Kontinuirani sustavi
|
|
- Vladka Dimić
- пре 5 година
- Прикази:
Транскрипт
1 Signali i sstavi Aditorn vjžb 8. Kontinirani sstavi Zadatak. Kontinirani sstav zadan j modlom na slici. Odrdit difrncijaln jdnadžb koja opisj ovaj sstav i izračnajt odziv na pobd: (t) U cos(ω t) - x x x x + - 0, y 0, Paramtri pobd? x + x x x - - 0, 0, y y x x x x - 0, x - 0, x x x x - 0, x -0, x x - 0, x - 0, x x + 0, x + 0, x y + 0, y + 0, y Počtni vjti nka s: y(0) -0, y (0) -5. Paramtri pobd nka s: U 3, ω,8.
2 Odziv sstava? A) Totalno ili kpno rjšnj: y(t) y H (t) + y P (t). Ukpno rjšnj j sma rjšnja homogn jdnadžb i partiklarnog rjšnja - to važi za sv linarn jdnadžb. A..) Homogna jdnadžba: y + 0, y + 0, y 0. Prtpostavimo rjšnj oblika: y H (t) A st. Rjšavamo homogn... Uvrstimo prtpostavljno rjšnj jdnažb: s A st + 0, s A st + 0, A st 0. Pokratimo sa A st (možmo, jr A st 0). s + 0, s + 0, 0 s naziva karaktristična jdnadžba sstava. Korijni karaktrističn jdnadžb s: s, 0, 0, 4 0, ± 0, ± 03, j, Rjšavamo homogn... pa j rjšnj homogn: y H (t) A (-0,+0,3 j)t +A (-0,-0,3 j)t -0, t (A 0,3 j t +A -0,3 j t ) -0, t (A cos 0,3 t + A j sin 0,3 t + A cos 0,3 t - A j sin 0,3 t). Uvdmo nov komplksn konstant: y H (t) -0, t ( cos 0,3 t + sin 0,3 t) gdj s A + A i j (A -A ).
3 Odrđivanj homognog rjšnja jdnostrka ralna vlastita frkvncija s k-strka ralna vlastita frkvncija s konjgiranokomplksni par oblika s α± jβ k-strki konjgiranokomplksni par oblika s α± jβ y h (t) st y h (t) st ( + t + + t k k ) y h (t) αt (A cos(βt) + B sin(βt)) y h (t) αt cos(βt) (A + ta + + t k A k ) + αt sin(βt) (B + tb + + t k B k ) 7 Partiklarno rjšnj... Partiklarno rjšnj ima oblik pobd: y P (t) Y cos (ω t + ϕ). Trbaj nam još i drivacij: y P (t) - ω Y sin (ω t + ϕ), y P (t) - ω Y cos (ω t + ϕ). Sv to vrstimo difrncijaln jdnadžb y + 0, y + 0, y, -ω Y cos (ω t + ϕ) - 0, ω Y sin (ω t + ϕ) + 0, Y cos (ω t + ϕ) U cos ω t. Partiklarno rjšnj... Prisjtimo s trigonomtrijskih jdnadžbi: cos (ω t + ϕ) cos ω t cos ϕ - sin ω t sin ϕ, sin (ω t + ϕ) sin ω t cos ϕ + cos ω t sin ϕ. Nakon vrštnja i grpiranja, naša difrncijalna jdnadžba postaj: Y [-ω cos ϕ -0, ω sin ϕ + 0, cos ϕ ] cos ω t + Y [ω sin ϕ -0, ω cos ϕ -0, sin ϕ ] sin ω t U cos ω t. 3
4 Partiklarno rjšnj... Mtoda jdnakih koficijnata daj: Y [-ω cos ϕ -0, ω sin ϕ + 0, cos ϕ] U, Y [ω sin ϕ -0, ω cos ϕ -0, sin ϕ] 0. (Y 0) > (ω -0,) sin ϕ 0, ω cos ϕ 0, ω tgϕ ω 0, ω ϕ arctg 0,, a iz gornj jdnadžb slijdi: ω 0, U Y (, 0 ω )cos ϕ 0, ωsinϕ Partiklarno rjšnj... Ako vrstimo konkrtn brojk, imamo: U 3, ω,8 ϕ 0,4567 Y -0,94996 y p -0,94996 cos (,8t + 0,4567) -cos x cos (x - π) y p 0,94996 cos (,8t - 3, ) Odrđivanj partiklarnog rjšnja pobda j Aat, a nij korijn karaktrističn jdnadžb pobda j A at, a j k- strki korijn karaktrističn jdnadžb pobda j polinom k-tog stpnja pobda j Asin(ωt) i jω nij korijn karaktrističn jdnadžb pobda j Asin(ωt) i jω j k-strki korijn karaktrističn jdnadžb y p (t) at y p (t) t k at y p (t) t k k + t k k y p (t) sin(ωt) + cos(ωt) y p (t) t k ( sin(ωt) + cos(ωt) ) 4
5 Partiklarno rjšnj na drgi način... Spcijalni slčaj: pobda j harmonička, omogćava potrb fazora. U cosω t R[U jωt ] R[U st ], gdj j s jω. Priprmimo y p i drivacij: y p Y st, y p s Y st, y p s Y st. Važna intrprtacija rjšnja!!! s Y st + 0,s Y st + 0,Y st U st Y[s + 0,s + 0,] U Y U Hs ( ) s + 0, s + 0, H( s) s s jω + 0, s+ 0, /: st { amplitda H(jω) H(jω) jϕ(ω) Prijnosna fnkcija { faza Partiklarno rjšnj na drgi način, nastavak... Hs ( ) H( jω) ( jω) + 0, jω + 0, H(jω ) 0, ϕ -3,0744 (, 0 ω ) + 004, ω 0, ω jarctg 0, ω 5
