Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +
|
|
- Lea Blagojević
- пре 5 година
- Прикази:
Транскрипт
1 Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz matrice A = a) Pokazati da su podskupovi U = { A M 3 (R) ( ) AB = BA, Tr A + A T = 0 }, gde je B = a b + c a i V = 0 a + d 0 a, b, c, d R a b + c a potprostori vektorskog prostora M 3(R) Odrediti bar jednu bazu i dimenziju vektorskih prostora U, V, U + V i U V Da li je prethodna suma direktna? b) Odrediti dimenziju anihilatora U potprostora U ( ) p 4 Pokazati da je preslikavanje L : R 3 [x] M 2 (R), Lp = (2) p ( 2) 0 p (2) p(1) p linearno (1) Odrediti bar jednu bazu jezgra i slike, kao i rang i defekt ovog preslikavanja Vreme za rad je 90 minuta Sre no! Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz matrice A = a) Pokazati da su podskupovi U = { A M 3 (R) ( ) AB = BA, Tr A + A T = 0 }, gde je B = a b + c a i V = 0 a + d 0 a, b, c, d R a b + c a potprostori vektorskog prostora M 3(R) Odrediti bar jednu bazu i dimenziju vektorskih prostora U, V, U + V i U V Da li je prethodna suma direktna? b) Odrediti dimenziju anihilatora U potprostora U ( ) p 4 Pokazati da je preslikavanje L : R 3 [x] M 2 (R), Lp = (2) p ( 2) 0 p (2) p(1) p linearno (1) Odrediti bar jednu bazu jezgra i slike, kao i rang i defekt ovog preslikavanja Vreme za rad je 90 minuta Sre no!
2 Kolokvijum iz Linearne algebre ( A) qetvrti tok, Rexiti sistem nad poljem Z 7 u zavisnosti od parametra α Z 7 : x + 4y + z = 2 3x + 3y + z = α 2x + (α + 6)y = α 2 + 2α Da li je podskup U potprostor vektorskog prostora V, gde ( je: ) 1 1 a) V = M 2 (R), U = {X V AX = XA, Tr X = Tr A}, gde je A =, 0 1 b) V = R 12 [x], U = {p V deg p = 10} {0}, gde je 0 nula polinom, v) V = R R, U = {f V f(0) f(1)} U sluqaju da je U vektorski potprostor odrediti njegovu bazu i dimenziju 3 Dati su potprostori U = {p R 3 [x] p (0) = 0} i V = {p R 4 [x] p(1) = p( 1)} vektorskog prostora R 4 [x] Odrediti bar jednu bazu i dimenziju vektorskih prostora U + V, U V, R 4 [x]/u, R 4 [x]/v, U i V Da li je suma U + V direktna? ( ) Dato je preslikavanje L : M 2 (R) M 2 (R), LX = X T A AX T + (Tr X)A, gde je A = 1 3 a) Pokazati da je L linearni operator vektorskog prostora M 2 (R) b) Odrediti bar jednu bazu jezgra i slike, {( kao i rang ) i( defekt ) ovog ( operatora ) v) Odrediti matricu prelaska sa baze f =,,, bazu vektorskog prostora M 2 (R) g) Odrediti matricu operatora L u odnosu na bazu f ( Na i par baza vektorskih prostora R 4 i R 3 [x] u odnosu na koje linearno preslikavanje L : R 4 R 3 [x], L(a, b, c, d) = (a + 2b d) + (2a + 5b c + 3d)x + (a + 4b 2c + 9d)x 2 )} na kanonsku ima kanonsku matricu ( ) p(0) p(1) 6 Dato je linearno preslikavanje L : R 3 [x] M 2 (R), Lp = p (0) p Odrediti matricu (1) linearnog ( preslikavanja ) L T u odnosu na par baza π = {π 11, π 12, π 21, Tr} i φ = {φ 1, φ 2, φ 3 }, gde su a11 a π 12 ij = a a 21 a ij, φ 1 p = p(0), φ 2 p = p (0) i φ 2 p = p (2) 22 Vreme za rad je 3 sata Sre no!
