Microsoft Word - vjezbe_7.doc

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - vjezbe_7.doc"

Транскрипт

1 VJEŽBE 7

2 Zadata 3 Brd čiji perid ljuljanja T Ф iznsi seundi, plvi brzinm v3 čvrva na valvima čija je valna duljina λ73 metra Ptrebn je drediti ut nailasa brda na valve pri jem će ljuljanje biti najveće Najveći dziv ljuljanja bit će d e β dnsn ad je efetivna susretna frevencija jednaa frevenciji valva e Efetivna susretna frevencija dana je slijedećim izrazm e ( v cs µ ) g Prirdna frevencija ljuljanja brda iznsi 9s TΦ Za valve u dubj vdi frevenciju mžem drediti prema izrazu g 9 8 7s λ 7 3 Kut nailasa na valve d jeg je ljuljanje najveće iznsi e v cs µ g ( )g cs µ v µ 8 µ 8 Ljuljanje brda na valvima mguće je prmijeniti prmjenm uta susretanja ili prmjenm brzine nailasa brda na valve

3 Zadata Pluurnjiva platfrma mase 00 tna nalazi se u avatriju u jem masimalna duljina vala ja se čeuje iznsi λ max 0 m Pridružena masa d njihanja pniranja platfrme iznsi 80% mase platfrme, prigušenje zanemarim Vdna linija sastji se d četiri ružna presjea Ptrebn je draditi prmjer cilindričnih stupva platfrme, dnsn minimalni perid prirdnih scilacija, da pniranje platfrma u avatriju u jem se nalazi ne bude značajn Jednadžba pniranja platfrme glasi m 3 ) ( + a ( )) + b ( + f (t) Jednadžba slbdnih scilacija f 3 ()0, uz a ()08m, te uz zanemaren prigušenje glasi ( m + 0 8m) + ρga ρg + A 8m dnsn peridna frevencija pniranja m + a T Perid vala iznsi g λ m + a 8m T ρga T λ 0 s g 9 8 λ Prmjer cilindara mžem dbiti iz slijedećeg uvjeta 8 ( ) m 8 π 00 A m ρgt 0 λ D π A m D 6 7m π λ

4 Zadata Za brd slijedećih dimenzija: L8 m B78 m T6 m te uz uvjete: C B C ddatna masa d pniranja a 90% mase da prigušenje mže biti zanemaren ptrebn je drediti: a) perid pniranja u mirnm mru b) izraz za sciliranje pniranja u mirnm mru, a je pčetni pma iz ravntežng plžaja, brzina pniranja u tm trenutu (za t0 s) iznsila je v68 m/s c) masimalnu silu jm vitl teš tne djeluje na palubu brda Prirdni perid sciliranja pniranja dan je slijedećim izrazm m + a T m + a m + 0 9m 9m 9 ρ L B T ρga ρ g L B C 9 ρ L B T CB 9 T 9 6 T π 6 8s ρ g L B C g 9 8 dnsn frevencija prirdnih scilacija pniranja iznsi 9s 6 8 T C B Diferencijalna jednadžba slbdng sciliranja pniranja glasi ( m + a ( )) + b ( ) + čije se rješenje mže pretpstaviti u bliu Asin t + Bcs t 3 Knstante A i B mžem drediti iz pčetnih uvjeta za t0 s B d za t0s ( A cs t) A t0s A 68m /s A Jednadžba slbdng pniranja glasi z 83sin 0 9t 0 Uupna sila jm vitl djeluje na palubu je zbrj sile teže i sile inercije uslijed gibanja pniranja Najveća sila je u trenutu ad sila inercije dseže svj masimum u smjeru sile teže d F mg + m

5 d A sin t Sila inercije ima masimum u trenutu t ad je sin t i na iznsi d F mg + m m(g + A ) 000( ) N