6 ... i konačno... y p R [H(jω ) U jωt ] R [ H(jω ) jϕ U jωt ] H(jω ) U cos (ω t + ϕ) 0,94996 cos (,8t - 3,0744) Totalno (kpno) rjšnj sstava: y(t) y H (t) + y p (t) y(t) ( cos 0,3t + sin 0,3t) -0,t + 0,94996 cos (,8t - 3,0744) Konstant? y(0) -0, y (0) -5 počtni vjti Konačno rjšnj: y(0) -0 y (0) -5 U VW, dvij jdnadžb s dvij npoznanic y(t) y (t) , t 0-9,057, -0,33. y(t) (-9,057 cos 0,3t - 0,33 sin 0,3t) -0,t + 0,949 cos (,8t - 3,0744). 6
7 B - Odziv npobđnog sstava y (t)? y + 0,y + 0,y 0, y (0) -0, y (0) -5, y y H (A cos0,3t + A sin0,3t) -0,t. Iz počtnih vjta slijdi: A -0, A -0, y (-0cos0,3t - 0sin0,3t) -0,t. vlastiti odziv slijd počtnih vjta B - Odziv pobđnog mrtvog sstava y + 0,y + 0,y, y (0) 0, y (0) 0, y (t) (B cos 0,3t + B sin 0,3t) -0,t + + 0,94996 cos (,8t - 3,0744). y (0) 0 y (0) 0 UV W B 0,94308 B -0,33436 B - Odziv pobđnog mrtvog sstava y (t) (0,94308 cos 0,3t - 0,33436 sin 0,3t) -0,t vlastito titranj slijd pobd + 0,94996 cos (,8t - 3,0744) stacionarno stanj y y + y Ukpni odziv Amplitd vlastitog titranja odrđn s nskladom počtnog i stacionarnog stanja! 7
8 Zadatak. Mtodom varijacij paramtara rijši difrncijaln jdnadžb y (t) 4y(t) (t) z pobd t () t + Zadatak. homogna jdnadžba Pripadna homogna jdnadžba j y (t) 4y(t) 0 Karaktristična jdnadžba j s 4 0 Opć rjšnj homogn jdnadžb j y h (t) t + t Za mtod varijacij konstant rjšnj nhomogn prtpostavljamo oblik y(t) (t) t + (t) t 3 Zadatak. varijacija paramtara Opć rjšnj j oblika y f + + m f m Kako j potrbno m vjta da bi odrdili fnkcij m tražimo da vrijdi f + f fm m 0 () () () f + f f 0 f + f f m 0 f + f f ( t) ( m ) ( m ) ( m ) m ( m ) ( m ) ( m ) m m m m 4 8
9 Zadatak. varijacija paramtara Dobivamo sstav s npoznanicama i t t () t + () t 0 ( t) + ( t) t t t Rjšnja ovog sstava s 0 t + t t t + () t t t t t t + 5 Zadatak. varijacija paramtara t t t t + () t t t t 0 t t + Očito j t t () t i () t t t Zadatak. varijacija paramtara Pomoć tablica odrđjmo (t) i (t) t () t t ln ( t + ) + A + 4 t t t d () t t t t + + t d t 4t 4 + ( ) ln ( t + + ) t B 7 9
10 Zadatak. konačno rjšnj Rjšnj jdnadžb j sada t t t yt () + ln( + ) + B ln ( t t + ) + A 4 Nakon srđivanja dobivamo y() t A + B t t t t t t ( ln( ) ln( ) ) Zadatak 3. Za sstav na slici naći trajktorij ravnini stanja, t vrmnsk promjn varijabli stanja i izlaznih varijabli. dx ( ) y y sgnx x 0 x < 0 dx t 0 0 x 0 > 0 x 0 > 0 sgn sgn Rjšnj: t y 0 0 y y () τ dτ + x, t τ sign sign y 0 0 ( λ) dλ + x dτ + x. Bz smnj, složna zadaća za analitičko rjšavanj! Jdnadžb stanja: Izlazn jdnadžb: dx sgnx, y x, y sgnx. dx sgn x. Problm j jdnostavnij rijšiti pomoć varijabli stanja (izabrati x i x )
11 Problm ćmo rijšiti gomtrijski ravnini stanja! dx dx dx dx,, x dx dx, dx dx, x dx Kako dx i poprimaj jdn od dvij vrijdnosti {,}, slijdi:. i 4. kvadrant dx. dx. i 3. kvadrant dx. dx dx dx dx,. dx Ov činjnic ćmo iskoristiti crtanj trajktorij varijabli stanja Ograničimo s na. kvadrant (x 0, x 0 > 0) Dakl, trajktorija j pravac! Kako ć s mijnjati stanj? x 0 x 0 t 0 Imamo priodičko kržnj! Nacrtajmo još jdnom prvi kvadrant. Nagib pravca j, to znači 45. Onda s označn džin jdnak (na slici )!! Nadalj, očigldno j: 45 x 0 +x 0 x 0 45 x 0
12 Iz slik zakljčjmo da x i x imaj svoj maksimm koji j x 0 + x 0, dok j minimm x 0 x 0. Nadalj, kada jdna varijabla stanja postiž maksimm (minimm) drga prolazi kroz nl. Oba stanja s mijnjaj po priodičnim fnkcijama prioda 4( x 0 + x 0 ) što ć biti jasnij iz nardnih slika. 45 x 0 +x 0 x 0 45 x 0 x (t) x 0 + x 0 4( x 0 + x 0 ) x 0 x 0 x 0 x (t) t x 0 t y (t) y x y sgnx x 0 y (t) t t Zadatak 4. Napisati jdnadžb stanja i izlazn jdnadžb za lktričn mrž prikazan slikom. j laz sstav, a i R izlaz iz sstava. i + i R i R
