PowerPoint Presentation

Величина: px
Почињати приказ од странице:

Download "PowerPoint Presentation"

Транскрипт

1 Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

2 Ponavljanje - Rad Rad je definiran kao djelovanje sile na određeno putu. Kod pravocrtnog gibanja tijela pod utjecaje stalne sile rad je jednak produktu sile i prijeđenog puta. Općenito, izraz za rad kada se čestica giba po putanji od točke do točke B je: B 2 2 Jedinica za rad zove se džul (joule, znak J): J N kg s F dr Rad sile dizanja (bez ubrzavanja tijela): Fs gh pri to je rad sile teže isti po iznosu, ali negativan 2 Rad pri stezanju opruge (zakon opruge, F=-ks): ks 2 pri to je rad elastične sile opruge isti po iznosu, ali negativan Rad pri svladavanju sile trenja: FN s pri to je rad sile trenja isti po iznosu, ali negativan. Rad pri rotaciji: 0 M z d 2

3 Ponavljanje - Kinetička i potencijalna energija Energija je sposobnost tijela ili sistea tijela da obavljaju rad: što tijelo ia veću energiju to je sposobnije obavljati rad. Proatrano ikroskopski postoje sao dvije vrste energije: kinetička i potencijalna, a svi se ostali oblici ogu na njih svesti. 2 2 Kinetička energija tijela ase i brzine v: v p Ek 2 2 Projena kinetičke energije jednaka je izvršeno radu: E (poučak o radu i kinetičkoj energiji) k 2 Ek1 Ek Potencijalna energija tijela je ona koju tijelo ia zbog svojega položaja prea drugi tijelia ili konfiguraciji tijela. Gravitacijska potencijalna energija tijela (u gravitacijsko polju na Zeljinoj površini) ase, na visini y, iznosi:, pri to je pretpostavljeno da je E p = 0 za y = 0. E p gy Sila kojoj rad ne ovisi o putu već sao o početnoj i konačnoj točki zove se konzervativna sila. Rad konzervativne sile po zatvoreno putu jednak je nuli: F k dr 0 Rad konzervativne sile izeđu dva položaja tijela jednak je razlici potencijalne energije početnog i krajnjeg položaja: (poučak o radu i potencijalnoj energiji) B E p( r ) E p( rb ) Rad vanjske sile jednak je sui projene potencijalne i projene kinetičke energije: (uz zanearenu silu trenja) (poučak o radu i ukupnoj energiji) E p E k 3

4 Ponavljanje - Zakon očuvanja energije. Snaga. Energija se ože pretvarati iz jednog oblika u drugi, pri čeu je u izolirano sisteu zbroj energija konstantan. Ukupni rad svih sila jednak je projeni kinetičke energije: k nk E k gdje je k E p rad što ga izvrše kozervativne sile, a nk rad što ga izvrše nekonzervativne sile. Ukupna energija ne ože se uništiti niti ni iz čega stvoriti, ona se ože sao pretvarati iz jednog oblika u drugi. Snaga se definira ojero rada i vreena, pa biso je ogli shvatiti kao brzinu obavljanja rada, odnosno prijenosa energije: P lip t0 li t0 t 2 2 t 1 1 E li t0 t 2 2 E t 1 1 d dt F v 4

5 Prijer 7 Rad dizanja Teret ase 15 kg podignut je kabelo po kosini, iz početnog stanja irovanja, na visinu h = 2,5 i pri to stalno brzino prešao put od d = 2,7 te se zaustavio. a) Koliki je rad gravitacijske sile tijeko podizanja tereta? b) Koliki je rad sile napetosti u kabelu tijeko podizanja tereta? rad gravitacijske sile : g ds G G duž puta g cos duž puta duž puta g ds cos ds gd cos g F n ds 90 h sin d h cos cos 90 cos sin90 sin sin d h G gd cos gd gh 367,9 J d Rezultat: a) g = -367,9 J, b) N = 367,9 J. rad sile napetosti : N FN ds F F N N duž puta g sin g g h d N duž puta h d ds d gh 367,9 J F N d 5

6 Prijer 8 Zakon očuvanja energije Na slici desno prikazano je dijete ase koje se spušta s tobogana iz stanja irovanja. Visina tobogana je h = 8,5 iznad vode. Pretpostavljajući da pri spuštanju niz tobogan nea trenja (zbog vode) izračunajte brzinu djeteta na dnu tobogana. Rezultat: v = 13 /s. 6