6 Zadata 6 Brd istisnine 000 tna ima radijus trmsti uzdužne si r 9 m i pprečnu metacentarsu visinu GM m A eficijent mmenta prigušenja ljuljanja iznsi b gm /s, d ljuljanja brda na mirnm mru, ptrebn je drediti amplitudu ljuljanja nan tri puna perida a je brd na pčetu bi nagnut za ut 7 Mment inercije ddatne mase iznsi 0% mmenta inercije mase brda d ljuljanja Diferencijalnu jednadžbu ljuljanja mžem napisati u slijedećem bliu b ν + Rješenje diferencijalne jednadžbe mže se napisati u slijedećem bliu ν e t (Ccs t + Dsin t) gdje je b 9687 ν 060 s ( ) I Frevencija prigušeng njihanja ljuljanja iznsi ν ggm r s s U trenutu t0 s 7 pa je C7 d i νt νt stga je e ( Csin t + Dcs t) - νe ( Ccs t + Dsin t) D Cν D pa rješenje jednadžbe glasi 0 030t e (7cs 0 37t sin 0 37 ) t Perid sciliranja iznsi T 6 s Amplituda ljuljanja nan tri puna perida iznsi T' 3 T s T' 3T) e (

7 Kut nagiba brda Kut nagiba [stupnjeva] t [s]

8 Zadata 7 Za brd slijedećih dimenzija: L000 m B00 m T0 m čija istisnina iznsi 000 t C B 08 GM L 00m - uzdužni metacentarsi radijus m - radijus trmsti mase pprečne si rz težište brda ji pd utm d µ80 nailazi na pravilne harmnijse valve čija amplituda iznsi ζ a 3 m Susretna frevencija e 8 s -, gustća mrse vde ρ000 g/m 3 t/m 3 Ddatni mment inercije brda iznsi % mmenta inercije pprečne si, gl bezdimenzinalni eficijent prigušenja za psrtanje dan je izrazm b 0 g L Ma a bezdimenzinalna amplituda mmenta psrtanja ρgζ al B Ptrebn je drediti jednadžbu njihanja psrtanja, dnsn amplitudu i fazni pma psrtanja brda Diferencijalna jednadžba psrtanja brda glasi ( I ( )) + b ( ) + f ( t) Keficijenti u diferencijalnj jednadžbi iznse: mment inercije mase i ddatne mase lne vde d psrtanja I tm g L eficijent prigušenja b 6930 tm / s gl amplituda uzbudng mmenta M eficijent rutsti g GML tm s a ρgζ al B tm / s / Diferencijalnu jednadžbu njihanja mžem napisati a b ν + I f ( t) f ( t) Rješenje diferencijalne jednadžbe mže se napisati u slijedećem bliu cs( t a e ε) a - nepznata amplituda psrtanja ε - nepznati fazni pma psrtanja Amplitudu psrtanja mžem drediti a umnža statičg pmaa i eficijenta dinamičnsti α a ast M a ast 09 rad α ( β ) + γ β

9 α ( β γ ν ν I I b ν 0 7 γ e 8 β ) + γ β ( 69 ) s s Amplituda psrtanja iznsi a ast α rad / s Fazni pma između vala i njihanja psrtanja sastji se iz dva dijela, fazng pmaa ε između vala i uzbudng mmenta, te fazng pmaa ε između uzbudng mmenta i njihanja psrtanja ε ε + ε ε 90 γβ 0 69 tgε 3 ε 3 7 β 69

Microsoft Word - NASLOVNA.docx

Microsoft Word - NASLOVNA.docx Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Ivančica Cvetko Zagreb, 29. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada : Dr. sc. Većeslav

Више

Microsoft Word - SVODJENJE NA I KVADRAT.doc

Microsoft Word - SVODJENJE NA I KVADRAT.doc SVODJENJE NA I KVADRAT Ka št sm videli d sada, trignmetrijske funkcije uglva I kvadranta izračunavaju se na isti način ka trignmetrijske funkcije štrih uglva pravuglg trugla. Pkazaćem da se prek frmula,

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

LJUSKE I KUPOLE Povjesne kupole

LJUSKE I KUPOLE Povjesne kupole Kada je brj jednadžbi veliki u metdi pmaka nda se rješavanje jednadžbi inženjerske metde pmaka radi iterativnim pstupkm. Pstji neklik iterativnih metda kjima se t radirazlikuju se p pretpstavkama u plaznm

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Microsoft Word - rokovi_2019.docx

Microsoft Word - rokovi_2019.docx 4..019. pismeni ispit 1. Materijalna toča mase 0.5 miruje na hrapaoj osini (α=15 i μ=0.3), ad na nju počne djeloati osa sila (t) oja se mijenja prema priazanom dijaramu. Treba odrediti dijarame R(t), a(t)

