Microsoft Word - PLANIMETRIJA.doc

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - PLANIMETRIJA.doc"

Транскрипт

1 PLANIMETRIJA Mguglvi Za pravile mguglve sa straica važi: - O ima sa simetrije - Ak je brj straica para je ujed cetral simetriča - Ok svakg pravilg mgugla se mže pisati kružica čiji se cetri pklapaju - Mže se pdeliti a karakterističih jedakkrakih truglva čija su dva temea bil kja dva suseda temea mgugla a treće je u cetru pisae tj upisae kružice. - Zbir svih uutrašjih uglva sa račua p frmuli S ( S - Jeda uutrašji uga je da α - Jeda spljašji uga je α 36 ( 8 α +α ) - Zbir svih spljašjih uglva je 36 - Iz svakg temea mgugla mgu se pvući d 3 dijagala - Ukupa brj dijagala je D ( 3) - Ak je dužia straice a da je bim mgugla Oa - Pvršia se račua p frmuli trugla ah P, gde je h visia karakterističg - Cetrali uga je ϕ 36

2 ) Kji pravila mguga ima tri puta veći uga d spljašjeg? Rešeje: Ak sa α - beležim uutrašji uga, a sa α - spljašji uga tražeg mgugla da je: α 3α i važi α +α 8 Dakle imam sistem: α 3α α+ α 8 8 4α 8 α α Kak je t je:, 8 Radi se smuglu! α 45 ) Izračuati uutrašji uga pravilg mgugla, ak je razlika brja dijagala i straica 5. Rešeje: Pšt brj dijagala beležavam sa D D 5 ( 3) 5 sve pmžim sa ( 3) Dbili sm kvadratu jedačuu p 5 Nemguće Zači,, pa se radi -tuglu. Spljašji uga je α Sada ćem aći uutrašji uga: α+ α 8 α 8 α 8 α 44 α

3 3) Ak se brj straica pravilg mgugla pveća za, tada se cetrali uga smaji za 6. Odrediti brj dijagala mgugla. Rešeje: Neka je -brj straica tg mgugla i ϕ cetrali mguga. ϕ 36 Ak se brj straica pveća za tada je cetrali uga ϕ + ϕ ϕ Sve pmžim sa ( + ) + 36 ( + ) 36 6( + ) Sredim i dbijam kvadratu: + ±, emguće Dakle, brj straica je ( 3) D ( 3) 7 D 35 4) Za klik se pvećava zbir uutrašjih uglva mgugla, ak se brj straica pveća za 5? Rešeje: Zbir uutrašjih uglva se alazi p frmuli S ( S+ 5 S ( + 5 ( ( + 3) ( 8 Dakle, zbir uutrašjih uglva se pveća za

4 5) Ak se brj straica mgugla pveća za, da se brj jegvih dijagala pveća za 99. Odrediti zbir uutrašjih uglva tg mgugla. Rešeje: brj straica ( 3) D brj dijagala + vi brj straica ( + )( + 3) ( + )( + 8) D + vi brj dijagala D + D 99 ( + )( + 8) ( 3) 99 sve pmžim sa S ( S S (

5 6) Ak se brj straica pravilg mgugla pveća za dva jegv se uga pveća za 9. Odrediti brj straica mgugla. Rešeje: Neka je -brj straica i α uutrašji uga tg mgugla. α S ( Ak se brj straica pveća za, biće ih + i α S ( Tada je: 8 ( 9 pmžim sve sa ( ) + 8 ( )( + 9( + ) ( + ) 9 ( + ) 7 pdelim sa 9 ( + ) ± 8, 8 emguće Dakle 8, mguga ima ima 8 straica. 5