3 qetvrti tok, ( ) a) Da li je suma U = L + {M M (R) Tr M = 0, M T = M} direktna? Odrediti bar jednu bazu e i dimenziju vektorskog prostora U b) Odrediti bar jednu bazu f dualnog prostora U dualnu bazi e v) Za svaki funkcional Φ iz baze f odrediti vektor M M 2 (R) takav da vaжi Φ(X) = X M, za sve X M 2 (R), ako je skalarni proizvod na M 2 (R) zadat sa A B = Tr(AB T ) 2 Dato je linearno preslikavanje L : R 3 [x] R 3, Lp = (p (0), p(1), p( 1)) a) Odrediti bar po jednu bazu Ker L i Im L, kao i rang i defekt preslikavanja L b) Odrediti matricu preslikavanja L u odnosu na par baza {1 x, 1 x 2, 2 2x+x 2 } i {(1, 1, 3), (3, 1, 1), (2, 3, 7)} 3 U zavisnosti od realnog parametra α izraqunati vrednost determinante 2α α α α α α α α 4 Odrediti Жordanovu formu matrice A = a) Pokazati da je preslikavanje : R 3 [x] R 3 [x] R, p q = p(0)q(0) + p(1)q(1) + 2p (1)q (1) p(1)q (1) p (1)q(1) jedan skalarni proizvod na vektorskom prostoru R 3 [x] b) Odrediti bar jednu ortonormiranu bazu R 3 [x] v) Odrediti ugao koji polinom x 2 zaklapa sa potprostorom (Lx) a) Data je matrica A = Odrediti ortogonalnu matricu P i dijagonalnu matricu D takve da vaжi A = P DP T b) Dijagonalizovati kvadratnu formu q : R 3 R 3, q(x, y, z) = x 2 + 4y 2 + 4z 2 4xy + 4xz 8yz Vreme za rad je 3 sata Sre no!
4 qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem linearnih jednaqina x + y + λz = λ 2 x + λy + z = λ λx + y + z = 1 2 Dato je linearno preslikavanje L : M 2 (R) R 3 [x], LM = Tr M + Tr(AM) x + Tr(BM) x 2, ( ) ( ) gde je A = i B = a) Odrediti bar po jednu bazu Ker L i Im L, kao i rang i defekt preslikavanja L b) Odrediti matricu preslikavanja L u odnosu na par baza {( ) ( ) ( ) ( )} e =,,, i f = { 1 + x 2, 1 + 3x + 3x 2, 1 + 2x + 2x 2} v) Odrediti dualne baze e i f, bazama e i f redom g) Odrediti matricu transponovanog preslikavanja L T u odnosu na par baza f i e 3 Izraqunati vrednost determinante n n Dat je linearni operator L : R 3 [x] R 3 [x], Lp = ( 4 + 2x + x 2) p(0) + ( 1 + 5x + x 2) p (0) + ( 12 x + x2 ) p (1) a) Odrediti sopstvene vrednosti i sopstvene vektore operatora L b) Odrediti matricu operatora L 2018 u kanonskoj bazi ( ) Data je matrica A = 1 2 a) Pokazati da je preslikavanje : M 2 (R) M 2 (R) R, X Y = Tr(X T AY ) jedan skalarni proizvod na vektorskom prostoru M 2 (R) b) Ako je U skup svih matrica koje komutiraju sa matricom A odrediti bar jednu ortonormiranu bazu U ( ) 1 1 v) Odrediti rastojanje matrice od potprostora U Neka je data kvadratna forma Φ na R 3 na slede i naqin: q(x, y, z) = 2x 2 + 5y 2 + 5z 2 + 4xy 4xz 8yz a) Odrediti bar jednu ortonormiranu bazu f prostora R 3 u kojoj forma q ima dijagonalni oblik b) Izraziti formu q preko koordinata u bazi f i napisati formule transformacije koordinata Vreme za rad je 3 sata Sre no!
