PowerPoint Presentation
|
|
- Jan Đukanović
- пре 5 година
- Прикази:
Транскрипт
1 Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)
2 Ponavljanje - Rad Rad je definiran kao djelovanje sile na određeno putu. Kod pravocrtnog gibanja tijela pod utjecaje stalne sile rad je jednak produktu sile i prijeđenog puta. Općenito, izraz za rad kada se čestica giba po putanji od točke do točke B je: B 2 2 Jedinica za rad zove se džul (joule, znak J): J N kg s F dr Rad sile dizanja (bez ubrzavanja tijela): Fs gh pri to je rad sile teže isti po iznosu, ali negativan 2 Rad pri stezanju opruge (zakon opruge, F=-ks): ks 2 pri to je rad elastične sile opruge isti po iznosu, ali negativan Rad pri svladavanju sile trenja: FN s pri to je rad sile trenja isti po iznosu, ali negativan. Rad pri rotaciji: 0 M z d 2
3 Ponavljanje - Kinetička i potencijalna energija Energija je sposobnost tijela ili sistea tijela da obavljaju rad: što tijelo ia veću energiju to je sposobnije obavljati rad. Proatrano ikroskopski postoje sao dvije vrste energije: kinetička i potencijalna, a svi se ostali oblici ogu na njih svesti. 2 2 Kinetička energija tijela ase i brzine v: v p Ek 2 2 Projena kinetičke energije jednaka je izvršeno radu: E (poučak o radu i kinetičkoj energiji) k 2 Ek1 Ek Potencijalna energija tijela je ona koju tijelo ia zbog svojega položaja prea drugi tijelia ili konfiguraciji tijela. Gravitacijska potencijalna energija tijela (u gravitacijsko polju na Zeljinoj površini) ase, na visini y, iznosi:, pri to je pretpostavljeno da je E p = 0 za y = 0. E p gy Sila kojoj rad ne ovisi o putu već sao o početnoj i konačnoj točki zove se konzervativna sila. Rad konzervativne sile po zatvoreno putu jednak je nuli: F k dr 0 Rad konzervativne sile izeđu dva položaja tijela jednak je razlici potencijalne energije početnog i krajnjeg položaja: (poučak o radu i potencijalnoj energiji) B E p( r ) E p( rb ) Rad vanjske sile jednak je sui projene potencijalne i projene kinetičke energije: (uz zanearenu silu trenja) (poučak o radu i ukupnoj energiji) E p E k 3
4 Ponavljanje - Zakon očuvanja energije. Snaga. Energija se ože pretvarati iz jednog oblika u drugi, pri čeu je u izolirano sisteu zbroj energija konstantan. Ukupni rad svih sila jednak je projeni kinetičke energije: k nk E k gdje je k E p rad što ga izvrše kozervativne sile, a nk rad što ga izvrše nekonzervativne sile. Ukupna energija ne ože se uništiti niti ni iz čega stvoriti, ona se ože sao pretvarati iz jednog oblika u drugi. Snaga se definira ojero rada i vreena, pa biso je ogli shvatiti kao brzinu obavljanja rada, odnosno prijenosa energije: P lip t0 li t0 t 2 2 t 1 1 E li t0 t 2 2 E t 1 1 d dt F v 4
5 Prijer 7 Rad dizanja Teret ase 15 kg podignut je kabelo po kosini, iz početnog stanja irovanja, na visinu h = 2,5 i pri to stalno brzino prešao put od d = 2,7 te se zaustavio. a) Koliki je rad gravitacijske sile tijeko podizanja tereta? b) Koliki je rad sile napetosti u kabelu tijeko podizanja tereta? rad gravitacijske sile : g ds G G duž puta g cos duž puta duž puta g ds cos ds gd cos g F n ds 90 h sin d h cos cos 90 cos sin90 sin sin d h G gd cos gd gh 367,9 J d Rezultat: a) g = -367,9 J, b) N = 367,9 J. rad sile napetosti : N FN ds F F N N duž puta g sin g g h d N duž puta h d ds d gh 367,9 J F N d 5
6 Prijer 8 Zakon očuvanja energije Na slici desno prikazano je dijete ase koje se spušta s tobogana iz stanja irovanja. Visina tobogana je h = 8,5 iznad vode. Pretpostavljajući da pri spuštanju niz tobogan nea trenja (zbog vode) izračunajte brzinu djeteta na dnu tobogana. Rezultat: v = 13 /s. 6