6 7) Brj dijagala kveksg mgugla u ravi jedak je petstrukm brju jegvih straica. Izračuati brj straica mgugla. Rešeje: ( 3) Kak je D t će biti: D 5 ( 3) 5 pmžim sa ( 3) Dakle ( 3) ili 3 emguće 8) Kji pravila mguga ima 44 dijagale? Rešeje: D ( 3) ( 3) 44 ( 3) ± 9, 8 emguće Dakle 6

7 9) Ok kruga pluprečika r + pisa je pravila smuga. Nadji pvršiu tg smugla. Rešeje: Pravila smuga se sastji iz 8 pdudarhih jedakih truglva. Izvučem jeda taj karakterističi truga. h r ( visia je ista ka i pluprečik upisae kružice) Njegv cetrali uga je ϕ 45 8 ϕ ' Pšt ama treba pla vg ugla, imam: 3 Iz vg trugla je: a ' tg 3 pa je datle r ' a rtg 3 a h ' P 8 4ah 4 r r tg 3 ' P 8r tg 3 ' tg 3 45 cs 45 tg + cs 45 + ' tg 3 Raciališem + + 7

8 ' tg 3 + ' tg 3 ( ) 4 ( ) Tak da je sad: P 8r tg 3 ' ( ) P 8 + P 8 ( + ) ( ) ( ) ( )( ) ( ) P 4 + P 4 + P 4 P 4 P 8 skratim 8 i sa 8

Microsoft Word - MNOGOUGAO.doc

Microsoft Word - MNOGOUGAO.doc MNOGOUGO Mgug je de rvi griče ztvrem, izlmljem liijm, uključujući i tčke s te liije. α α α α α α α 3 4 * α 3 3 k duž kj spj bil kje dve tčke izlmljej liiji e seče ijedu stricu mgugl, d je t KONVEKN mgug,

Више

Microsoft Word - SVODJENJE NA I KVADRAT.doc

Microsoft Word - SVODJENJE NA I KVADRAT.doc SVODJENJE NA I KVADRAT Ka št sm videli d sada, trignmetrijske funkcije uglva I kvadranta izračunavaju se na isti način ka trignmetrijske funkcije štrih uglva pravuglg trugla. Pkazaćem da se prek frmula,

Више

Microsoft Word - ADICIONE FORMULE.doc

Microsoft Word - ADICIONE FORMULE.doc ADICIONE FORMULE Zbir uglva ( α+ β ) α csβ+ cs( α+ β ) csβ α + tg( α+ β ) c c ctg( α+ β ) c + c Razlika uglva ( α β ) α csβ cs( α β ) csβ+ α tg( α β ) c c+ ctg( α β ) c c Primećujete da su frmule za razliku

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 8. 30. ožujka 019. 5. razred - rješeja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

Microsoft PowerPoint - Teorija kreanja vozila-predavanje 2.2.ppt

Microsoft PowerPoint - Teorija kreanja vozila-predavanje 2.2.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична взила, кинематика кретања Разматра се случај кретања взила у хризнталнј равни, са слнкретним механизмм кји има један пар гусеница. Упштен, путања при кретању

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vježbe 6. Jedadžbe diferecija Koriste se u opisu diskretog sustava modelom s ulazo-izlazim varijablama. Određivaje odziva sustava svodi se a problem rješavaja jedadžbi diferecija.

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . C. Prva ejedakost ije istiita. Dijeljejem očite ejedakosti 5 > 7 strogo pozitivim 5 7 brojem 7 dobivamo ejedakost > =. 7 7 Druga ejedakost ije istiita. Razlomci i imaju jedake brojike (oi izose 5 7 ),

Више

DM

DM CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je

Више

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z Osječki matematički list 3 03), -3 Luka Marohić Boja Kovačić Boja Radišić Sažetak U člaku se ajprije za svaki priroda broj pokazuje da poliom π x) = x x ima jedistveu pozitivu realu ultočku ϕ. Zatim se