13 Odabir varijabli stanja (sstavi s mmorijskim lmntima) i s mmorijski lmnti. di di di / d d d i i i / i Varijabl stanja lktričn mrž s i,. Za jdnadžb stanja trba naći di d, Način rjšavanja Zadana lktrična mrža j linarna. Koristit ć s torm sprpozicij. Doprinos pojdinog aktivnog lmnta mrž odrđj s tako da s iskljč sv prostal aktivn komponnt. Iskljčiti, to znači:, kratko spojiti,, i odspojiti, gdj s, i nzavisni naponski ili strjni izvori. Ukpni odziv jdnak j smi doprinosa pojdinih aktivnih lmnata. Slčaj A B Ukljčn Iskljčn,,, i R i R i R i R i R i R A B A B di / + 0 i i d / 0 + i /R i R i + /R 3
14 4 Ako podijlimo jdnadžb s, odnosno dobijmo: što s žljn jdnadžb stanja, z vć poznat izlazn jdnadžb:, di, R i d. R R i U matričnom oblik, to izglda ovako:, 0 R 0 i d di +. 0 R 0 R i i +
INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a
INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matmatik u industrijskom inžnjrstvu, 6.9... Diskutovati po a, b R i ršiti sistm linarnih jdnačina b + by = a. Za linarnu funkciju f(,, 3 = 3 3 izračunati minimum i tačku
ВишеMicrosoft Word - SISTEMI DIFERENCIJALNIH JEDNACINA,zadaci.doc
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: 7 d Ša j idja kod ovih adaaka? Jdnu od jdnačina difrniramo, o js nañmo ivod l jdnačin i u amnimo drugu jdnačinu. Moramo da
ВишеMicrosoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc
EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE EKSTREMNE VREDNOSTI su maksimum i (ili minimum funkcij. Nadjmo prvi izvod i izjdnačimo ga sa 0, 0. Ršnja t jdnačin,,... ( naravno ako ih im mnjamo u počtnu funkciju
ВишеMicrosoft Word - IZVODI ZADACI _2.deo_
IZVODI ZADACI ( II deo U ovom del ćemo pokšati da vam objasnimo traženje izvoda složenih fnkcija. Prvo da razjasnimo koja je fnkcija složena? Pa, najprostije rečeno, to je svaka fnkcija koje nema tablici
ВишеZbirka zadataka
Dio I Kontinuirani signali i sustavi 7 . Bezmemorijski kontinuirani sustavi Bezmemorijske kontinuirane sustave možemo podijeliti na eksplicitne i implicitne sustave:. Implicitni sustavi su oni sustavi
ВишеAlgebarska topologija VAN KAMPENOV TEOREM Algebarska topologija VAN KAMPENOV TEOREM 10. Slobodni produkt grupa Slobodni produkt grupa 3 VA
lgbarska topologija 77 lgbarska topologija 79 10. Slobodni produkt grupa Slobodni produkt grupa 3 VN KMPENOV TEOREM Slobodni produkt grupa Van Kampnov torm Primjna na ćlijsk komplks Žlimo za danu familiju
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
ВишеBetonske i zidane konstrukcije 2
7. PROVJERA OSIVOSTI ZIĐA U OSIA I A VERTIKALO OPTEREĆEJE I DJELOVAJE VJETRA PROGRA IZ KOLEGIJA BETOSKE I ZIDAE KOSTRUKCIJE 94 7. Provjra nosivosti ziđa u osima i na vrtialno optrćnj i djlovanj vjtra Slia
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеPRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee
PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem
ВишеMicrosoft Word - IZVODI ZADACI _I deo_.doc
. C =0 Tablica izvoda. `=. ( )`=. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`=. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0). (sin)`=cos (ovde je >0 i a >0). (cos)`= - sin π. (tg)`= + kπ cos. (ctg)`= kπ
ВишеMatematika 2
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije
ВишеNastavno pismo 3
Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA
ВишеNo Slide Title
Pozicion srdnj vrijdnosti Pozicion srdnj vrijdnosti s odrđuju na osnovu mjsta pozicij koju zauzimaju u sriji. MODUS I MEDIJANA Modus j vrijdnost obiljžja koj u posmatranoj sriji ima najvću rkvnciju najčšć
ВишеAV9-OE2-stručni Nortonov i Theveninov teorem Dr.sc. Venco Ćorluka 9.1. Nortonov i Theveninov teorem Teorijski uvod a) Postupak za Norton 9. METODE ZA