7 Prijer 9 Zakon očuvanja energije Bungee-juping skakač ase 61 kg nalazi se na ostu visine 60 i vezan je za elastično uže duljine 25. Pretpostavite da se uže ponaša kao elastična opruga s konstanto opruge k = 160 N/. ko se nakon skoka skakač zaustavi, izračunajte na kojoj visini iznad površine vode u se nalaze stopala. Rezultat: h = 17,3. 7
8 Prijer 10 Kosi hitac Tijelo je izbačeno s površine Zelje početno brzino v 0 pod kuto prea horizontali. Odredite aksialnu visinu koju će doseći uz pretpostavku da na njega djeluje sao konstantna sila teža. Rezultat: v H sin 2g
9 Ponavljanje - Sudari Do sudara dolazi kada dvije ili više čestica (ili sistea čestica) približavajući se jedna drugoj, eđusobno djeluju i tie proijene svoje gibanje. Pri sudaru ne ora uvijek doći do fizičkog kontakta eđu tijelia, već je dovoljno da djeluju silaa jedno na drugo. Sudar ože biti savršeno elastičani i savršeno neelastičan, odnosno djeloično elastičan. Savršeno elastičan sudar: Vrijedi zakon o očuvanju količine gibanja. Tijela se nakon sudara vraćaju u prvobitni oblik, potencijalna energija elastične deforacije nastala priliko sudara tijela ponovo prelazi u kintečku energiju, i tijela se razilaze tako da i je ukupna kinetička energija nakon sudara jednaka ukupnoj kinetičkoj energiji prije sudara. Savršeno neelastičan sudar: Vrijedi zakon o očuvanju količine gibanja. Kinetička energija djeloično ili potpuno pretvara se u unutrašnju energiju (potencijalnu i kinetičku energiju teričkog gibanja olekula, te se stoga pri takvi sudaria tijela zagriju. Stoga ne vrijedi zakon o očuvanju ehaničke energije, jer se jedan njen dio pretvorio u neehanički oblik energije. Većina je akroskopskih sudara izeđu obadva eksrena slučaja, dakle djeloično su elastični. 9
10 Prijer 1 Očuvanje količine gibanja Uslijed unutarnje eksplozije tijelo ase M, koje je irovalo na podlozi bez trenja, raspadne se na tri dijela koji se razlete po podlozi, brzinaa prikazani na slici desno. Dio C, s aso 0,3M, ia brzinu v C = 5 /s. a) Kolika je brzina dijela B, s aso 0,2M? b) Kolika je brzina dijela? v 100 o v v cos 40 v C sin40 v C C C cos 40 0 sin40 v B B 0 v C 0,5 v v cos 40 s 3 s 0,3 v C cos o 0,5 v v B sin40 0,3 v sin40 sin40 0,5 3 0,3 5 s s 0,2 C 0,2 v 9,642 s B v B Rezultat: a) v B = 9,64 /s, b) v = 3 /s. 10
11 Prijer 2 Elastični sudar Dvije etalne kugle koje vise na konopia u početno položaju se dodiruju obješene vertikalno. Kugla 1, ase 1 = 30 g, se povuče ulijevo na visinu h 1 = 8 c i tada ispusti iz stanja irovanja. Pri prolasku kroz vertikalni položaj sudari se elastično s kuglo 2, koja ia asu 2 = 75 g. a) Kolika je brzina kugle 1 u trenutku neposredno nakon sudara? h b) Kolika je brzina kugle 2 u trenutku neposredno nakon sudara? Do koje visine će se popeti kugla 2 nakon sudara? Rezultat: a) v 1poslije = -0,537 /s, b) v 2poslije = 0,72 /s, h 2 = 2,6 c 11
12 Prijer 3 Potpuno neelastični sudar Prije nego su izuljeni elektronički uređaji, za jerenje brzine etaka koristilo se balističko njihalo, čija je jedna verzija prikazan na slici desno, a sastoji se od velikog drvenog bloka ase M = 5,4 kg koji visi na dva dugačka konopca. Metak ase = 9,5 g ispali se u pravcu bloka, koji ga vrlo brzo apsorbira. Blok+etak se poaknu na gore tako da i se zajednički centar ase poakne za visinu h = 6,3 c, kada se za v kratko zaustavi prije nego se počne gibati kao njihalo. Kolika je brzina etka u trenutku neposredno prije sudara? M h Rezultat: v = 633 /s. 12
9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
Више1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem
1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem i plinovitom. Mjerenje je postupak kojim fizičkim veličinama
ВишеДинамика крутог тела
Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.