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu

Више

Microsoft Word - ADICIONE FORMULE.doc

Microsoft Word - ADICIONE FORMULE.doc ADICIONE FORMULE Zbir uglva ( α+ β ) α csβ+ cs( α+ β ) csβ α + tg( α+ β ) c c ctg( α+ β ) c + c Razlika uglva ( α β ) α csβ cs( α β ) csβ+ α tg( α β ) c c+ ctg( α β ) c c Primećujete da su frmule za razliku

Више

Otpornost materijala

Otpornost materijala Predmetni nastavnik dr Rade Đukić, prfesr VTŠ dr Dragan Čukanvić Cilj predmeta: Sticanje znanja zaknima kretanja materijalnih tela i meďusbnm dejstvu izmeďu tela, kja su inţenjeru nephdna za rešavanje

Више

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзина аутомобила пре предузетог кочења Vo = 68 km/, успорење

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Microsoft PowerPoint - Teorija kreanja vozila-predavanje 2.2.ppt

Microsoft PowerPoint - Teorija kreanja vozila-predavanje 2.2.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична взила, кинематика кретања Разматра се случај кретања взила у хризнталнј равни, са слнкретним механизмм кји има један пар гусеница. Упштен, путања при кретању

Више

Microsoft Word - clanakGatinVukcevicJasak.doc

Microsoft Word - clanakGatinVukcevicJasak.doc Šesti susret Hrvatskoga društva za mehaniku Rijeka, 29-30. svibnja 2014. PRIMJENA NAVAL HYDRO PAKETA ZA PRORAČUN VALNIH OPTEREĆENJA Gatin, I., Vukčević, V. & Jasak, H. Sažetak: Ovaj rad prikazuje mogućnosti

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

Slide 1

Slide 1 BETONSKE KONSTRUKCIJE 2 vježbe, 12.-13.12.2017. 12.-13.12.2017. DATUM SATI TEMATSKA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponavljanje poznatih postupaka

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Josip Karačić Zagreb, godina.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Josip Karačić Zagreb, godina. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Zagreb, 2019. godina. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE DIPLOMSKI RAD Mentori: prof. dr. sc. Smiljko Rudan

Више

IZVEŠTAJ

IZVEŠTAJ I Z V E Š TA J bjavljivanju pdataka i infrmacija Grupe Kmercijalna banka A.D. Begrad na dan 30.06.2012. gdinu Brj izveštaja 06 Šifra dkumenta KOMBANK RM 02 11 Datum izveštaja 25. septembar 2012. gdine

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja

Више

Microsoft PowerPoint - predavanje_sile_primena_2013

Microsoft PowerPoint - predavanje_sile_primena_2013 Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

IZVEŠTAJ

IZVEŠTAJ I Z V E Š TA J bjavljivanju pdataka i infrmacija Kmercijalne banke A.D. Begrad na dan 30.06.2014. gdine Brj izveštaja 08 Šifra dkumenta KOMBANK RM 02 11 Datum izveštaja 18. septembar 2014. gdine SADRŽAJ

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 4.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 4.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање 4.1 гусенична возила, отпори кретања, Код дефинисања параметара функција кретања возила на гусеницама разматрају се следећи случајеви кретања: а) праволиниjско кретање

Више

Microsoft PowerPoint - fizika 9-oscilacije

Microsoft PowerPoint - fizika 9-oscilacije Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања = 5 поена (са више од 3 одсуствовања са предавања се не могу добити) Лабораторијске вежбе = 10 поена обавезни сви поени односно

Више

Microsoft PowerPoint - NG_A-Perspektiva-2.ppt

Microsoft PowerPoint - NG_A-Perspektiva-2.ppt Perspektiva Metrički zadaci dc. dr. sc. Mirna Rdić Lipanvić TTF Nacrtna gemetrija A Prblem: Kak drediti pravu veličinu dužine kja leži na sutražnici ili priklnici rizntalne ravnine, ili na vertikalnm pravcu,

Више

IZVEŠTAJ

IZVEŠTAJ I Z V E Š TA J bjavljivanju pdataka i infrmacija Grupe Kmercijalna banka A.D. Begrad na dan 30.06.2014. gdinu Brj izveštaja 08 Šifra dkumenta KOMBANK RM 02-11 Datum izveštaja 18. septembar 2014. gdine

Више

ma??? - Primer 1 Spregnuta ploca

ma??? - Primer 1 Spregnuta ploca Primer 1 - proračun spregnute ploče na profilisanom limu 1. Karakteristike spregnute ploče Spregnuta ploča je raspona 4 m. Predviđen je jedan privremeni oslonac u polovini raspona ploče u toku građenja.