7 Prijer 9 Zakon očuvanja energije Bungee-juping skakač ase 61 kg nalazi se na ostu visine 60 i vezan je za elastično uže duljine 25. Pretpostavite da se uže ponaša kao elastična opruga s konstanto opruge k = 160 N/. ko se nakon skoka skakač zaustavi, izračunajte na kojoj visini iznad površine vode u se nalaze stopala. Rezultat: h = 17,3. 7

8 Prijer 10 Kosi hitac Tijelo je izbačeno s površine Zelje početno brzino v 0 pod kuto prea horizontali. Odredite aksialnu visinu koju će doseći uz pretpostavku da na njega djeluje sao konstantna sila teža. Rezultat: v H sin 2g

9 Ponavljanje - Sudari Do sudara dolazi kada dvije ili više čestica (ili sistea čestica) približavajući se jedna drugoj, eđusobno djeluju i tie proijene svoje gibanje. Pri sudaru ne ora uvijek doći do fizičkog kontakta eđu tijelia, već je dovoljno da djeluju silaa jedno na drugo. Sudar ože biti savršeno elastičani i savršeno neelastičan, odnosno djeloično elastičan. Savršeno elastičan sudar: Vrijedi zakon o očuvanju količine gibanja. Tijela se nakon sudara vraćaju u prvobitni oblik, potencijalna energija elastične deforacije nastala priliko sudara tijela ponovo prelazi u kintečku energiju, i tijela se razilaze tako da i je ukupna kinetička energija nakon sudara jednaka ukupnoj kinetičkoj energiji prije sudara. Savršeno neelastičan sudar: Vrijedi zakon o očuvanju količine gibanja. Kinetička energija djeloično ili potpuno pretvara se u unutrašnju energiju (potencijalnu i kinetičku energiju teričkog gibanja olekula, te se stoga pri takvi sudaria tijela zagriju. Stoga ne vrijedi zakon o očuvanju ehaničke energije, jer se jedan njen dio pretvorio u neehanički oblik energije. Većina je akroskopskih sudara izeđu obadva eksrena slučaja, dakle djeloično su elastični. 9

10 Prijer 1 Očuvanje količine gibanja Uslijed unutarnje eksplozije tijelo ase M, koje je irovalo na podlozi bez trenja, raspadne se na tri dijela koji se razlete po podlozi, brzinaa prikazani na slici desno. Dio C, s aso 0,3M, ia brzinu v C = 5 /s. a) Kolika je brzina dijela B, s aso 0,2M? b) Kolika je brzina dijela? v 100 o v v cos 40 v C sin40 v C C C cos 40 0 sin40 v B B 0 v C 0,5 v v cos 40 s 3 s 0,3 v C cos o 0,5 v v B sin40 0,3 v sin40 sin40 0,5 3 0,3 5 s s 0,2 C 0,2 v 9,642 s B v B Rezultat: a) v B = 9,64 /s, b) v = 3 /s. 10

11 Prijer 2 Elastični sudar Dvije etalne kugle koje vise na konopia u početno položaju se dodiruju obješene vertikalno. Kugla 1, ase 1 = 30 g, se povuče ulijevo na visinu h 1 = 8 c i tada ispusti iz stanja irovanja. Pri prolasku kroz vertikalni položaj sudari se elastično s kuglo 2, koja ia asu 2 = 75 g. a) Kolika je brzina kugle 1 u trenutku neposredno nakon sudara? h b) Kolika je brzina kugle 2 u trenutku neposredno nakon sudara? Do koje visine će se popeti kugla 2 nakon sudara? Rezultat: a) v 1poslije = -0,537 /s, b) v 2poslije = 0,72 /s, h 2 = 2,6 c 11

12 Prijer 3 Potpuno neelastični sudar Prije nego su izuljeni elektronički uređaji, za jerenje brzine etaka koristilo se balističko njihalo, čija je jedna verzija prikazan na slici desno, a sastoji se od velikog drvenog bloka ase M = 5,4 kg koji visi na dva dugačka konopca. Metak ase = 9,5 g ispali se u pravcu bloka, koji ga vrlo brzo apsorbira. Blok+etak se poaknu na gore tako da i se zajednički centar ase poakne za visinu h = 6,3 c, kada se za v kratko zaustavi prije nego se počne gibati kao njihalo. Kolika je brzina etka u trenutku neposredno prije sudara? M h Rezultat: v = 633 /s. 12

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem

1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem 1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem i plinovitom. Mjerenje je postupak kojim fizičkim veličinama

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

Microsoft PowerPoint - predavanje_sile_primena_2013

Microsoft PowerPoint - predavanje_sile_primena_2013 Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014 ФИЗИКА Понедељак, 3. Новембар, 2014 1. Рад 2. Кинетичка енергија 3. Потенцијална енергија 1. Конзервативне силе и потенцијална енергија 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija

Microsoft PowerPoint - fizika 4-rad,snaga,energija ФИЗИКА 2008 Понедељак, 3. Новембар, 2008 1. Рад 2. Кинетичка 3. Потенцијална 1. 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије 5. Снага 1. Енергетика 2. Рад, и снага људи. Ефикасност

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14 8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir

Више

Microsoft Word - Document1

Microsoft Word - Document1 10. Veza izeđu dva eleenta porojenja 110kV sa potporni izolatoria na nosačia izvedena je užadia Al/Fe 40/40 (slika ). Odrediti sile koje djeluju na ove potporne izolatore. Potrebni podaci za proračun su

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj

Више

Microsoft PowerPoint - Odskok lopte

Microsoft PowerPoint - Odskok lopte UTJEČE LI TLAK ZRAKA NA ODSKOK LOPTE? Učenici: Antonio Matas (8.raz.) Tomislav Munitić (8.raz.) Mentor: Jadranka Vujčić OŠ Dobri Kliška 25 21000 Split 1. Uvod Uspjesi naših olimpijaca i održavanje svjetskog

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

Microsoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc

Microsoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc . Odredite ubitke tlaka pri strujanju zraka (ρ=,5 k/m 3 =konst., ν =,467-5 m /s) protokom =5 m 3 /s kroz cjevovod duljine L=6 m pravokutno presjeka axb=6x3 mm. Cijev je od alvanizirano željeza. Rješenje:

Више

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja

XIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erjavec Institut za fiziku, Zagreb Sažetak. Istraživački usmjerena nastava fizike ima veću učinkovitost

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Microsoft Word - Predavanja doc

Microsoft Word - Predavanja doc Zakoni sačuvanja količine gibanja i enegije Zakon sačuvanja količine gibanja Poatajo sustav od dvije ili više čestica ase,, 3... Čestice unuta sustava ogu djelovati jedna na dugu tzv. unutašnji silaa,

Више

1

1 PITANJA IZ DINAMIKE 2 1. Neko tijelo se giba jednoliko po kruţnici. Vektori brzine u različitim točkama kruţnice: a) su jednaki b) nisu jednaki c) nalaze se na istom pravcu d) imaju isti smjer e) imaju

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

Osnove fizike 1

Osnove fizike 1 Sveučilište u Rijeci ODJEL ZA INFORMATIKU Ulica Radmile Matejčić 2, Rijeka Akademska 2018./2019. godina OSNOVE FIZIKE 1 Studij: Preddiplomski studij informatike Godina i semestar: 1. godina; 1. semestar

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Nikolina Svoboda Pokusi s računalom iz mehanike u interaktivnoj nastavi Di

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Nikolina Svoboda Pokusi s računalom iz mehanike u interaktivnoj nastavi Di SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Nikolina Svoboda Pokusi s računalom iz mehanike u interaktivnoj nastavi Diplomski rad Voditelj rada: dr. sc. Ana Sušac Zagreb,

Више

Microsoft PowerPoint - fizika2-kinematika2012

Microsoft PowerPoint - fizika2-kinematika2012 ФИЗИКА 1. Понедељак, 8. октобар, 1. Кинематика тачке у једној димензији Кинематикакретањаудведимензије 1 Кинематика кретање свејеустањукретања кретање промена положаја тела (уодносу на друга тела) три

Више

Прегријавање електромотора

Прегријавање електромотора 1. Електрична тестера када се обрће нормалном брзином повлачи релативно малу јачину струје. Али ако се тестера заглави док сијече комад дрвета, осовина мотора је спријечена да се обрће па долази до драматичног

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је

Више

gt3b.dvi

gt3b.dvi r t. h en m le w.e w w 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su primjerice duljina, površina, obujam, temperatura, tlak, masa, energija,

Више

m3b.dvi

m3b.dvi 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su, na primjer, duljina, površina, obujam, temperatura, tlak, masa, energija, specifična gustoća:::

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

BS-predavanje-3-plinovi-krutine-tekucine

BS-predavanje-3-plinovi-krutine-tekucine STRUKTURA ČISTIH TVARI Pojam temperature Porastom temperature raste brzina gibanja plina, osciliranje atoma i molekula u kristalu i tekućini Temperatura izražava intenzivnost gibanja atoma i molekula u

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

11

11 Refleksije Sve do sada, naročito za putujuće valove, niso razatrali što se događa kada val naiđe na kraj sustava ili se u sustavu proijeni reakcija sustava na putujući val proijeni se ipedancija. Vrlo

Више

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS1 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijednost (ECTS) 7 Suradnici Dr. sc. Ado Matoković, prof. v.