ВишеMicrosoft PowerPoint - predavanje_sile_primena_2013
Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да
ВишеPrimjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom
ВишеMicrosoft PowerPoint - fizika 4-rad,snaga,energija2014
ФИЗИКА Понедељак, 3. Новембар, 2014 1. Рад 2. Кинетичка енергија 3. Потенцијална енергија 1. Конзервативне силе и потенцијална енергија 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
ВишеMicrosoft PowerPoint - fizika 4-rad,snaga,energija
ФИЗИКА 2008 Понедељак, 3. Новембар, 2008 1. Рад 2. Кинетичка 3. Потенцијална 1. 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије 5. Снага 1. Енергетика 2. Рад, и снага људи. Ефикасност
Више4.1 The Concepts of Force and Mass
Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE
ВишеТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,
ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
Више8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14
8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir
ВишеMicrosoft Word - Document1
10. Veza izeđu dva eleenta porojenja 110kV sa potporni izolatoria na nosačia izvedena je užadia Al/Fe 40/40 (slika ). Odrediti sile koje djeluju na ove potporne izolatore. Potrebni podaci za proračun su
ВишеSveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL
Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
Више4.1 The Concepts of Force and Mass
Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj
ВишеMicrosoft PowerPoint - Odskok lopte
UTJEČE LI TLAK ZRAKA NA ODSKOK LOPTE? Učenici: Antonio Matas (8.raz.) Tomislav Munitić (8.raz.) Mentor: Jadranka Vujčić OŠ Dobri Kliška 25 21000 Split 1. Uvod Uspjesi naših olimpijaca i održavanje svjetskog
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
ВишеNeodreeni integrali - Predavanje III
Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne
ВишеMicrosoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc
. Odredite ubitke tlaka pri strujanju zraka (ρ=,5 k/m 3 =konst., ν =,467-5 m /s) protokom =5 m 3 /s kroz cjevovod duljine L=6 m pravokutno presjeka axb=6x3 mm. Cijev je od alvanizirano željeza. Rješenje:
ВишеXIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja
Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erjavec Institut za fiziku, Zagreb Sažetak. Istraživački usmjerena nastava fizike ima veću učinkovitost
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеNastavno pismo 3
Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA
Више48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср
I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеMicrosoft Word - Predavanja doc
Zakoni sačuvanja količine gibanja i enegije Zakon sačuvanja količine gibanja Poatajo sustav od dvije ili više čestica ase,, 3... Čestice unuta sustava ogu djelovati jedna na dugu tzv. unutašnji silaa,
Више1
PITANJA IZ DINAMIKE 2 1. Neko tijelo se giba jednoliko po kruţnici. Vektori brzine u različitim točkama kruţnice: a) su jednaki b) nisu jednaki c) nalaze se na istom pravcu d) imaju isti smjer e) imaju
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič
Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti
ВишеOsnove fizike 1
Sveučilište u Rijeci ODJEL ZA INFORMATIKU Ulica Radmile Matejčić 2, Rijeka Akademska 2018./2019. godina OSNOVE FIZIKE 1 Studij: Preddiplomski studij informatike Godina i semestar: 1. godina; 1. semestar
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
Вишеmfb_april_2018_res.dvi
Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!
Више4.1 The Concepts of Force and Mass
UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Nikolina Svoboda Pokusi s računalom iz mehanike u interaktivnoj nastavi Di
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Nikolina Svoboda Pokusi s računalom iz mehanike u interaktivnoj nastavi Diplomski rad Voditelj rada: dr. sc. Ana Sušac Zagreb,
ВишеMicrosoft PowerPoint - fizika2-kinematika2012
ФИЗИКА 1. Понедељак, 8. октобар, 1. Кинематика тачке у једној димензији Кинематикакретањаудведимензије 1 Кинематика кретање свејеустањукретања кретање промена положаја тела (уодносу на друга тела) три
ВишеПрегријавање електромотора
1. Електрична тестера када се обрће нормалном брзином повлачи релативно малу јачину струје. Али ако се тестера заглави док сијече комад дрвета, осовина мотора је спријечена да се обрће па долази до драматичног
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је
Вишеgt3b.dvi
r t. h en m le w.e w w 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su primjerice duljina, površina, obujam, temperatura, tlak, masa, energija,
Вишеm3b.dvi
7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su, na primjer, duljina, površina, obujam, temperatura, tlak, masa, energija, specifična gustoća:::
ВишеMicrosoft PowerPoint - ravno kretanje [Compatibility Mode]
КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y
ВишеBS-predavanje-3-plinovi-krutine-tekucine
STRUKTURA ČISTIH TVARI Pojam temperature Porastom temperature raste brzina gibanja plina, osciliranje atoma i molekula u kristalu i tekućini Temperatura izražava intenzivnost gibanja atoma i molekula u
ВишеNumeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs
Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy
Више11
Refleksije Sve do sada, naročito za putujuće valove, niso razatrali što se događa kada val naiđe na kraj sustava ili se u sustavu proijeni reakcija sustava na putujući val proijeni se ipedancija. Vrlo
ВишеNAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn
NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS1 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijednost (ECTS) 7 Suradnici Dr. sc. Ado Matoković, prof. v.