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

BTE14_Bruno_KI

BTE14_Bruno_KI s više procesih jediica F = 100 kg/mi w KClF = 0,2 w vodef = 0,8 =? w KCl =? w vode =? 1 2 1 V =? w vodev =1,0 C =? w KClC = 0,33 w vodec = 0,67 3 B =? w KClB = 0,5 w vodeb = 0,5 P =? w KClP = 0,95 w vodep

Више

Microsoft PowerPoint - NG_A-Perspektiva-2.ppt

Microsoft PowerPoint - NG_A-Perspektiva-2.ppt Perspektiva Metrički zadaci dc. dr. sc. Mirna Rdić Lipanvić TTF Nacrtna gemetrija A Prblem: Kak drediti pravu veličinu dužine kja leži na sutražnici ili priklnici rizntalne ravnine, ili na vertikalnm pravcu,

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

MAT-KOL (Banja Luka) XXIV (3)(2018), DOI: /МК A ISSN (o) ISSN (o) ZAŠTO K

MAT-KOL (Banja Luka) XXIV (3)(2018), DOI: /МК A ISSN (o) ISSN (o) ZAŠTO K AT-KOL (Banja Luka) XXIV ()(018) 147-151 http://wwwmvblrg/dmbl/dmblhtm DOI: 10751/МК180147A ISSN 054-6969 () ISSN 1986-588 () ZAŠTO KOPLIKOVANO KADA OŢE JEDNOSTAVNO Dr Šefket Arslanagć Sarajev 1 Saţetak

Више

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III 25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из

Више

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka IZ NASTAVNE PRAKSE Radomir Ločarević Rumujski matematičar Tiberie Popoviciu (906. 975.) dokaao je 965. poatu ejedakost i područja kovekse aalie (vidi [.]), koja ima primjee, medu ostalim, u brojim adatcima

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

Microsoft Word - IZVODI ZADACI _2.deo_

Microsoft Word - IZVODI ZADACI _2.deo_ IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici

Више

subagent GRCKA OSTRVA LETO 2019 ~ LEFKADA 10 NOCENJA ~ Avio prevoz Direktni carter letovi iz Beograda Placanje na rate do kraja godine Cena aranţmana

subagent GRCKA OSTRVA LETO 2019 ~ LEFKADA 10 NOCENJA ~ Avio prevoz Direktni carter letovi iz Beograda Placanje na rate do kraja godine Cena aranţmana subagent GRCKA OSTRVA LETO 2019 ~ LEFKADA 10 NOCENJA ~ Avi prevz Direktni carter letvi iz Begrada Placanje na rate d kraja gdine Cena aranţmana p sbi : cena smeštaja u tabeli + 155 avi prevz (drasli i

Више

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег новог или подсећања нечег што сте заборавили. Немојте

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

SREDNJA ŠKOLA MATEMATIKA

SREDNJA ŠKOLA MATEMATIKA SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....

Више

AV13-OE2_stručni TRANSFORMATOR mr.sc. Venco Ćorluka 13. TRANSFORMATOR Realni transformator sa željeznom jezgrom Odnosi u transformatoru: U I N ; ( ) (

AV13-OE2_stručni TRANSFORMATOR mr.sc. Venco Ćorluka 13. TRANSFORMATOR Realni transformator sa željeznom jezgrom Odnosi u transformatoru: U I N ; ( ) ( 3. TRANFORATOR Reali trasformator sa željezom jezgrom Odosi u trasformatoru: U N ; ( ) (3-) U U VA U N Rade sage a primaru i trošilu: P U cos( ); P U cos( ) ( W) (3-) Gubici trasformatoru: U Pg PCu PFe

Више

ISPIT_23_VI_2015_R.cdr

ISPIT_23_VI_2015_R.cdr P Z RGAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PREZME (BAVEZ ŠAMPAM LVMA) BRJ EKA (UKLK E RAE ZAAKA RAZVJE, BAVEZ E PPA A VAKJ RA) APMEE: (0) (+1) (0) (+1) - ZA PAJE ELEMEA

