1996_mmo_resenja.dvi

Величина: px
Почињати приказ од странице:

Download "1996_mmo_resenja.dvi"

Транскрипт

1 37. ME UNARODNA MATEMATIQKA OLIMPIJADA Mumbaj, Indija sreda, 10. jul Neka je ABCD pravougaona tabla sa AB = 20 i BC = 12. Tabla je razloжena na jediniqnih kvadrata. Neka je r prirodan broj. Novqi moжe da se premesti iz jednog kvadrata u drugi ako i samo ako je rastojanje njihovih centara jednako r. Zadatak je da se nađe niz premextanja koji prevodi novqi iz kvadrata kome je A jedno teme u kvadrat kome je B jedno teme. (a) Dokazati da se zadatak ne moжe izvrxiti ako je r deljivo sa 2 ili 3. (b) Dokazati da se zadatak moжe izvrxiti ako je r = 73. (v) Moжe li se zadatak izvrxiti ako je r = 97? (Finska) 2. Neka je P unutraxnja taqka trougla ABC takvadaje APB AC B = APC ABC. Neka su D i E centri krugova upisanih u trouglove APB i APC, redom. Dokazati da se AP, BD i CE seku u jednoj taqki. (Kanada) 3. Neka je N 0 skup svih nenegativnih celih brojeva. Na i sve funkcije f : N 0 N 0 takve da je f (m + f (n)) = f (f (m)) + f (n) za sve m,n N 0. (Rumunija) Language: Serbian Vreme za rad: 4 sata i 30 minuta Svaki zadatak vredi 7 poena

2 37. ME UNARODNA MATEMATIQKA OLIMPIJADA Mumbaj, Indija qetvrtak, 11. jul Prirodni brojevi a i b su takvi da su brojevi 15a + 16b i 16a 15b kvadrati prirodnih brojeva. Na i najmanju mogu u vrednost koju moжe uzeti manji od ta dva kvadrata. (Rusija) 5. Dat je konveksan xestougao ABCDEF takav da je AB paralelno sa DE, BC paralelno sa EF i CD paralelno sa FA.Neka R A, R C i R E oznaqavaju polupreqnike krugova opisanih oko trouglova FAB, BCD i DEF, redom,ineka p oznaqava obim xestougla. Dokazati da vaжi R A + R C + R E p 2. (Jermenija) 6. Dati su prirodni brojevi n, p, q takvi da je n > p + q. Neka su x 0, x 1,...,x n celi brojevi koji zadovoljavaju slede e uslove: (i) x 0 = x n = 0; (ii) za svaki ceo broj i (1 i n) vaжix i x i 1 = p ili x i x i 1 = q. Dokazati da postoji par (i, j ), gdejei < j i (i, j ) (0,n), takav da je x i = x j. (Francuska) Language: Serbian Vreme za rad: 4 sata i 30 minuta Svaki zadatak vredi 7 poena