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеPRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o
PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena
ВишеPitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske
Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
ВишеVektorske funkcije i polja Mate Kosor / 23
i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas
ВишеNAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE
NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
ВишеЗборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче
Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан
ВишеRomanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к
Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
Више4.1 The Concepts of Force and Mass
Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja
ВишеЗадатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл
Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и
Више8. ( )
8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед
Више(Microsoft Word doma\346a zada\346a)
1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )
ВишеMicrosoft Word - 7. cas za studente.doc
VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеCIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro
CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.
MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i
ВишеPowerPointova prezentacija
Heureka Spoznajom do uspjeha Nositelj projekta: Škola partner: Srednja škola Mate Blažine Labin Potpuno novi fakultativni predmeti u hrvatskom školstvu za gimnazijalce Statistika (2 sata/tjedan) Eksperimentalna
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеMicrosoft PowerPoint - 5. Predavanje-w2.pptx
Proizvodnja podržana računalom CAM 6. sem: IIM, PI, RI 5. predavanje 2018/2019 Zagreb, 3. travnja 2019. Proizvodnja Podjele i promjene proizvodnje Megatrendovi "Big Four" : Deloitte, PwC, EY, ikpmg. Promjena
ВишеDevelopment Case
Tehnička dokumentacija Verzija Studentski tim: Nastavnik: < izv. prof. dr. sc. Nikola Mišković> FER 2 -
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
Више1
PROVOđENJE TOPLOTE ovođenje toplote ili kondukcija je način kretanja toplote koji je svojstven čvrsti aterijalia, iako se pojavljuje (ali sa anearljivi inteniteto) i kod luida. Karakteristika aterijala
Више(Microsoft Word - Rje\232enja zadataka)
p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
ВишеMicrosoft Word - AM_SM_Samostalni_Rad.doc
OG2EM Zadaci za saostalni u toku druge polovine kursa Tekst sadrži 1 zadataka koji predstavljaju varijaciju zadataka rađenih u toku časova računskih vežbi. Izenjene su brojne vrednosti, ni režii, i slično.
ВишеMicrosoft Word - GI_novo - materijali za ispit
GEOTEHNIČKO INŽENJERSTVO DIJAGRAMI, TABLICE I FORMULE ZA ISPIT ak.god. 2011/2012 2 1 υi s yi = pb I syi Ei Slika 1. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos. Slika 2. Proračun nosivosti
Више15.JANUAR PLUS TEST 1 STRANA 2 1 Vozač je: 1 svako lice koje se u saobraćaju na putu nalazi u vozilu; 2 lice koje na putu upravlja vozilom. 2 Kako se
15.JANUAR PLUS TEST 1 STRANA 2 1 Vozač je: 1 svako lice koje se u saobraćaju na putu nalazi u vozilu; 2 lice koje na putu upravlja vozilom. 2 Kako se naziva uzdužni dio kolovoza namijenjen za saobraćaj
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
ВишеDvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f
ВишеЗборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху
Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,
ВишеMicrosoft PowerPoint - HG_1_2012
JEŽBE 1 -STRUKTURA ODONOSNIKA - TEČENJE U PODZEMLJU Split, 28. ožujka 2012. Struktura odonosnika TRODIJELNA STRUKTURA TLA: POJAM POROZNOSTI: Totalna poroznost n oluen pora oluen uzorka 100 100 Efektina
ВишеZOBS
Vozač je: svako lice koje se u saobraćaju na putu nalazi u vozilu; lice koje na putu upravlja vozilom. Da li se na vozila smiju postavljati gume sa ekserima? da; ne. 3 Kako se naziva uzdužni dio kolovoza
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеProracun strukture letelica - Vežbe 6
University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMicrosoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt
ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p
ВишеM e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn
M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =
ВишеRITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi
RITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi rad ih aloga koje ože o ruč o u ositi po potrebi.
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
ВишеRucka.dft
Средња машинска школа РАДОЈЕ ДАКИЋ АУТОДИЗАЛИЦА ТАРА Милош Мајсторовић Средња машинска Прорачун: школа Аутодизалице " Тара " Пројекат РАДОЈЕ ДАКИЋ Лист ПРОРАЧУН НОСИВОСТИ АУТОДИЗАЛИЦЕ " ТАРА " ПОДАЦИ:
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r
Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I
ВишеGravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu
Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Uvod Svojstva gravitacije dugodosežna interakcija graviton je bezmasena čestica statička
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
Више