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

KORELISANOST REZULTATA MERENJA

KORELISANOST REZULTATA MERENJA Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje

Више

ISPIT_16_IX_2014_R_

ISPIT_16_IX_2014_R_ P Z RGAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PREZME (BAVEZ ŠAMPAM LVMA) BRJ EKA APMEE: (UKLK E RAE ZAAKA RAZVJE, BAVEZ E PPA A VAKJ RA) (0) (+1) (0) (+1) - ZA PAJE ELEMEA

Више

Elektrotehnički fakultet Univerziteta u Beogradu Katedra za računarsku tehniku i informatiku Praktikum iz objektno-orijentisanog programiranja (13S112

Elektrotehnički fakultet Univerziteta u Beogradu Katedra za računarsku tehniku i informatiku Praktikum iz objektno-orijentisanog programiranja (13S112 Praktikum iz bjektn-rijentisang prgramiranja (13S112POOP) Prjektni zadatak Java Napisati skup klasa sa dgvarajućim metdama, knstruktrima, peratrima i destruktrima za realizaciju sftverskg sistema za sviranje

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vežbe 6. Jedadžbe diferecia Koriste se u opisu diskretog sustava modelom s ulazo-izlazim variablama. Određivae odziva sustava svodi se a problem rešavaa edadžbi diferecia. Načie

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

ПРИПРЕМА ЗА ТЕСТ СИСТЕМАТИЗАЦИЈЕ 2

ПРИПРЕМА ЗА ТЕСТ СИСТЕМАТИЗАЦИЈЕ 2 1. ОБЕЛЕЖИ СЛИКЕ И ОБЈАСНИ УЛОГУ СВАКОГ ДЕЛЕ ЋЕЛИЈЕ. 2. РАЗМНОЖАВАЊЕ КОД ПАРАМЕЦИЈУМА: 3. НАВЕДИ ПАРЗИТСКЕ ПРАЖИВОТИЊЕ И БОЛЕСТИ КОЈЕ ИЗАЗИВАЈУ: 4. ГДЕ ЖИВЕ ПРАЖИВОТИЊЕ И КАКО СЕ КРЕЋУ. 5. ОБЕЛЕЖИ СЛИКЕ

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

RITAM FORMS POSLOVNI PROCESI RAD S JOPPD OBRASCEM Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito Novi obrazac JOPPD Izmjene kod gla

RITAM FORMS POSLOVNI PROCESI RAD S JOPPD OBRASCEM Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito Novi obrazac JOPPD Izmjene kod gla Stranica 1 od 10 Rad s JOPPD obrascem 1. Opće ito... 1 2. Novi obrazac JOPPD... 3 3. Izmjene kod glavne blagajne... 7 4. Izmjene kod doprinosa... 7 5. Iz je e kod predložaka vir a a... 9 6. Iz je e kod

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година

Више

MAT-KOL (Banja Luka) XXV (1)(2019), DOI: /МК A ISSN (o) ISSN (o) JOŠ JEDAN DO

MAT-KOL (Banja Luka) XXV (1)(2019), DOI: /МК A ISSN (o) ISSN (o) JOŠ JEDAN DO MAT-KOL (Banja Luka) XXV ()(9), -8 http://www.imvibl.org/dmbl/dmbl.htm DOI:.75/МК9A ISSN 54-6969 (o) ISSN 986-588 (o) JOŠ JEDAN DOKAZ PTOLEMEJEVE TEOREME I NJENA ZNAČAJNA PRIMJENA Dr. Šefket Arslanagić,

Више

Microsoft PowerPoint Stabilizatori 3 od 3 (16) EKM [Compatibility Mode]

Microsoft PowerPoint Stabilizatori 3 od 3 (16) EKM [Compatibility Mode] Osnvi elektrnike Predispitne baveze: Redvn phađanje nastave (predavanja+vežbe) 10% Odbranjene labratrijske vežbe 10% Dmaći 20% Klkvijum I (prva nedelja u decembru) 40% Klkvijum II (pslednja nedelja predavanja)