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

KaPuSaO CAD SOFTVERSKI PAKET Računarski program KaPuSaO, je softverski paket koji je namenjen evidentiranju i administriranju putnih pojava, saobraćaj

KaPuSaO CAD SOFTVERSKI PAKET Računarski program KaPuSaO, je softverski paket koji je namenjen evidentiranju i administriranju putnih pojava, saobraćaj KaPuSaO CAD SOFTVERSKI PAKET Računarski prgram KaPuSaO, je sftverski paket kji je namenjen evidentiranju i administriranju putnih pjava, sabraćajne signalizacije (hrizntalne i vertikalne), sabraćajnih

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

Microsoft PowerPoint - KoMoMa -predavanje Definisanje alata masina

Microsoft PowerPoint - KoMoMa -predavanje Definisanje alata masina КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА Треће предавање дефинисање алата машина, кашике мини багера Кнематички ланци: E z = { L 1,L a) прости, б) разгранати, в) сложени,...,l n } а) L 1 б) L L n L 3 O 1 L o O n L

Више

zad_6_2.doc

zad_6_2.doc .. S- i S- komunikacioni standardi Zadatak. Pomoću MX i čipa, potrebno je realizovati konvertor S- na S-. MX ima raspored pinova kao na slici..,0μf +V +V ULZ V CC T IN T IN OUT IN T OUT 0 9 OUT IN T OUT

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati (30P+10V) Praktikum: 20 sati (S) Voditelj predmeta:

Више

PowerPoint Presentation

PowerPoint Presentation МОБИЛНЕ МАШИНЕ II предавање 4.2 \ ослоно-кретни механизми на точковима, кинематика и динамика точка Кинематика точка обимна брзини точка: = t транслаторна брзина точка: = t Услов котрљања точка без проклизавања:

Више

12_vjezba_Rj

12_vjezba_Rj 1. zadatak Industrijska parna turbina treba razvijati snagu MW. U turbinu ulazi vodena para tlaka 0 bara i temperature 400 o C, u kojoj ekspandira adijabatski na 1 bar i 10 o C. a) Potrebno je odrediti

Више

7 NUMERICKO ODREÐIVANJE DINAMICKOG ODZIVA

7   NUMERICKO ODREÐIVANJE DINAMICKOG ODZIVA VIBRACIJE KONTINUIRANIH SUSTAVA Ssavi s isribiranom (raspojejenom masom i krosi; Beskonačno mnoo spnjeva soboe; Jenažbe maemaičko moea s parijane ierenijane jenažbe; Preposavke rješenja: maerija je homoen,

Више

Sveučilišni preddiplomski studij Biotehnologija i istraživanje lijekova Akademska godina 2017./18. FIZIKA 1. KOLOKVIJ IME I PREZIME BROJ BO

Sveučilišni preddiplomski studij Biotehnologija i istraživanje lijekova Akademska godina 2017./18. FIZIKA 1. KOLOKVIJ IME I PREZIME BROJ BO Sveučilišni preddiplomski studij Biotehnologija i istraživanje lijekova Akademska godina 2017./18. FZKA 1. KOLOKVJ 16.2.2018. ME PREZME BROJ BODOVA Upute za pisanje kolokvija: Pri rješavanju zadataka pazite

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Rucka.dft

Rucka.dft Средња машинска школа РАДОЈЕ ДАКИЋ АУТОДИЗАЛИЦА ТАРА Милош Мајсторовић Средња машинска Прорачун: школа Аутодизалице " Тара " Пројекат РАДОЈЕ ДАКИЋ Лист ПРОРАЧУН НОСИВОСТИ АУТОДИЗАЛИЦЕ " ТАРА " ПОДАЦИ:

Више

ISPIT_23_VI_2015_R.cdr

ISPIT_23_VI_2015_R.cdr P Z RGAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PREZME (BAVEZ ŠAMPAM LVMA) BRJ EKA (UKLK E RAE ZAAKA RAZVJE, BAVEZ E PPA A VAKJ RA) APMEE: (0) (+1) (0) (+1) - ZA PAJE ELEMEA

Више

(Microsoft Word doma\346a zada\346a)

(Microsoft Word doma\346a zada\346a) 1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )

