) Dokazujemo drugu inkluziju: A \ (B \ C) (A C) (A \ B). x (A C) (A \ B) x (A C) x (A \ B) (x A x C) (x A x / B) x A (x C x / B) x
3 A (x B x / C) x A x / (B \C) x A\(B \C) (A C) (A \ B) A \ (B \ C) Dakle vrijedi A \ (B \ C) = (A C) (A \ B). (c) x (A B) \ C x (A B) x / C (x A x B) x / C (x A x / C) (x B x / C) x (A \ C) x (B \ C) x (A \ C) (B \ C) (A B) \ C = (A \ C) (B \ C). (a) Baza indukcije: n = 5 = (3 + 7) = 0 = 5. Pretpostavka indukcije: n = k (3k + ) = k(3k + 7). Korak indukcije: n = k (3k+)+(3(k+)+) = (koristimo pretpostavku indukcije) = k(3k + 7) + (3k + 5) = (3k + 7k) + (6k + 0) = (3k + 3k + 0) = (3k + 3k + 0k + 0) = (3k(k + ) + 0(k + )) = (k + )(3k + 0) = (k + )(3(k + ) + 7). (b) Baza indukcije: n = 3 = + = 3. Pretpostavka indukcije: n = k (k )(k + ) = k k +.
4 Korak indukcije: n = k (k )(k + ) + ((k + ) )((k + ) + ) = (koristimo pretpostavku indukcije) = k k + + (k + )(k + 3) = k + 3k + (k + )(k + 3) = k + k + k + (k + )(k + 3) (k + )(k + ) (k + )(k + 3) = k + (k + ) +. = k(k + ) + (k + ) (k + )(k + 3) 3. (a) Skup S možemo zapisati i kao S = { 8, 5,,...}. Vrijedi 7n + 8 7n 7 n, n N kao i 7n + 7n + > 0, n N, pa zbog > 0 zaključujemo da 7n + postoje inf S i sup S. Budući da je gornja ograda skupa S, to je sup S. Prepostavimo sup S <. Jer je 7n + = za n =, vrijedi S, što je kontradikcija sa definicijom supremuma. Prema tome, vrijedi sup S =, a zbog S je ujedno i max S =. Promotrimo li elemente skupa S, naslućujemo inf S = 0. Da bi dokazali ovu tvrdnju, moramo provjeriti vrijede li dva svojstva iz propozicije. Prvo svojstvo vrijedi jer je > 0, n N. 7n + Ostaje nam pokazati drugo svojstvo, odnosno da > 0 n N takav da je 7n + < 0 + = < 7n + < 7n. Za je 0, pa je dovoljno uzeti n = da gornja nejednakost bude zadovoljena. Za 0 < < je > 0, pa iz Arhimedovog aksioma (za a = 7 > 0 i b = > 0) slijedi da n N takav da je n a > b, =
5 tj. 7n >. Ovime smo pokazali inf S = 0. Jedini kandidat za min S je 0, medutim 0 / S jer ne postoji n N takav da je = 0, stoga min S ne postoji. 7n + (b) x + x + 3 = + x + 3. Definirajmo A := {} i B := { x + 3, x R}. Vrijedi S = A + B. Vrijedi 3 x + 3 x x 0, x R, kao i x + 3 > 0, x R, pa zbog 3 > 0, x R, zaključujemo da postoje inf B i sup x + 3 B. Budući da je 3 gornja ograda skupa B, vrijedi sup B 3. Pretpostavimo sup B < 3. Za x = 0 je x + 3 = 3, dakle B, što 3 je kontradikcija sa definicijom supremuma. Prema tome, vrijedi sup B = 3, a zbog 3 B je i max B = 3. Što se x više udaljava od nule, to je x + 3 sve manji. Tvrdimo inf B = 0. Prvo svojstvo iz propozicije vrijedi jer je x + 3 > 0, x R. Moramo još pokazati drugo svojstvo, odnosno da > 0 x R takav da je x + 3 < < x < x. Za 3 je 3 0, pa npr. x = zadovoljava gornju nejednakost. za 0 < < 3 je 3 > 0, pa moramo naći x R takav da je x > 3 > 0 x > 3. Uzmemo li npr. x = 3,
6 imamo redom: x + 3 = ( = = 3) (jer je 9 > 3 9 > 3 < 3) < 3 =. 9 < Ovo dokazuje inf B = 0. Jedini kandidat za min B je 0, ali ne postoji x R takav da je = 0. Odatle slijedi 0 / B, odnosno x + 3 min B ne postoji. Za skup A = {} vrijedi inf A = min A = sup A = max A =, pa za skup S imamo redom: sup S = sup A + sup B = + 3 = 3, max S = max A + max B = + 3 = 3, inf S = inf A + inf B = + 0 =, dok min S ne postoji jer ne postoji ni min B.
JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
ВишеMATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.
MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.
MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i
ВишеKonstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun
Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.
ВишеTitle
1. Realni brojevi Prirodno bi bilo konstruisati skup realnih brojeva korak po korak, od prirodnih brojeva preko cijelih, racionalnih i na kraju iracionalnih. Medutim, mi ćemo tom problemu ovdje pristupiti
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеPripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO
Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori
1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena
ВишеDiferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod
1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,
Вишеatka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati
NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,
ВишеVjezbe 1.dvi
Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva
ВишеNeprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14
Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada: prof. dr. sc. Sanja Varošanec Zagreb, srpanj 218.
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеSadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor
Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca
ВишеUAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević
Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеMinistarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 28. veljače AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJER
ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 8. veljače 011. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI NA
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada:
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2015.
ВишеLinearna algebra Mirko Primc
Linearna algebra Mirko Primc Sadržaj Poglavlje 1. Polje realnih brojeva 5 1. Prirodni i cijeli brojevi 5 2. Polje racionalnih brojeva 6 3. Polje realnih brojeva R 9 4. Polje kompleksnih brojeva C 13 5.
ВишеSveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013
Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеGeneralizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi
Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi dokazivanja 28. lipnja 2012. Zašto logika interpretabilnosti?
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau
ВишеNumerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p
Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеSveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA LOGIKA Diplomski rad Zagreb, listopad 2009.
Sveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA LOGIKA Diplomski rad Zagreb, listopad 2009. Sveučilište u Zagrebu PMF Matematički odjel Filip Nikšić PROPOZICIONALNA DINAMIČKA
ВишеMinistarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 9. siječnja
ВишеANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične)
ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija 1.0 1 Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) euklidske geometrije ravnine i prostora koristeći algebarske
ВишеUNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU MASTER RAD Lokalno solidne topologije na Risovim prostorima i primene Mentor:
UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU MASTER RAD Lokalno solidne topologije na Risovim prostorima i primene Mentor: Prof.dr Dragan Đorđević Student: Katarina Stojković
ВишеPopularna matematika
6. lipnja 2009. Russellov paradoks Russellov paradoks Bertrand Arthur William Russell (1872. - 1970.), engleski filozof, matematičar i društveni reformator. Russellov paradoks Bertrand Arthur William Russell
ВишеLOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren
LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Reeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren skup, ima u taqki (a, b, c) X lokalni minimum (maksimum)
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
ВишеTeorija igara
Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
Више3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir
3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
ВишеMATEMATIKA Preddiplomski studij molekularne biologije Damir Bakić
MATEMATIKA Preddiplomski studij molekularne biologije Damir Bakić i Predgovor Ovo je nastavni materijal za kolegij Matematika namijenjen studentima preddiplomskog studija biologije, smjer Molekularna biologija.
ВишеOptimizacija
Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje
ВишеLogičke izjave i logičke funkcije
Logičke izjave i logičke funkcije Građa računala, prijenos podataka u računalu Što su logičke izjave? Logička izjava je tvrdnja koja može biti istinita (True) ili lažna (False). Ako je u logičkoj izjavi
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apol
ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 67 91 Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apolonijev problem glasi: Konstruiraj kružnicu koja dodiruje
ВишеMicrosoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc
GRAFICI TRIGONOMETRIJSKIH FUNKCIJA (II deo U prethodnom fajlu ( grafici trigonometrijskih funkcija I deo smo proučili kako se crtaju grafici u zavisnosti od brojeva a,b i c. Sada možemo sklopiti i ceo
ВишеMatematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vu
Matematički fakultet Univerzitet u Beogradu Elementarne funkcije i preslikavanja u analizi Master rad Mentor: dr Miodrag Mateljević Student: Marija Vujičić 1045/2015 Beograd, 2018. Sadržaj 1 Uvod 2 2 Stepena
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
Више(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj
ВишеPopoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka
IZ NASTAVNE PRAKSE Radomir Ločarević Rumujski matematičar Tiberie Popoviciu (906. 975.) dokaao je 965. poatu ejedakost i područja kovekse aalie (vidi [.]), koja ima primjee, medu ostalim, u brojim adatcima
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
Више18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f
8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)
ВишеSveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i prim
Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Karolina Novaković Derivacija funkcije i primjene Završni rad Osijek, 2018. Sveučilište J. J. Strossmayera
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
ВишеCVRSTOCA
ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno
ВишеМАТЕМАТИЧКА ГИМНАЗИЈА У БЕОГРАДУ МАТУРСКИ РАД из математике ТЕОРИЈА СКУПОВА ментор: Славко Моцоња ученик: Матија Срећковић, IVБ Београд, јун 2015.