5 qetvrti tok, Dati su podskupovi M 2 (R): {( ) a b V 1 = a, b R}, V b a 2 = {A M 2 (R) tr A + det A = 0}, V 3 = {A M 2 (R) A T = 2A} a) Koji od podskupova V i su i potprostori vektorskog prostora M 2 (R) b) Za sve potprostore V i odrediti bar po jednu bazu i dimenziju vektorskih prostora V i i M 2 (R)/V i 2 Dato je preslikavanje L : R 3 [x] R 3, Lp = ( ( ) 3 1 ) p(2) p(1), p, p(t)dt 2 1 a) Pokazati da je preslikavanje L linearno b) Odrediti bar po jednu bazu Ker L i Im L, kao i rang i defekt preslikavanja L v) Odrediti matricu preslikavanja L u odnosu na par baza e = { 1 + x, 1 x, 1 + 3x 2} i f = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} g) Odrediti matricu transponovanog preslikavanja L T u odnosu na par baza f i e, gde su e i f dualne baze baza e i f, redom 3 U zavisnosti od realnog parametra x izraqunati vrednost determinante 1 + x 2 x x 1 + x 2 x x 1 + x x 2 x x 1 + x 2 4 a) Odrediti Жordanovu formu J matrice A = takvu da vaжi A = P JP 1 b) Odrediti matricu A n, za sve n N 5 a) Pokazati da je preslikavanje : R 3 [x] R 3 [x] R, p q = p( 1)q( 1) + p (0)q (0) + p (1)q (1), kao i invertibilnu matricu P jedan skalarni proizvod na vektorskom prostoru R 3 [x] b) Odrediti bar jednu ortonormiranu bazu potprostora U = {p R 3 [x] p (0) = 0} v) Odrediti rastojanje polinoma p(x) = x 2 + x + 2 od potprostora U 6 a) Ispitati da li je matrica A = cos α cos β sin α cos β sin β sin α cos α 0 cos α sin β sin α sin β cos β simetriqna/ortogonalna u zavisnosti od realnih parametara α i β b) Za α = π 4 i β = 0 odrediti ortogonalnu matricu P takvu da matrica P T AP bude dijagonalna Vreme za rad je 3 sata Sre no!
6 qetvrti tok, a) U zavisnosti od realnog parametra λ odrediti rang matrice A = 1 λ λ b) Za λ = 2 odrediti invertibilne matrice P i Q takve da vaжi P AQ = A 0, gde je A 0 kanonska matrica matrice A 2 a) Pokazati da je preslikavanje L : R 3 [x] R 3 [x], Lp = x p (x + 1) + p (x) jedan linearni operator vektorskog prostora R 3 [x] b) Odrediti bar po jednu bazu Ker L i Im L, kao i rang i defekt preslikavanja L v) Odrediti matricu operatora L u odnosu bazu {x, x x 2, 1 x + x 2 } 3 Izraqunati vrednost determinante Odrediti sopstvene vrednosti i sopstvene vektore linearnog preslikavanja L : M 2 (R) M 2 (R), LX = AX + XB, gde je A = ( ) ( 6 8 i B = 2 4 ) 5 a) Pokazati da je preslikavanje : M 2 (R) M 2 (R) R, ( ( 1 0 A B = Tr A 0 2 ) B T ) jedan skalarni proizvod na vektorskom prostoru M 2 (R) b) Odrediti bar po jednu ortonormiranu bazu vektorskog potprostora svih simetriqnih matrica S = {A M 2 (R) A T = A} i njegove ( ortogonalne ) dopune 1 0 v) Odrediti ugao koji matrica zaklapa sa potprostorom S Odrediti bar jednu ortonormiranu bazu vektorskog prostora R 3 u kojoj kvadratna forma q(x, y, z) = x 2 + y 2 + z 2 + xy + xz + yz ima dijagonalni oblik Izraziti formu q u toj bazi Vreme za rad je 3 sata Sre no!
PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee
PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
ВишеLINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1
Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеRokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 {
Rokovi iz Matematike za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi Rexiti jednaqinu z 4 + i i+ = MATEMATIKA { septembar 5godine x Odrediti prodor prave p : = y = z kroz ravan
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet
ВишеALGEBRA I (2010/11)
ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеPRAVILA ZA POLAGANjE ISPITA IZ NUMERIQKE ANALIZE U TOKU SEMESTRA 1. Ispit se sastoji iz pismenog i usmenog dela. Pismeni deo ispita je eliminatoran. 2.
PRAVILA ZA POLAGANjE ISPITA IZ NUMERIQKE ANALIZE U TOKU SEMESTRA 1. Ispit se sastoji iz pismenog i usmenog dela. Pismeni deo ispita je eliminatoran. 2. Aktivnosti u toku semestra mogu biti obavezne i opcione,
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеSveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013
Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
ВишеSveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osije
Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osijek, 2018. Sveučilište J.J. Strossmayera u Osijeku Odjel
ВишеUniverzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku Master rad GRUPNI INVERZ OPERATORA Mentor: Prof. dr Dijana Mosić Student: Iva
Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku Master rad GRUPNI INVERZ OPERATORA Mentor: Prof. dr Dijana Mosić Student: Ivana Stamenković Niš, 2018. Sadržaj Predgovor 2 1 Uvod
ВишеUkoliko Vam za bilo koji zadatak treba pomoć, slobodno pozovite. Postoji mogućnost kompletnog kursa, kao i individualnih časova. Zadatke prikupio i ot
Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje. Pokazati da je to preslikavanje linearni operator, naći matricu, sopstvene vrednosti i sopstvene vektore tog operatora. 2. Odrediti vrednost parametra
ВишеMinistarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr
Prvi razred A kategorija 1. Za prirodan broj n oznaqimo sa x n broj koji se dobije uzastopnim zapisivanjem svih prirodnih brojeva od 1 do n jedan iza drugog (npr. x 14 = 1234567891011121314). Neka je funkcija
ВишеKvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx
Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеUniverzitet u Nišu Prirodno-matematički fakultet Departman za matematiku Različite karakterizacije proizvoda projektora Master rad Mentor: Prof. dr. D
Univerzitet u Nišu Prirodno-matematički fakultet Departman za matematiku Različite karakterizacije proizvoda projektora Master rad Mentor: Prof. dr. Dragana Cvetković-Ilić Student: Miljan Ilić Niš, 2019.
Вишеkvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1
kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.
ВишеMinistarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1.
Prvi razred A kategorija Za brojeve a, b, c, x, y i z vaжi {a, b, c} = {x, y, z} = {15, 3, 2014}. Da li broj a bc + x yz mora biti sloжen? (Za m, n, k N je sa m nk oznaqen broj m (nk).) Neka su a, b i
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеUNIVERZITET U ZENICI
8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,
ВишеUAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević
Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni
ВишеUniverzitet u Nixu Prirodno-matematiqki fakultet Departman za matematiku Tenzorska analiza u teoriji relativnosti Master rad Mentor: Prof. Dr Ljubica V
Univerzitet u Nixu Prirodno-matematiqki fakultet Departman za matematiku Tenzorska analiza u teoriji relativnosti Master rad Mentor: Prof. Dr Ljubica Velimirovi Student: Vladislava Stankovi Nix, 2015. PREDGOVOR
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija
ВишеVektorske funkcije i polja Mate Kosor / 23
i polja Mate Kosor 9.12.2010. 1 / 23 Tokom vježbi pokušajte rješavati zadatke koji su vam zadani. Ova prezentacija biti će dostupna na webu. Isti format vježbi očekujte do kraja semestra. 2 / 23 Danas
Вишеrjeshenja.dvi
16. REPUBLIQKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA REPUBLIKE SRPSKE Banja Luka, 11.04.2009. ZADACI PRVI RAZRED 1. Neka su a, b, c pozitivni brojevi. Dokazati da iz a 2 + b 2 = c 2 slijedi a 2
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеMicrosoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]
Dva pristupa u analiziranu kretana materiala: 1. Statistički pristup material se tretira kao skup molekula makroskopski fenomeni se obašnavau kao posledica molekularne aktivnosti računane primenom zakona
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеKonacne grupe, dizajni i kodovi
Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеUniverzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prostori nizova c 0 i l p Master rad Mentor: Prof. dr. Dragan -Dorđević Stu
Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prostori nizova c 0 i l p Master rad Mentor: Prof. dr. Dragan -Dorđević Student: Jelena Mosić Niš, 2016. SADRŽAJ 2 Sadržaj 1 Uvod
Више{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p
{ Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеVeeeeeliki brojevi
Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu
Вишеres_gradsko_2010.dvi
REXEƫ ZTK OKRUЖNOG TKMIQEƫEƫ IZ MTEMTIKE UQENIK SREƫIH XKOL, 0.000. Prvi razred, kategorija Kako je xyz > 0, sledi x > y,z, odakle je 4x > (y + z) = x, tj. x < Iz x = (y + z) sledi x, pa mora biti x =
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
Више1996_mmo_resenja.dvi
37. ME UNARODNA MATEMATIQKA OLIMPIJADA Mumbaj, Indija sreda, 10. jul 1996. 1. Neka je ABCD pravougaona tabla sa AB = 20 i BC = 12. Tabla je razloжena na 20 12 jediniqnih kvadrata. Neka je r prirodan broj.