3 REXENjA 1. Radimo sa rexetkom A = {(x, y) Z 2 0 x 19, 0 y 11}. Svaki korak je oblika (x, y) (x + a, y + b), gdesua,b Z i a 2 + b 2 = r, a cilj je da se ovakvim koracima po rexetki A stigne od taqke (0,0) do (19,0). (a) Ako 2 r,onda2 a + b kad god je a 2 + b 2 = r (a,b Z), pa parnost zbira x + y ostaje ista posle svakog koraka. Zato iz (0,0) ne moжemo sti i do (19,0). Ako 3 r,onda3 a,b, pax i y ostaju deljivi sa 3, i opet se ne moжe do i do taqke (19,0). (b) Poxto je r = 73 = , svaki korak je oblika (x, y) (x ± 8, y ± 3) ili (x, y) (x±3, y ±8). Slika1prikazuje jedno rexenje. (v) Sada je 97 = Razlikujemo slika 1 dve vrste poteza: vodoravne oblika (x, y) (x ± 9, y ± 4) i uspravne oblika (x, y) (x ± 4, y ± 9). Posmatrajmo skupove B = {(x, y) A 4 y 7} i C = {(x, y) A y < 4 ili y > 7}. Pri svakom vodoravnom potezu prelazimo iz skupa B u slika 2 skup C ili obrnuto, dok su vodoravni potezi uvek unutar skupa C. S druge strane, vodoravni potezi menjaju parnost koordinate x, a uspravni je ne menjaju. Prema tome, da bismo doxli iz taqke (0,0) u (19,0), trebanam neparan broj vodoravnih poteza, ali na takav naqin, poqevxi iz skupa C, zavrxi emo u skupu B, a(19,0) B. Dakle, odgovor je ne. Napomena. Slika2prikazujesvapoljadokojisemoжesti iudelu(v). Jasno je da se ovaj deo zadatka i ovako moжe rexiti. 2. Neka su X,Y, Z redom podnoжja normala iz taqke P na prave BC, CA i AB. Izte- A tivnih qetvorouglova AZPY, BXPZ i CXPY sledi XZY = APB C XYZ = APC B XY = PC sin C i XZ = PBsin B. Iz uslova zadatka sledi da je trougao XYZ jednakokraki i XY = XZ, odakle B X C sledi PBsin B = PC sin C, tj. po sinusnoj teoremi AB PB = AC. Sledi da simetrale PC uglova ABP i AC P dele duж AP u istom odnosu, tj. seku se na AP. Z P Y

4 Drugo rexenje. Za ma koju taqku X,nekaX oznaqava njenu sliku pri inverziji Ψ A,r. Uslov zadatka postaje B C P = C B P, tj. B P = C P. Kako je B P = r 2 APAB BP i C P = r 2 APAC CP odatle sledi AC /AB = PC/PB. 3. Zamenom m = n = 0 dobijamo f (0) = 0 i odatle f (f (n)) = f (n) za sve n. Nula-funkcija je trivijalno rexenje. Pretpostavimo da je f 0. Posmatrajmo najmanje a N za koje je f (a) = a (takvo a postoji jer je f (f (n)) = f (n) za sve n N). Iz (1) sledi indukcijom da je f (ka) = ka za sve k N. Xta vixe, kako je f (ka+ i) = f (i + f (ka)) = ka+ f (i) ka+ i za 0 < i < a, jednakost f (x) = x vaжi ako i samo ako a x. Između ostalog, a f (n) za n N. Ako sada oznaqimo f (i) = an i za i = 0,1,...,a 1 (pri qemu je n 0 = 0 i n i N 0 za 1 i < a), dobijamo f (n) = (k + n i )a, gde je n = ka+ i i 0 i < a. Osim nula-funkcije, i sve ovakve funkcije su rexenja: zaista, ako ubacimo m = ka+i i n = la+ j, dobijamo f (m + f (n)) = f (ka+i + f (la+ j )) = f ((k +l +n j )a +i) = (k + l + n j + n i )a = f (f (m)) + f (n). 4. Oznaqimo 15a + 16b = x 2 i 16a 15b = y 2,gdesux, y N. Tada je x 4 + y 4 = (15a + 16b) 2 + (16a 15b) 2 = ( )(a 2 + b 2 ) = 481(a 2 + b 2 ). Dakle, 481 = x 4 + y 4. S druge strane, poznato je slede e tvrđenje: Lema. Ako je p > 2 prost broj i x, y Z takvi da p x 4 + y 4 i p xy,onda8 p 1. Dokaz. Neka je y 1 Z takvo da je yy 1 1(modp). Tada p (xy 1 ) (xy 1 ) 8 1, tj. poredak broja xy 1 po modulu p je 8, odakle sledi da 8 p 1. Kako 13 1 i 37 1(mod8), sledi da su x i y deljiviisa13 isa37, pa481 x, y. S druge strane, x = y = 481 se dostiжe za a = i b = 481. Drugo rexenje. Vaжi 15x y 2 = 481a 2. Direktno se proverava da je 15x y 2 deljivo sa 13 (ili 37) ako i samo ako su takvi i x i y. Prema tome 481 x, y. 5. Oznaqimo FAB = CDE = α, ABC = DEF = β i BCD = EFA = γ. Imamo 2R A = BF sin α. Neka su A i A redom podnoжja normala iz taqke A na prave BC i EF,a D i D podnoжja normala iz D na BC i EF. Kako je BF A A = FAsinγ + AB sinβ i BF D D = CDsinγ + DE sinβ, sledi da je A A A B F E C D D D