Више

Kein Folientitel

Kein Folientitel Sigali slie D i jioi parameri Forma slia u boji Sigali idea 3D D sisemi D oolucija Noi Sad 9 sraa Digiala slia je D sigal sa I mogući redosi s S S... SI : jeda ača ili pisel rsa d rasojaje susedi s s s

Више

4/30/2015 Poziv za javnu nabavku etender Portal - UJN CG CRNA GORA Ministarstvo finansija Uprava za javne nabavke Obrazac 3 Član 63 Zakona o javnim na

4/30/2015 Poziv za javnu nabavku etender Portal - UJN CG CRNA GORA Ministarstvo finansija Uprava za javne nabavke Obrazac 3 Član 63 Zakona o javnim na CRNA GORA Ministarstv finansija Uprava za javne nabavke Obrazac 3 Član 63 Zakna javnim nabavkama Naručilac Agencija za elektrnske kmunikacije i pštansku djelatnst, Brj 1/2015 (0102-1277/3) Mjest i datum

Више

PowerPoint-Präsentation

PowerPoint-Präsentation Unapređenje usluga u turizmu krz sertifikaciju sistema menadžmenta Spec.Sanit. -Ek.Ing. Vladimir Surčinski 20.10.2014 18.11.2014, Begrad 1 Authr O nama Quality Austria sertifikacina kuća iz Austrije tvara

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА

Више

CENTAR ZA REHABILITACIJU FORTICA KRALJEVICA Uprav o vijeće Broj: Kraljevica, godine Na te elju čla ka. stavka 2. Zakona o javnoj

CENTAR ZA REHABILITACIJU FORTICA KRALJEVICA Uprav o vijeće Broj: Kraljevica, godine Na te elju čla ka. stavka 2. Zakona o javnoj CENTAR ZA REHABILITACIJU FORTICA KRALJEVICA Uprav o vijeće Broj: 222-2017 Kraljevica, 17.05.2017. godine Na te elju čla ka. stavka 2. Zakona o javnoj nabavi ( Narodne novine broj 120/16) i čla ka 24. točke.

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

Ovo vazi samo za preglednik Mozilla Firefox Verovatno mnogi koriste Youtube stranicu za gledanje spotova,skidanje pesama,spotova...pokusacu da ukratko

Ovo vazi samo za preglednik Mozilla Firefox Verovatno mnogi koriste Youtube stranicu za gledanje spotova,skidanje pesama,spotova...pokusacu da ukratko Ovo vazi samo za preglednik Mozilla Firefox Verovatno mnogi koriste Youtube stranicu za gledanje spotova,skidanje pesama,spotova...pokusacu da ukratko objasnim kako da izvucemo maksimum sa Youtube sajta..

Више

Microsoft Word - 26ms441

Microsoft Word - 26ms441 Zdtk 44 (Ktri, mturtic) Dijelimo li bombo osmero djece tko d svko dijete dobije jedki broj bombo, ostt će epodijelje bombo Kd bismo toj djeci dijelili 5 bombo tko d svko dijete dobije jedki broj bombo,

Више

Osnovni pojmovi teorije verovatnoce

Osnovni pojmovi teorije verovatnoce Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:

Више

FOR_Matema_Srednja

FOR_Matema_Srednja Јован Бојиновић НЕОПХОДНЕ ФОРМУЛЕ ИЗ МАТЕМАТИКЕ ЗА ПОЛАГАЊЕ ПРИЈЕМНОГ ИСПИТА ЗА ФАКУЛТЕТЕ Формуле из планиметрије и стереометрије Страна: ПОВРШИНА ТРОУГЛА. Површина троугла се може израчунати и Хероновим