9.1. ortonov i heveninov teorem eorijski uvod a) Postupak za orton 9. MOD A RJŠAVAJ SOŽH SRJH KRGOVA 1. Dio mreže ili element za koji tražimo struju se odspoji i računa se impedancija gledano sa tih odspojenih
ВишеMicrosoft Word - 4.Ee1.AC-DC_pretvaraci.10
AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеSeminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn
Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеNumeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs
Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
ВишеDvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f
ВишеPrimjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom
ВишеMicrosoft Word - ELEMENTARNE FUNKCIJE.doc
ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim
Више(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)
. D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
ВишеMicrosoft Word - BROJNI REDOVI zadaci _II deo_.doc
BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеMAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s
MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
ВишеMicrosoft Word - PRIMENA INTEGRALA.doc
PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nñmo ko šnj sistm jdnčin
ВишеMicrosoft PowerPoint - sis_av14_2002.ppt
Signali i sustavi AUDIORNE VJEŽBE LS&S FER ZESOI Primjena Z transformacije Odrediti analitiči ira a ni priaan sliom: f() 5 6 7 f() možemo priaati ao ni impulsa: f ( ) δ ( ) δ ( ) δ ( ) δ ( 6) Napravimo
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеMicrosoft PowerPoint - MODELOVANJE-predavanje 9.ppt [Compatibility Mode]
MODELONJE I SIMULIJ PROES 9. Rešavanje dinamičkih modela; osnovni pojmovi upravljanja procesima http://elektron.tmf.bg.ac.rs/mod Dr Nikola Nikačević METODE Z REŠNJE LINERNIH DINMIČKIH MODEL 1. remenski
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
Више18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f
8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)
ВишеNeodreeni integrali - Predavanje III
Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
ВишеMATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,
MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,
Више2015_k2_z12.dvi
OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai
ВишеLogičke izjave i logičke funkcije
Logičke izjave i logičke funkcije Građa računala, prijenos podataka u računalu Što su logičke izjave? Logička izjava je tvrdnja koja može biti istinita (True) ili lažna (False). Ako je u logičkoj izjavi
Вишеoae_10_dom
ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić domaći zadaci - 2010 1. Domaći zadatak 1.1. a) [4] Nacrtati direktno spregnut pojačavač (bez upotrebe sprežnih kondenzatora) sa NPN tranzistorima
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеMicrosoft PowerPoint - perspektiva-P1.ppt
PERSPEKTIVA dr.sc. Mirna Rodić Lipanović - TTF - Nacrtna geometrija A - 2008./2009. 1 Mongeova metoda (prikazivanje predmeta tlocrtom i nacrtom) - metoda paralelnog projiciranja - proizašla iz potreba
ВишеMicrosoft PowerPoint - 7 Poluvodici.ppt
7. POLUVODIČI 7.. Uod Podsjtnik: Zonska struktura tala, izolatora i poluodiča Poluodiči i izolatori iaju na niski tpraturaa sasi popunjn ili sasi prazn rp i n od lktričnu struju. Širina projpa kod poluodiča
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
ВишеZadatak 3.1 Navesti kineti~ke jedna~ine za sistem sa ~etiri nivoa, predstavljen na slici, uzimaju}i u obzir da je brzina neradijacionih prelaza S32 i