5 4R A A A + D D = (CD+ FA) sinγ sinβ + (AB + DE) sinα sinα sinα. Sabiranjem sa analognim nejednakostima za R C i R E dobijamo 4(R A + R C + R E ) ( ) ( ) ( ) (AB + DE) sin α sin β + sinβ sinβ sin α + (BC + EF) sin γ + sinγ sinγ sin β + (CD+ FA) sinα + sin α sinγ 2(AB + DE) + 2(BC + EF) + 2(CD+ FA) = 2p, xto smo i жeleli da dokaжemo. Jednakost vaжi ako i samo ako je α = β = γ = 120 i BF BC itd, xto vaжi samo u pravilnom xestouglu. Drugo rexenje. Neka su P, Q i R taqke takve da su FABP, BCDQ i DEFR paralelogrami, a X,Y, Z taqke takve da prave XY,Y Z, ZX redom prolaze kroz B,D,F i normalne su na BP,DQ,FR.Kakoje 2R A = PX, 2R C = QY i 2R E = RZ, treba dokazati da vaжi PX +QY + RZ PF + PB +QB +QD + RD + RF. ( ) Oznaqimo YZ= x, ZX = y i XY = z. Neka su Y x i Z x redom taqke simetriqne taqkama Y i Z u odnosu na simetralu Z ZXY. Tada je y PB + z PF = XZ x PB+ E XY x PF = 2P XZx P + 2P XYx P = 2P XYx PZ x Q D Y x Z x PX = x PX, pa dobijamo F PX z x PF + y PB. (1) x A C Oznaqimo sa P,Q,R redom sredixta X B Y duжi QR,RP,PQ. Sabiranjem (1) sa analognim nejednakostima za QY i RZ dobijamo ( ) ( ) y PX +QY + RZ x PB + x y QB + z y QD + y z RD + ( x z RF + z x ( ) ( ) PF) = x y + y R y B + x z + z P D + ( z y x + x ) (2) z Q F δ, gde je δ = ( x y y x ) ( ) y PQ + z z y QR + ( z x x ) z RP. QR Najzad, trouglovi PQR i XYZ su sliqni, tj. YZ = RP ZX = PQ XY = k, pajeδ = k( x y y x )z + k( y z z y )x + k( z x x z )y = 0. Sada ( ) sledi iz (2) korix enjem nejednakosti x y + y x 2, y z + z y 2 i z x + x z 2. Napomena. Nejednakost ( ) je zapravo opxtija varijanta Erdox-Mordelove nejednakosti koja se sliqno dokazuje. R P 6. Ne umanjuju i opxtost, moжemo da smatramo da je nzd(p, q) = 1.

6 Kako je x i x i 1 p (mod p + q) za sve i, vaжi0 = x n x 0 np (mod p + q) i odatle p + q n. Takođe, x i+p+q x i + (p + q)p x i (mod p + q) za sve 0 i n p q. Posmatrajmo niz y i = x i+p+q x i, i = 0,...,n p q. Po prethodnom, svi qlanovi ovog niza su deljivi sa p + q. Xta vixe, y i+1 y i = (x i+p+q+1 x i+p+q ) (x i+1 x i ) je jednako 0 ili ±(p + q). Prema tome, ako nijedno y i nije jednako 0, onda svi brojevi y i moraju da budu istog znaka. Međutim, to je nemogu e jer je y 0 + y p+q ++y n p q = x n x 0 = 0. Sledi da je y i = 0, tj. x i+p+q = x i za neko i. Duxan uki srb.imomath.com