Више

1 AKCIJSKA PONUDA OKOVA KOLOVOZ 2019.

1 AKCIJSKA PONUDA OKOVA KOLOVOZ 2019. AKCIJSKA PONUDA OKOVA KOLOVOZ 2019. PROVJERITE CIJENE BLUMA, POŠALJITE NAM UPIT Na navedene cijene odobravamo 50% rabata po ugovoru CJENIK ZA OKOV ZA GRAĐ. I NAMJEŠTAJ JM VPC u Kn SLIKA 432-716 Brtvilo

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJA I PRIMJERI IZ FIZIKE Završni rad Tomislav Kneţević

Више

Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje Katedra za strojeve i uređaje plovnih objekata PRIMJER PRORAČUNA PORIVNOG SUSTAVA RIBARSKOG

Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje Katedra za strojeve i uređaje plovnih objekata PRIMJER PRORAČUNA PORIVNOG SUSTAVA RIBARSKOG PRIMJER PRORAČUNA PORIVNOG SUSTAVA RIBARSKOG BRODA prof. dr. sc. Ante Šestan Ivica Ančić, mag. ing. Predložak za vježbe iz izbornog kolegija Porivni sustavi malih brodova Primjer proračuna porivnog sustava

Више

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14 8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir

Више

Opšte korisničko uputstvo

Opšte korisničko uputstvo ELBA v5 Opšte krisničk uputstv Sadržaj 1 Pkretanje aplikacije... 3 1.1 Ddatna autentikacija... 3 1.2 Odaberi vlasnika... 4 2 Pčetna stranica... 5 2.1 Sekcija Pruke... 6 2.2 Sekcija Psljednje transakcije...

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са

Више

Evidencijski broj: J11/19 KNJIGA NACRTI SANACIJA ZATVORENOG SUSTAVA ODVODNJE U KM , AUTOCESTA A1 ZAGREB - SPLIT - DUBROVNIK, DIONICA OTO

Evidencijski broj: J11/19 KNJIGA NACRTI SANACIJA ZATVORENOG SUSTAVA ODVODNJE U KM , AUTOCESTA A1 ZAGREB - SPLIT - DUBROVNIK, DIONICA OTO Evidencijski broj: J/9 KNJIGA.. NACRTI SANACIJA ZATVORENOG SUSTAVA ODVODNJE U KM +, AUTOCESTA A ZAGREB - SPLIT - DUBROVNIK, DIONICA OTOČAC - PERUŠIĆ separator (post) spojno okno (zamjena postojećeg okna)

Више

1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem

1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem 1. Tijela i tvari Sva tijela zauzimaju prostor. Tijela su načinjena od tvari. Tvari se mogu nalaziti u trima agregacijskim stanjima: čvrstom, tekućem i plinovitom. Mjerenje je postupak kojim fizičkim veličinama

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Microsoft Word - MABK_Temelj_proba

Microsoft Word - MABK_Temelj_proba PRORČUN TEMELJNE STOPE STTIČKI SUSTV, GEOMETRIJSKE KRKTERISTIKE I MTERIJL r cont d eff r cont d eff Dimenzije temelja: a 300 cm b 300 cm Ed,x Ed h 80 cm zaštitni sloj temelja c 4,0 cm XC θ dy Ed Dimenzije

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zr

Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zr Ponovimo Grana fizike koja proučava svijetlost je? Kroz koje tvari svjetlost prolazi i kako ih nazivamo? IZVOR SVJETLOSTI je tijelo koje zrači svjetlost. Primarni: Sunce, zvijezde, Sekundarni: Mjesec,

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

gt3b.dvi

gt3b.dvi r t. h en m le w.e w w 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su primjerice duljina, površina, obujam, temperatura, tlak, masa, energija,

Више

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

Microsoft PowerPoint - KoMoMa -predavanje Sinteza mehanizama manipulatora

Microsoft PowerPoint - KoMoMa -predavanje Sinteza mehanizama manipulatora КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА Осмо предавање I манипулатори багера, синтеза погонских механизама Y y 2 L мини багери, манипулатора математички модел локални координатни системи чланова r { e,s, θ, θ,t,m,j,e,

Више

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

KOŽARSTVO KRATKI SPOJEVI 349 vrijeme proizvodnja ostalih vrsta, pretežno kromnih gornjih i odjevnih koža, povećana za ~75%. Udio zemalja u razvoju u p