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеREXENjA ZADATAKA RPUBLIQKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1. Ako su A i B neprazni podskupovi ravni α, takvi da je A B =
REXENjA ZADATAKA RPUBLIQKO TAKMIQENjE IZ MATEMATIKE 8.03.006. Prvi razred A kategorija. Ako su A i B neprazni podskupovi ravni α, takvi da je A B = i A B = α, dokazati da postoji jednakokraki pravougli trougao
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Go
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Goran Muić Zagreb, srpanj 2014. Ovaj diplomski rad obranjen
ВишеRG_V_05_Transformacije 3D
Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli
ВишеDELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a
DELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a. b a oznaqava da a ne deli b. Napomena 1.1. (1) Deljivost
Више18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f
8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)
Вишеrumunija0107.dvi
ME URODI TREIG Z MMO Râmnicu Vâlcea, 19. & 0.01.007. Prvi dan Zadata 1. Konaqno mnogo rugova preriva oxtrougli trougao. Doazati da je zbir njihovih polupreqnia ne manji od polupreqnia opisane ruжnice tog
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
ВишеFriedrichsovi operatori kao dualni parovi
Friedrichsovi operatori kao dualni parovi Marko Erceg PMF-MO, Zagreb Znanstveni kolokvij Zagreb, π. 2018. Zajednički rad s N. Antonićem, K. Burazinom, I. Crnjac i A. Michelangelom Uvod Na Ω R d promatramo
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
ВишеMatematicke metode fizike II - akademska 2012/2013.g.
Besselove funkcije y(x) = m=0 a m x m+σ, x 2 y + xy + (x 2 ν 2 )y = 0 σ 2 = ν 2 (1 ± 2ν)a 1 = 0; n(n ± 2ν)a n + a n 2 = 0 za n 2. J ν (x) = n=0 Besselove funkcije prve vrste reda ν. ( 1) n ( x ) ν+2n n!γ(ν
ВишеKonstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)
Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) = w k w k 1 Adams-Moultonovi metodi kod kojih je ρ(w)
ВишеPripremni kamp - Avala, 1-7. februar Zadaci za samostalan rad (pripremio Duxan uki ) Algebra 1. Realni brojevi a, b, c zadovoljavaju (a+b)(b+c)(c
Pripremni kamp - Avala, 1-7. februar 013. Zadaci za samostalan rad (pripremio Duxan uki ) Algebra 1. Realni brojevi a, b, c zadovoljavaju (a+b)(b+c)(c+a) = abc i (a 3 +b 3 )(b 3 +c 3 )(c 3 +a 3 ) = a 3
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,
MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada:
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2015.
Више1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:
1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.
ВишеOptimizacija
Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje
ВишеGeometrija I–smer - deo 4: Krive u ravni
UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Geometrija I{smer deo 4: Krive u ravni Tijana Xukilovi 3. decembar 2018 Konus Neka su i i s dve prave u prostoru koje se seku u taqki T. Kruni konus sa temenom
ВишеLOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren
LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Reeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren skup, ima u taqki (a, b, c) X lokalni minimum (maksimum)
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
ВишеPismeni dio ispita iz Matematike 1
Zenica, 00007 Odediti koeficijent uz 8 u azvoju tinoma 0 + + Rješiti i diskutovati sistem lineanih jednačina u zavisnosti od paameta a: a y + z = + ( a) y + z = 0 y+ a z = Ispitati funkciju i nactati gafik:
ВишеANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične)
ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija 1.0 1 Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) euklidske geometrije ravnine i prostora koristeći algebarske
ВишеDvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petra Stopić RAČUNANJE I ANALIZA MATRIČNE FUNKCIJE PREDZNAKA Diplomski rad
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petra Stopić RAČUNANJE I ANALIZA MATRIČNE FUNKCIJE PREDZNAKA Diplomski rad Zagreb, 06. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI
ВишеMicrosoft PowerPoint - ravno kretanje [Compatibility Mode]
КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y
ВишеSVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJA I PRIMJERI IZ FIZIKE Završni rad Tomislav Kneţević
ВишеMetoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih
1 of 15 math.e Hrvatski matematički elektronički časopis Metoda konačnih elemenata; teorija i praktična implementacija klavirska žica konačni elementi mehanika numerička matematika Andrej Novak Sveučilište
ВишеMAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s
MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеS E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar,
S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, 2006. 1 Diferencijalni račun ima veliku primenu u ekonomiji, elektrotehnici, astrofizici, astronomiji,
ВишеMAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S
MAT A MATEMATIKA viša razina MATA.45.HR.R.K.8 Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеMAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2
T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od
ВишеGLATKE I RIEMANNOVE MNOGOSTRUKOSTI Željka Milin Šipuš, Juraj Šiftar 16. lipnja 2014.
GLATKE I RIEMANNOVE MNOGOSTRUKOSTI Željka Milin Šipuš, Juraj Šiftar 16. lipnja 2014. Željka Milin Šipuš, Juraj Šiftar GLATKE I RIEMANNOVE MNOGOSTRUKOSTI Drugi dio standardnog poslijediplomskog kolegija
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
Више