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr Prvi razred A kategorija 1. Za prirodan broj n oznaqimo sa x n broj koji se dobije uzastopnim zapisivanjem svih prirodnih brojeva od 1 do n jedan iza drugog (npr. x 14 = 1234567891011121314). Neka je funkcija

Више

homotetija_ddj.dvi

homotetija_ddj.dvi Homotetija verzija.0: 16.10.016. uxan uki efinicija. Homotetija H O,k sa centrom O i koeficijentom k je preslikavanje ravni koje slika svaku taqku X u taqku X takvu da je OX = k OX. Homotetiju zovemo pozitivnom

Више

rjeshenja.dvi

rjeshenja.dvi 16. REPUBLIQKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA REPUBLIKE SRPSKE Banja Luka, 11.04.2009. ZADACI PRVI RAZRED 1. Neka su a, b, c pozitivni brojevi. Dokazati da iz a 2 + b 2 = c 2 slijedi a 2

Више

24. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka, 22. april ZADACI PRVI RAZRED 1. Dat je razlomak 2a27, g

24. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka, 22. april ZADACI PRVI RAZRED 1. Dat je razlomak 2a27, g 4. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Ba a Luka,. april 07. ZADACI PRVI RAZRED. Dat je razlomak a7, gdje su a i b cifre za koje je b a =. Ako se 7b egovom brojiocu

Више

DELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a

DELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a DELjIVOST Ceo broj a je deljiv celim brojem b 0 ako postoji ceo broj q takav da je a = b q. U tom sluqaju kaжemo i da b deli a. b a oznaqava da b deli a. b a oznaqava da a ne deli b. Napomena 1.1. (1) Deljivost

Више

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet

Више

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1.

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1. Prvi razred A kategorija Za brojeve a, b, c, x, y i z vaжi {a, b, c} = {x, y, z} = {15, 3, 2014}. Da li broj a bc + x yz mora biti sloжen? (Za m, n, k N je sa m nk oznaqen broj m (nk).) Neka su a, b i

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

REXENjA ZADATAKA RPUBLIQKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1. Ako su A i B neprazni podskupovi ravni α, takvi da je A B =

REXENjA ZADATAKA RPUBLIQKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 1. Ako su A i B neprazni podskupovi ravni α, takvi da je A B = REXENjA ZADATAKA RPUBLIQKO TAKMIQENjE IZ MATEMATIKE 8.03.006. Prvi razred A kategorija. Ako su A i B neprazni podskupovi ravni α, takvi da je A B = i A B = α, dokazati da postoji jednakokraki pravougli trougao

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

Pripremni kamp - Avala, 1-7. februar Zadaci za samostalan rad (pripremio Duxan uki ) Algebra 1. Realni brojevi a, b, c zadovoljavaju (a+b)(b+c)(c

Pripremni kamp - Avala, 1-7. februar Zadaci za samostalan rad (pripremio Duxan uki ) Algebra 1. Realni brojevi a, b, c zadovoljavaju (a+b)(b+c)(c Pripremni kamp - Avala, 1-7. februar 013. Zadaci za samostalan rad (pripremio Duxan uki ) Algebra 1. Realni brojevi a, b, c zadovoljavaju (a+b)(b+c)(c+a) = abc i (a 3 +b 3 )(b 3 +c 3 )(c 3 +a 3 ) = a 3

Више

Particije prirodnog broja druga-0.1 verzija: Duxan uki 1 Uvod Particija prirodnog broja n je predstavljanje n u obliku zbira nekoliko prirodn