Више

Okruzno2007ZASTAMPU.dvi

Okruzno2007ZASTAMPU.dvi 4. RAZRED 1. Koliko ima trouglova na slici? Navesti te trouglove. D E F C A 2. Na koliko naqina Voja, Rade i Zoran mogu da podele 7 jednakih klikera, tako da svaki od Φih dobije bar jedan kliker? 3. TravΦak

Више

3. ЛИНЕАРНЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ С ЈЕДНОМ НЕПОЗНАТОМ КереШго та1ег зги/иогит ез1 (Обнављање је мајка наука) Латинска сентенца (изрека) Линеарна јед

3. ЛИНЕАРНЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ С ЈЕДНОМ НЕПОЗНАТОМ КереШго та1ег зги/иогит ез1 (Обнављање је мајка наука) Латинска сентенца (изрека) Линеарна јед 3. ЛИНЕАРНЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ С ЈЕДНОМ НЕПОЗНАТОМ КереШго та1ег зги/иогит ез1 (Обнављање је мајка наука) Латинска сентенца (изрека) Линеарна једначина по х је свака једначина са непознатом х која

Више

Microsoft Word - Algebra i funkcije- napredni nivo doc

Microsoft Word - Algebra i funkcije- napredni nivo doc Algebra i funkcije napredni nivo 01. Nenegativna znači da je vrednost izraza pozitivna ili je jednaka 0. ( 1) ( 1)( 1) 0 razlika kvadrata (( x) + x 1+ 1 ) (( x) 1 ) 0 ( + + 1) ( 1) 0 x x+ x x+ x x x +

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА

Више

DEALER GENERAL

DEALER GENERAL STANDARD OZNAČAVANJA OVLAŠTENOG CENTRA I KORIŠTENJA HONDA OZNAKA ZA 2012. GODINU 2. siječnja 2012. UVOD POTREBA ZA STANDARDOM Pred Hndu je pstavljen zahtjev da u kviru svjeg pslvanja pstavi kvalitativne

Више

Okvir za smanjenje rizika od katastrofa iz Sendaija –2030.

Okvir  za smanjenje rizika od katastrofa iz Sendaija –2030. Okvir za smanjenje rizika d katastrfa iz Sendaija 2015 2030. Finansiran krz IPA DRAM prgram finansirala Evrpska unija Okvir za smanjenje rizika d katastrfa iz Sendaija za perid 2015 2030. Okvir za smanjenje

Више

ISPIT_19_IX_2017_R

ISPIT_19_IX_2017_R 19. 09 2017. IPI IZ RGAKE EMIJE ZA UEE FIZIČKE EMIJE Predmetni nastavnik: r M.. Ivanović, docent IME I PREZIME (BAVEZ ŠAMPAIM LVIMA) BRJ IEKA APMEE: (UKLIK E RAICE ZAAKA RAZVJE, BAVEZ E PPIAI A VAKJ RAI)

Више

KaPuSaO CAD SOFTVERSKI PAKET Računarski program KaPuSaO, je softverski paket koji je namenjen evidentiranju i administriranju putnih pojava, saobraćaj

KaPuSaO CAD SOFTVERSKI PAKET Računarski program KaPuSaO, je softverski paket koji je namenjen evidentiranju i administriranju putnih pojava, saobraćaj KaPuSaO CAD SOFTVERSKI PAKET Računarski prgram KaPuSaO, je sftverski paket kji je namenjen evidentiranju i administriranju putnih pjava, sabraćajne signalizacije (hrizntalne i vertikalne), sabraćajnih

Више

Microsoft Word - IZVODI ZADACI _I deo_.doc

Microsoft Word - IZVODI  ZADACI _I deo_.doc . C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ

Више

Microsoft Word - Skripta - tehnicko crtanje.doc

Microsoft Word - Skripta - tehnicko crtanje.doc 1. Vrste crta Svaki crtež a tehičkom crtežu prikaza je različitim vrstama i širiama liija kako bi bio jasa i pregleda. Vrste, kao i širie liija, propisae su stadardom: pua široka pua taka isprekidaa Naziv