МАТЕМАТИЧКА ГИМНАЗИЈА У БЕОГРАДУ МАТУРСКИ РАД из математике ТЕОРИЈА СКУПОВА ментор: Славко Моцоња ученик: Матија Срећковић, IVБ Београд, јун 2015. САДРЖАЈ УВОД... 2 УВОД У СКУПОВЕ... 4 ЕЛЕМЕНТАРНЕ АКСИОМЕ...
Вишеss08drz-A-zad.dvi
DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija, 7. travnja 008. Rješenja Zadatak 1. Neka su a, b, c proizvoljni realni brojevi. Dokaži da je barem jedan od brojeva (a + b + c) 9ab,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Edita Kulović STRUKTURE IZRAČUNLJIVOSTI Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Edita Kulović STRUKTURE IZRAČUNLJIVOSTI Diplomski rad Voditelj rada: doc. dr. sc. Zvonko Iljazović Zagreb, rujan 2016. Ovaj diplomski
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
Више( )
Заштита животне средине Основе механике (кратак преглед предмета) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj 1. Информациjе о предмету
Више2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do
2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеGrupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani
Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno
ВишеMicrosoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx
DIOFANTSKE JEDNADŽBE Jednadžba s dvjema ili više nepoznanica čiji su koeficijenti i rješenja cijeli brojevi naziva se DIOFANTSKA JEDNADŽBA. Linearne diofantske jednadžbe 3" + 7% 8 = 0 nehomogena (s dvjema
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
ВишеTutoring System for Distance Learning of Java Programming Language
Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
ВишеДинамика крутог тела
Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino
ВишеUNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA NOVI SAD Odsek/smer/usmerenje: Matematika u tehnici DIPLOMSKI - MASTER RAD Kandidat: Ljubo Nedović B
UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA NOVI SAD Odsek/smer/usmerenje: Matematika u tehnici DIPLOMSKI - MASTER RAD Kandidat: Ljubo Nedović Broj indeksa: 8 Tema rada: Pseudo-operacije i primena
Више24. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka, 22. april ZADACI PRVI RAZRED 1. Dat je razlomak 2a27, g
4. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka,. april 07. ZADACI PRVI RAZRED. Dat je razlomak a7, gdje su a i b cifre za koje je b a =. Ako se 7b egovom brojiocu
ВишеMAT-KOL (Banja Luka) XXV (2)(2019), DOI: /МК A ISSN (p) ISSN (o) PET RAZNI
MAT-KOL (Banja Luka) XXV ()(019), 95-100 http://wwwimviblorg/dmbl/dmblhtm DOI: 10751/МК190095A ISSN 054-6969 (p) ISSN 1986-588 (o) PET RAZNIH DOKAZA JEDNE ALGEBARSKE NEJEDNAKOSTI (Five diverses proofs
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
Вишеknjiga.dvi
1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
ВишеNewtonova metoda za rješavanje nelinearne jednadžbe f(x)=0
za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеDELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a
DELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a. b a oznaqava da a ne deli b. Napomena 1.1. (1) Deljivost
Више58. Federalno takmičenje iz matematike učenika srednjih škola
58. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 4.0.018. godine PRVI RAZRED Zadatak 1 Ako su, i realni brojevi takvi da je 0, dokazati da vrijedi
ВишеSeminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja
Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva
ВишеSveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Apolinar Barbiš TOKOVI NAJMANJEG TROŠKA I TOKOVI MAKSIMALNE VRIJEDNOSTI Di
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Apolinar Barbiš TOKOVI NAJMANJEG TROŠKA I TOKOVI MAKSIMALNE VRIJEDNOSTI Diplomski rad Zagreb, srpanj, 2018. Sveučilište u Zagrebu
ВишеMicrosoft Word - IZVODI ZADACI _2.deo_
IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici
Више