Particije prirodnog broja druga-0.1 verzija: Duxan uki 1 Uvod Particija prirodnog broja n je predstavljanje n u obliku zbira nekoliko prirodn Particije prirodnog broja druga-0. verzija: 7..03. Duxan uki Uvod Particija prirodnog broja n je predstavljanje n u obliku zbira nekoliko prirodnih brojeva, pri qemu je redosled sabiraka nebitan. Sa p(n)

Више

32zadatka_2014_IMO-pripreme_ddj.dvi

32zadatka_2014_IMO-pripreme_ddj.dvi Pripreme za MMO - Beograd, 11-15 juni 014 Zadaci za samostalan rad (pripremio Duxan uki ) Pokuxao sam, verovatno neuspexno, da unutar svake oblasti sortiram zadatke od lakxih ka teжim Radite ih sami (ali

Више

58. Federalno takmičenje iz matematike učenika srednjih škola

58. Federalno takmičenje iz matematike učenika srednjih škola 58. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 4.0.018. godine PRVI RAZRED Zadatak 1 Ako su, i realni brojevi takvi da je 0, dokazati da vrijedi

Више

Okruzno2007ZASTAMPU.dvi

Okruzno2007ZASTAMPU.dvi 4. RAZRED 1. Koliko ima trouglova na slici? Navesti te trouglove. D E F C A 2. Na koliko naqina Voja, Rade i Zoran mogu da podele 7 jednakih klikera, tako da svaki od Φih dobije bar jedan kliker? 3. TravΦak

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat

Више

kolokvijum_resenja.dvi

kolokvijum_resenja.dvi Геометриjа 2 колоквиjум 2019. Димитриjе Шпадиjер 25. jануар 2019. 1. Важи H(,;K,L) ако постоjи права p коjа не садржи тачку и сече праве,,k,l у неким тачкама X,Y,M,N таквим да важи H(X,Y;M,N). Права сече

Више

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh Slicnost trouglova Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a,, c su stranice trougla suprotne vrhovima A, B, C redom. -m a, m, m c su tezisnice iz vrhova A, B, C redom. -h a, h, h c su

Више

rumunija0107.dvi

rumunija0107.dvi ME URODI TREIG Z MMO Râmnicu Vâlcea, 19. & 0.01.007. Prvi dan Zadata 1. Konaqno mnogo rugova preriva oxtrougli trougao. Doazati da je zbir njihovih polupreqnia ne manji od polupreqnia opisane ruжnice tog

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i

GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i GEOMETRIJA 2 zadaci po kojima se dre vebe PODUDARNOST 1. (Sreda linija trougla) Ako su B 1 i C 1 sredixta dui CA i BA trougla ABC, onda su prave BC i B 1 C 1 paralelne i vai B 1 C 1 = 1 2 BC. 2. Ako su

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 28. veljače AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJER

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 28. veljače AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJER ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 8. veljače 011. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI NA

Више

res_gradsko_2010.dvi

res_gradsko_2010.dvi REXEƫ ZTK OKRUЖNOG TKMIQEƫEƫ IZ MTEMTIKE UQENIK SREƫIH XKOL, 0.000. Prvi razred, kategorija Kako je xyz > 0, sledi x > y,z, odakle je 4x > (y + z) = x, tj. x < Iz x = (y + z) sledi x, pa mora biti x =

Више

Pelova jednaqina verzija 2.1: Duxan uki 0 Uvod Qesto smo se sretali sa linearnim diofantskim jednaqinama, i ovakve jednaqine znamo da rexav

Pelova jednaqina verzija 2.1: Duxan uki 0 Uvod Qesto smo se sretali sa linearnim diofantskim jednaqinama, i ovakve jednaqine znamo da rexav Pelova jednaqina verzija.1: 1..015. Duxan uki 0 Uvod Qesto smo se sretali sa linearnim diofantskim jednaqinama, i ovakve jednaqine znamo da rexavamo pomo u jednostavnog algoritma. Diofantske jednaqine

Више

Nermin Hodzic, Septembar, Inverzija 1 Notacija: -Preslikavanje I(A) = A 1,za koje vrijedi OA OA 1 = r 2, i tacka A 1 se nalazi na zraki OA,naziv