Zadaak 3.. avsi kiničk jdnačin za sism sa čiri nivoa prdsavljn na slici uzimajući u obzir da j brzina nradijacionih prlaza S 3 i S 0 vlika. S 3 3 03 A 30 30 S 30 A S A 0 S 0 0 Izvsi izraz za fakor pojačanja
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
Више(Microsoft Word - MATA - ljeto rje\232enja)
. A. Izračunajmo najprije prvi faktor. Dobivamo:! 0 9 8! 0 9 0 9 0 9 = = = = = 9 = 49. 4! 8! 4! 8! 4! 4 3 Stoga je zadani brojevni izraz jednak 4 8 49 0.7 0.3 = 49 0.40 0.000066 = 0.007797769 0.0078. Znamenka
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
Више(Microsoft Word doma\346a zada\346a)
1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )
ВишеNAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE
NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu
Више2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do
2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj
ВишеFAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot
FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
ВишеELEKTRONIKA
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеZadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):
Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеVežba 1: VAR model za dve vremenske serije privrede SAD
Vžba : VAR mol za rmnsk srij prir SAD Vrmnsk srij: Kartalna stopa rasta ralnog BDP Kartalna promna kamatn stop na ržan obznic (ngl. TBILL-RATE) Polazni prio: IV kartal 984-IV kartal 9. goin ( poatak) Datotka
Више8. ( )
8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеMicrosoft PowerPoint - sis04_pred05.ppt
Povratna veza automati bez ulaza (primjeri a,b i c - zaključak) zaključujemo da automati u primjerima b i c ne mogu biti spojeni u povratnu vezu kako je to prikazano jedina mogućnost ovako konstruirane
Више07jeli.DVI
Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеSTABILNOST SISTEMA
STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja
ВишеMicrosoft Word - Lekcija 11.doc
Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на
ВишеSkalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler
i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеElektronika 1-RB.indb
IME I PREZIME UČENIKA RAZRED NADNEVAK OCJENA Priprema za vježbu Snimanje strujno-naponske karakteristike diode. Definirajte poluvodiče i navedite najčešće korištene elementarne poluvodiče. 2. Slobodni
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеMicrosoft Word - 24ms241
Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako
ВишеAlgebarski izrazi (4. dio)
Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija
ВишеMicrosoft Word - NASLOVNA.docx
Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Ivančica Cvetko Zagreb, 29. Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje ZAVRŠNI RAD Voditelj rada : Dr. sc. Većeslav
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
Више23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi
3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem
ВишеMicrosoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc
. Odredite ubitke tlaka pri strujanju zraka (ρ=,5 k/m 3 =konst., ν =,467-5 m /s) protokom =5 m 3 /s kroz cjevovod duljine L=6 m pravokutno presjeka axb=6x3 mm. Cijev je od alvanizirano željeza. Rješenje:
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
ВишеTest iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +
Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz
Више2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (
2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8 2 A) (f () M) ; ome dena odozdol ako postoji m 2 R takav da je
Више(Microsoft Word - Rje\232enja zadataka)
p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi
Више