Више

ISPIT_01_X_2015_R.cdr

ISPIT_01_X_2015_R.cdr P Z GAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PEZME (BAVEZ ŠAMPAM LVMA) BJ EKA (UKLK E AE ZAAKA AZVJE, BAVEZ E PPA A VAKJ A) APMEE: (0) (+1) (0) (+1) - ZA PAJE ELEMEA U EPJEĆM

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

Позив

Позив Рпублика Србија ПРИВРЕДНИ СУД У ЗРЕЊАНИНУ Кј Октбра 1 Псл. Ст.16/018 Дана, 19.04.019. Приврдни суд у Зрњанину, п судији Љиљани Ппв, ка стчајнм судији, у пступку стчаја над стчајним дужникм БРОДОГРАДИЛИШТЕ

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне

Више

АКЦИОНАРСКО ДРУШТВО ЗА ЖЕЛЕЗНИЧКИ ПРЕВОЗ РОБЕ СРБИЈА КАРГО Београд, Немањина 6 СЕКТОР ЗА НАБАВКЕ И ЦЕНТРАЛНА СТОВАРИШТА Број: 22/ Датум: 06.0

АКЦИОНАРСКО ДРУШТВО ЗА ЖЕЛЕЗНИЧКИ ПРЕВОЗ РОБЕ СРБИЈА КАРГО Београд, Немањина 6 СЕКТОР ЗА НАБАВКЕ И ЦЕНТРАЛНА СТОВАРИШТА Број: 22/ Датум: 06.0 АКЦИОНАРСКО ДРУШТВО ЗА ЖЕЛЕЗНИЧКИ ПРЕВОЗ РОБЕ СРБИЈА КАРГО Београд, Немањина 6 СЕКТОР ЗА НАБАВКЕ И ЦЕНТРАЛНА СТОВАРИШТА Број: 22/2018-2485 Датум: 06.09.2018. године ПРЕДМЕТ: Питање и одговор бр 1. за Конкурсну

Више

16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић

16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић 16 ЧАС ОЛИМПИЈАДЕ ЈЕ КУЦНУО Ме ри По уп Озборн Илу стро вао Сал Мер до ка Пре вела Ми ли ца Цвет ко вић 4 Наслов оригинала Mary Pope Osborne Hour of the Olympics Са др жај Text Copyright 1998 by Mary Pope

Више

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat

Више

X ROULETTE 3D Korisnički priručnik / Pravila igre (v 1.9) 1. PREGLED IGRE U igri Roulette 3D pokušavate pogoditi u kojem broju utora će se zaustaviti

X ROULETTE 3D Korisnički priručnik / Pravila igre (v 1.9) 1. PREGLED IGRE U igri Roulette 3D pokušavate pogoditi u kojem broju utora će se zaustaviti X ROULETTE 3D Krisnički priručnik / Pravila igre (v 1.9) 1. PREGLED IGRE U igri Rulette 3D pkušavate pgditi u kjem brju utra će se zaustaviti kuglica. Rulette 3D ima sam jednu nulu i nudi više šansi za

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

X ROULETTE SILVER Korisnički priručnik / Pravila igre (v 1.7) 1. PREGLED IGRE U igri Roulette Silver (srebrni rulet), pokušavate pogoditi u kojem broj

X ROULETTE SILVER Korisnički priručnik / Pravila igre (v 1.7) 1. PREGLED IGRE U igri Roulette Silver (srebrni rulet), pokušavate pogoditi u kojem broj X ROULETTE SILVER Krisnički priručnik / Pravila igre (v 1.7) 1. PREGLED IGRE U igri Rulette Silver (srebrni rulet), pkušavate pgditi u kjem brju utra će se zaustaviti kuglica. Rulette Silver ruleta ima