KOŽARSTVO KRATKI SPOJEVI 349 vrijeme proizvodnja ostalih vrsta, pretežno kromnih gornjih i odjevnih koža, povećana za ~75%. Udio zemalja u razvoju u p KOŽARSTVO KRATK SPOJEV 349 vrijeme prizvdnja stalih vrsta, pretežn krmnih grnjih i djevnih kža, pvećana za ~75%. Udi zemalja u razvju u prizvdnji pvršinskih kža dsega je 3,8% svjetske prizvdnje. Ukupna

Више

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn

NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS010 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijedn NAZIV PREDMETA TEHNIČKA MEHANIKA II Kod SKS1 Godina studija 1. Nositelj/i predmeta Dr.sc. Bože Plazibat, prof. v.š. u trajnom zvanju Bodovna vrijednost (ECTS) 7 Suradnici Dr. sc. Ado Matoković, prof. v.

Више

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena

Више

PowerPoint Presentation

PowerPoint Presentation Анализа електроенергетских система -Временска промена струје кратког споја- Апериодична компонента (брзо се пригушује са T а, реда 5-1 ms, зависи од карактеристика ЕЕС-а и локације квара) Синусоидална

Више

LEGENDA: OBOJENO ŽUTIM SU STARI UVJETI

LEGENDA: OBOJENO ŽUTIM SU STARI UVJETI OPĆI UVJETI I PRAVILA KORIŠTENJA PAKETA TEKUĆIH RAČUNA GRAĐANA Basic, Smart, Gld i Platinum Izdavatelj vih Općih uvjeta je: Addik Bank d.d., Slavnska avenija 6, 10 000 Zagreb, OIB 14036333877, E-mail:

Више

Prva skupina

Prva skupina Prva skupina 1. Ravnoteža napetosti, vrste deformacija, te Lameove jednadžbe i njihovo značenje. 2. Prijenosna funkcija i frekventni odziv generaliziranog mjernog sustava. 3. Građa unutrašnjosti Zemlje.

Више

Microsoft Word - zadaci_19.doc

Microsoft Word - zadaci_19.doc Na temelju sljedećih podataka odgovorite na prva dva pitanja. C = 1000, I = 200, G = 400, X = 300, IM=350 Sve su navedene varijable mjerene u terminima domaćih dobara. 1. Razina potražnje za domaćim dobrima

Више

DOO ZA SPOLJNI I UNUTRAŠNJI PROMET Futoška 33, Novi Sad, Srbija Tel/fax: +381 (021) , , Skladište: Bajči Žilinskog br. 23 e

DOO ZA SPOLJNI I UNUTRAŠNJI PROMET Futoška 33, Novi Sad, Srbija Tel/fax: +381 (021) , , Skladište: Bajči Žilinskog br. 23 e DOO ZA SPOLJNI I UNUTRAŠNJI PROMET Futoška 33, 21000 Novi Sad, Srbija Tel/fax: +381 (021)540-438, 540-426, 543-115 Skladište: Bajči Žilinskog br. 23 e-mail: office@vgp.rs www.vgp.rs EGV 35 A Idealan za

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANA

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANA SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PRINCIPI RADA ANALOGNIH I DIGITALNIH MJERNIH INSTRUMENATA Završni rad

Више

Betonske i zidane konstrukcije 2

Betonske i zidane konstrukcije 2 5. STTIČKI PRORČUN PLOČE KRKTERISTIČNOG KT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 44 15 4 4 5. Statički proračun ploče karakterističnog kata 5.1. naliza opterećenja Stambeni prostor: 15 4 5, parket

Више

Vektorske funkcije i polja Mate Kosor / 23

Vektorske funkcije i polja Mate Kosor / 23 i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

MAT-KOL (Banja Luka) XXIV (3)(2018), DOI: /МК A ISSN (o) ISSN (o) ZAŠTO K

MAT-KOL (Banja Luka) XXIV (3)(2018), DOI: /МК A ISSN (o) ISSN (o) ZAŠTO K AT-KOL (Banja Luka) XXIV ()(018) 147-151 http://wwwmvblrg/dmbl/dmblhtm DOI: 10751/МК180147A ISSN 054-6969 () ISSN 1986-588 () ZAŠTO KOPLIKOVANO KADA OŢE JEDNOSTAVNO Dr Šefket Arslanagć Sarajev 1 Saţetak

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

Vjezbe 1.dvi

Vjezbe 1.dvi Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више