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro

CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

PowerPointova prezentacija

PowerPointova prezentacija Heureka Spoznajom do uspjeha Nositelj projekta: Škola partner: Srednja škola Mate Blažine Labin Potpuno novi fakultativni predmeti u hrvatskom školstvu za gimnazijalce Statistika (2 sata/tjedan) Eksperimentalna

Више

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5. Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

Microsoft PowerPoint - 5. Predavanje-w2.pptx

Microsoft PowerPoint - 5. Predavanje-w2.pptx Proizvodnja podržana računalom CAM 6. sem: IIM, PI, RI 5. predavanje 2018/2019 Zagreb, 3. travnja 2019. Proizvodnja Podjele i promjene proizvodnje Megatrendovi "Big Four" : Deloitte, PwC, EY, ikpmg. Promjena

Више

Development Case

Development Case Tehnička dokumentacija Verzija Studentski tim: Nastavnik: < izv. prof. dr. sc. Nikola Mišković> FER 2 -

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

1

1 PROVOđENJE TOPLOTE ovođenje toplote ili kondukcija je način kretanja toplote koji je svojstven čvrsti aterijalia, iako se pojavljuje (ali sa anearljivi inteniteto) i kod luida. Karakteristika aterijala

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Microsoft Word - AM_SM_Samostalni_Rad.doc

Microsoft Word - AM_SM_Samostalni_Rad.doc OG2EM Zadaci za saostalni u toku druge polovine kursa Tekst sadrži 1 zadataka koji predstavljaju varijaciju zadataka rađenih u toku časova računskih vežbi. Izenjene su brojne vrednosti, ni režii, i slično.

Више

Microsoft Word - GI_novo - materijali za ispit

Microsoft Word - GI_novo - materijali za ispit GEOTEHNIČKO INŽENJERSTVO DIJAGRAMI, TABLICE I FORMULE ZA ISPIT ak.god. 2011/2012 2 1 υi s yi = pb I syi Ei Slika 1. Proračun slijeganja vrha temelja po metodi prema Mayne & Poulos. Slika 2. Proračun nosivosti

Више

15.JANUAR PLUS TEST 1 STRANA 2 1 Vozač je: 1 svako lice koje se u saobraćaju na putu nalazi u vozilu; 2 lice koje na putu upravlja vozilom. 2 Kako se

15.JANUAR PLUS TEST 1 STRANA 2 1 Vozač je: 1 svako lice koje se u saobraćaju na putu nalazi u vozilu; 2 lice koje na putu upravlja vozilom. 2 Kako se 15.JANUAR PLUS TEST 1 STRANA 2 1 Vozač je: 1 svako lice koje se u saobraćaju na putu nalazi u vozilu; 2 lice koje na putu upravlja vozilom. 2 Kako se naziva uzdužni dio kolovoza namijenjen za saobraćaj

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Microsoft PowerPoint - HG_1_2012

Microsoft PowerPoint - HG_1_2012 JEŽBE 1 -STRUKTURA ODONOSNIKA - TEČENJE U PODZEMLJU Split, 28. ožujka 2012. Struktura odonosnika TRODIJELNA STRUKTURA TLA: POJAM POROZNOSTI: Totalna poroznost n oluen pora oluen uzorka 100 100 Efektina

Више

ZOBS

ZOBS Vozač je: svako lice koje se u saobraćaju na putu nalazi u vozilu; lice koje na putu upravlja vozilom. Da li se na vozila smiju postavljati gume sa ekserima? da; ne. 3 Kako se naziva uzdužni dio kolovoza

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Proracun strukture letelica - Vežbe 6

Proracun strukture letelica - Vežbe 6 University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више

RITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi

RITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi RITAM FORMS - PROIZVODNJA - NARUDŽBE I PLANIRANJE - PLAN PROIZVODNJE Stranica 1 od 10 Plan proizvodnje U pro esu proizvod je proizvodi astaju a os ovi rad ih aloga koje ože o ruč o u ositi po potrebi.

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Rucka.dft

Rucka.dft Средња машинска школа РАДОЈЕ ДАКИЋ АУТОДИЗАЛИЦА ТАРА Милош Мајсторовић Средња машинска Прорачун: школа Аутодизалице " Тара " Пројекат РАДОЈЕ ДАКИЋ Лист ПРОРАЧУН НОСИВОСТИ АУТОДИЗАЛИЦЕ " ТАРА " ПОДАЦИ:

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Uvod Svojstva gravitacije dugodosežna interakcija graviton je bezmasena čestica statička

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,

Више