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Crna Gora Uprava za šume Broj : 2446 Pljevlja, godine U G O V O R O KORIŠĆENJU ŠUMA U DRŽAVNOJ SVOJINI PRODAJOM DRVETA U DUBEĆEM STANJU, U

Crna Gora Uprava za šume Broj : 2446 Pljevlja, godine U G O V O R O KORIŠĆENJU ŠUMA U DRŽAVNOJ SVOJINI PRODAJOM DRVETA U DUBEĆEM STANJU, U Crna Gora Uprava za šume Broj : 2446 Pljevlja, 02.04.2019. godine U G O V O R O KORIŠĆENJU ŠUMA U DRŽAVNOJ SVOJINI PRODAJOM DRVETA U DUBEĆEM STANJU, U 2019. GODINI i z e đ u: 1. VLADE CRNE GORE, Uprava

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

Anomalije mliječnih zuba i stanje trajne denticije Anomalies of Deciduous Teeth and Findings in Permanent Dentition Sažetak Prevalencija anomalija mli

Anomalije mliječnih zuba i stanje trajne denticije Anomalies of Deciduous Teeth and Findings in Permanent Dentition Sažetak Prevalencija anomalija mli i staje traje deticije Aomalies of Deciduous Teeth ad Fidigs i Permaet Detitio Sažetak Prevalecija aomalija mliječih zuba istraživaa je u općoj populaciji predškolske djece Zagreba. Uzorak je sačijavalo.98

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

Microsoft Word - IZVODI _3. deo_.doc

Microsoft Word - IZVODI _3. deo_.doc IZVODI ZADACI III deo Izvodi imju šiou pimenu. O upotei izvod u ispitivnju to funcije monotonost, estemne vednosti, pevojne tče, onvesnost i onvnost iće poseno eči u delu o funcijm. Ovde ćemo pozti n neolio

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

Microsoft Word - VALJAK.doc

Microsoft Word - VALJAK.doc ALJAK ljk je geometrijsko telo ogrničeno s dv krug u prlelnim rvnim i delom cilindrične površi čije su izvodnice normlne n rvn tih krugov. Os vljk je prv koj prolzi kroz centre z. Nrvno ko i do sd oznke

Више

Microsoft Word - ELEMENTARNE FUNKCIJE.doc

Microsoft Word - ELEMENTARNE FUNKCIJE.doc ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim

Више

Microsoft Word PRCE.doc

Microsoft Word PRCE.doc Iva Prce * Domiika Crjac ** Martia Crjac *** POMORSKO OSIGURANJE ISSN 0469-655 (11-16) NEIZVJESNOST PARAMETARA U OSIGURANJU Ucertaity of parameters i isurace policy UDK 519.16 Prethodo priopćeje Prelimiary

Више

24. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka, 22. april ZADACI PRVI RAZRED 1. Dat je razlomak 2a27, g

24. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka, 22. april ZADACI PRVI RAZRED 1. Dat je razlomak 2a27, g 4. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka,. april 07. ZADACI PRVI RAZRED. Dat je razlomak a7, gdje su a i b cifre za koje je b a =. Ako se 7b egovom brojiocu

Више

Упутствo за РАДНУ ГРУПУ за израду ПЛАНА ИНТЕГРИТЕТА на wеb апликацији Нацрти плана интегритета налазе се на линку integritet.acas.rs или на сајту Аген

Упутствo за РАДНУ ГРУПУ за израду ПЛАНА ИНТЕГРИТЕТА на wеb апликацији Нацрти плана интегритета налазе се на линку integritet.acas.rs или на сајту Аген Упутствo за РАДНУ ГРУПУ за израду ПЛАНА ИНТЕГРИТЕТА на wеb апликацији Нацрти плана интегритета налазе се на линку integritet.acas.rs или на сајту Агенције www.acas.rs у одељку - план интегритета -> нацрт

Више