Nermin Hodzic, Septembar, Inverzija 1 Notacija: -Preslikavanje I(A) = A 1,za koje vrijedi OA OA 1 = r 2, i tacka A 1 se nalazi na zraki OA,naziv Inverzija 1 Notacija: -Preslikavanje I(A) = A 1,za koje vrijedi OA OA 1 = r 2, i tacka A 1 se nalazi na zraki OA,nazivam inverzija u odnosu na kruznicu k(o, r). -I(P ) = P 1 je oznaka za sliku tacke P

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

MAT-KOL (Banja Luka) XXV (1)(2019), DOI: /МК A ISSN (o) ISSN (o) JOŠ JEDAN DO

MAT-KOL (Banja Luka) XXV (1)(2019), DOI: /МК A ISSN (o) ISSN (o) JOŠ JEDAN DO MAT-KOL (Banja Luka) XXV ()(9), -8 http://www.imvibl.org/dmbl/dmbl.htm DOI:.75/МК9A ISSN 54-6969 (o) ISSN 986-588 (o) JOŠ JEDAN DOKAZ PTOLEMEJEVE TEOREME I NJENA ZNAČAJNA PRIMJENA Dr. Šefket Arslanagić,

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег новог или подсећања нечег што сте заборавили. Немојте

Више

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III 25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je 1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na jednu od preostale dvije stranice i njezino nožište na

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p { Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

ss08drz-A-zad.dvi

ss08drz-A-zad.dvi DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija, 7. travnja 008. Rješenja Zadatak 1. Neka su a, b, c proizvoljni realni brojevi. Dokaži da je barem jedan od brojeva (a + b + c) 9ab,

Више

ALGEBRA 2 ZORAN PETROVI Predavanja za xkolsku 2014/15 godinu

ALGEBRA 2 ZORAN PETROVI Predavanja za xkolsku 2014/15 godinu ALGEBRA 2 ZORAN PETROVI Predavanja za xkolsku 2014/15 godinu Grupe Dejstva grupa Zapoqnimo ovu lekciju slede om definicijom. Definicija 1 Neka je G grupa i X neprazan skup. Pod dejstvom grupe G na skupu

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

Ministarstvo znanosti i obrazovanja Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1

Ministarstvo znanosti i obrazovanja Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1 Ministarstvo znanosti i obrazovanja Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 9. ožujka

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 9. siječnja

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

СТЕПЕН појам и особине

СТЕПЕН појам и особине СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5

Више

2

2 Геометриjа 2 Димитриjе Шпадиjер spadijer@matf.bg.ac.rs 5. октобар 2018. О курсу Обавезан курс 6 ЕСПБ О курсу Обавезан курс 6 ЕСПБ Предавања: проф. др Мирослава Антић Веб локациjа: http://www.matf.bg.ac.rs/

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 29. ožujka Zadatak A-1.1. Ana i Vanja stoje zajedno kraj željezničke

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 29. ožujka Zadatak A-1.1. Ana i Vanja stoje zajedno kraj željezničke DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 9. ožujka 019. Zadatak A-1.1. Ana i Vanja stoje zajedno kraj željezničke pruge i čekaju da prođe vlak koji vozi stalnom brzinom.

Више

FOR_Matema_Srednja

FOR_Matema_Srednja Јован Бојиновић НЕОПХОДНЕ ФОРМУЛЕ ИЗ МАТЕМАТИКЕ ЗА ПОЛАГАЊЕ ПРИЈЕМНОГ ИСПИТА ЗА ФАКУЛТЕТЕ Формуле из планиметрије и стереометрије Страна: ПОВРШИНА ТРОУГЛА. Површина троугла се може израчунати и Хероновим

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

gt3b.dvi

gt3b.dvi r t. h en m le w.e w w 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su primjerice duljina, površina, obujam, temperatura, tlak, masa, energija,

Више

Univerzitet u Nixu Prirodno-matematiqki fakultet Departman za matematiku Tenzorska analiza u teoriji relativnosti Master rad Mentor: Prof. Dr Ljubica V

Univerzitet u Nixu Prirodno-matematiqki fakultet Departman za matematiku Tenzorska analiza u teoriji relativnosti Master rad Mentor: Prof. Dr Ljubica V Univerzitet u Nixu Prirodno-matematiqki fakultet Departman za matematiku Tenzorska analiza u teoriji relativnosti Master rad Mentor: Prof. Dr Ljubica Velimirovi Student: Vladislava Stankovi Nix, 2015. PREDGOVOR

Више

Microsoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx

Microsoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx Универзитет у Београду Математички факултет О неким класичним квадратним Диофантовим једначинама Мастер рад ментор: Марко Радовановић студент: Ивана Фируловић Београд, 2017. Садржај Увод...2 1. Линеарне

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш

Више

JEDNAKOSTI I JEDNAČINE,

JEDNAKOSTI I JEDNAČINE, ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА Диофантове једначине смо решавали у петом, шестом и седмом разреду. Тада смо се упознали и са појмом Диофантове једначине и појмом решења Диофантове једначине. Циљ ове наставне

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT

Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja

Више

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне

Више

ss08drz-A-zad.dvi

ss08drz-A-zad.dvi Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija Primošten,

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

MAT-KOL (Banja Luka) XXV (2)(2019), DOI: /МК A ISSN (p) ISSN (o) PET RAZNI

MAT-KOL (Banja Luka) XXV (2)(2019), DOI: /МК A ISSN (p) ISSN (o) PET RAZNI MAT-KOL (Banja Luka) XXV ()(019), 95-100 http://wwwimviblorg/dmbl/dmblhtm DOI: 10751/МК190095A ISSN 054-6969 (p) ISSN 1986-588 (o) PET RAZNIH DOKAZA JEDNE ALGEBARSKE NEJEDNAKOSTI (Five diverses proofs

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:

1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: 1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.

Више

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren

LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Rexeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren LOKALNI EKSTREMUMI FUNKCIJE TRI PROMENLjIVE Reeni primeri i zadaci za veжbu Dragan ori Funkcije tri promenljive Funkcija f : X R, gde je X R 3 otvoren skup, ima u taqki (a, b, c) X lokalni minimum (maksimum)

Више

MAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА

MAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

UNIVERZITET U NIXU PRIRODNO-MATEMATIQKI FAKULTET DEPARTMAN ZA MATEMATIKU KLASIQNI GEOMETRIJSKI PROBLEMI MASTER RAD Mentor : Student : Prof. dr Milan Z

UNIVERZITET U NIXU PRIRODNO-MATEMATIQKI FAKULTET DEPARTMAN ZA MATEMATIKU KLASIQNI GEOMETRIJSKI PROBLEMI MASTER RAD Mentor : Student : Prof. dr Milan Z UNIVERZITET U NIXU PRIRODNO-MATEMATIQKI FAKULTET DEPARTMAN ZA MATEMATIKU KLASIQNI GEOMETRIJSKI PROBLEMI MASTER RAD Mentor : Student : Prof. dr Milan Zlatanovi Dejan Spasi Nix, 2016. Temu diplomskog rada

Више

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. A. Prema definiciji, interval a, b] je skup svih realnih brojeva koji su strogo veći od a, a jednaki ili manji od b. Stoga je interval 3, ] skup svih realnih brojeva koji

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2 T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM

DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 1oţujka-travnja 011 5 razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA UKOLIKO UĈENIK IMA DRUGAĈIJI POSTUPAK RJEŠAVANJA, ĈLAN POVJERENSTVA DUŢAN JE

Више

m3b.dvi

m3b.dvi 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su, na primjer, duljina, površina, obujam, temperatura, tlak, masa, energija, specifična gustoća:::

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више