Microsoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc

Величина: px
Почињати приказ од странице:

Download "Microsoft Word - Rijeseni primjeri 15 vjezbe iz Mehanike fluida I.doc"

Транскрипт

1 . Odredite ubitke tlaka pri strujanju zraka (ρ=,5 k/m 3 =konst., ν =,467-5 m /s) protokom =5 m 3 /s kroz cjevovod duljine L=6 m pravokutno presjeka axb=6x3 mm. Cijev je od alvanizirano željeza. Rješenje: Budući nije zadana visina hrapavosti stijenke cijevi uzima se vrijednost definirana u tablici uz Moodyev dijaram, prema kojoj je za alvanizirano željezo k =,5 mm. Ovdje se radi o nekružnom presjeku pa se proračun pada tlaka vrši s ekvivalentnim promjerom, koji je definiran formulom: 4A 4ab De = = =, 4 O ( a+ b) dje je: A- površina poprečno presjeka toka (ovdje je to puni presjek A=ab) i O- oplakani opse toka odnosno duljina opsea poprečno presjeka u dodiru s fluidom, ovdje O=(a+b) U nastavku se koriste izrazi za proračun pada tlaka u okrulim cijevima, s tim da se u svim izrazima umjesto promjera D, koristi ekvivalentni promjer D e, osim pri definiciji brzine strujanja, koja se definira omjerom protoka i stvarne površine A poprečno presjeka toka. Dakle vrijedi: k,5,375 D = e, 4 = v= = 7,7 m s (prosječna brzina se računa sa stvarnom površinom toka!!) ab vd 5 Re = e = 7,6 ν,35 λ = =,647 k 5,74 ln + 3,7,9 D e Re te je traženi ubitak tlaka prema Darcy-Weissbachovom izrazu: L ρ p = λ v = 67,3 Pa D e

2 . Odredite promjer D cjevovoda da bi razina fluida u spremniku prema slici ostala konstantna. Zadano je: ρ=997 k/m 3, ν=,86-6 m /s, =8, m, h=,4 m, L =898 m, D = mm, k =k =, mm i L =6 m. Rješenje: U ovom primjeru imamo istjecanje fluida iz veliko spremnika, u spremnik konačnih dimenzija, iz koje fluid istječe u atmosferu. Traži se da razina fluida u spremniku ostane konstantna, te je prema jednadžbi kontinuiteta jasno da protok kojim fluid utiče u spremnik mora biti jednak protoku kojim fluid iz njea istječe. Budući je zadana visinska razlika, te svi podaci za cjevovod između spremnika i, mouće je izračunati protok, kojim fluid utiče u spremnik, a zatim se treba odrediti promjer D, da bi fluid istim tim protokom istjecao iz spremnika. Protok će se odrediti iz modificirane Bernoullijeve jednadžbe, koja postavljena od točke na slobodnoj površini u spremniku, do točke na slobodnoj površini u spremniku. Uzimajući u obzir da su brzine na obje slobodne površine jednake nuli, te da između točaka i imamo lokalni ubitak utjecanja u spremnik (K=) modificirana Bernoullijeva jednadžba lasi: pa pa v L v + = + K + λ (a) ρ ρ D a brzina v u cjevovodu između spremnika i se može izraziti preko protoka u obliku 4 v = (b) D π Kombinacijom izraza (a) i (b) slijedi 8 = ( D + λl), D π odnosno traženi protok je 5 π D = (c) 8( D+ λl) Uvrštavanjem zadanih veličina iz ornje izraza slijedi, 654 { } 3 = (d) m/s, + 898λ dje je,35 λ = (e) k 5,74 ln + 3,7,9 D Re i 4 6 Re = vde 7,4 { } m/s 3 ν = πdυ = (f)

3 Protok se određuje iterativno iz izraza (d), (e) i (f), s tim da iterativni postupak započinjemo s izrazom (e) uz pretpostavku Re =. Nakon određivanja λ, određuje se protok prema izrazu (d), a zatim Reynoldsov broj prema izrazu (f), nakon čea se ponovo može izračunati λ prema izrazu (e). Tablica se popunjava sve dok se protok ne prestane mijenjati u prve tri znamenke. Iteracije λ [m 3 /s] Re,9,83 5,947 5,4,739 5,467 5,43,735 5,44 5 3,43,735 Iz tablice je očito da je strujanje turbulentno jer je Reynoldsov broj daleko veći od kritične vrijednosti 3, što opravdava i pretpostavku da je koeficijent ispravka kinetičke enerije približno jednak jedinici. Budći se protok prestao mijenjati u prve tri znamenke nakon drue iteracije, za rješenje se uzima konačna vrijednost =73,5 l/s. Nakon što je određen protok kroz prvu cijev, traži se promjer drue cijevi da bi kroz nju fluid strujao jednakim protokom. Promjer D će se odrediti iz modificirane Bernoullijeve jednadžbe (M.B.J.) postavljene od točke na slobodnoj površini spremnika, dje vlada atmosferski tlak, a brzina strujanja je nula, do točke u mlazu, na izlazu iz cjevovoda, dje je tlak jednak atmosferskom tlaku, a brzina mlaza jednaka 4 brzini u cjevovodu v =. Uzimajući u obzir linijske ubitke M.B.J. lasi D π 8 h= v + λ L v = ( λl + D) () 5 D D π odakle je 8 D 5 = ( D + λl) (h) π h Uvrštavanjem svih zadanih vrijednosti u izraz (h) slijedi: dje je { } 5 { } D =,34 ( D + 6 λ ) (i) m m λ =,35 k 5,74 ln + 3,7,9 D Re i Reynoldsov broj Re = = (k) πν D D { } m Promjer D će se također odrediti iterativno iz izraza (i), (j) i (k), pri čemu je iterativni postupak mouće započeti pretpostavkom bilo koje veličine. Sljedeća tablica prikazuje rezultate dobivene u iterativnom postupku koji započinje s pretpostavkom D =D =, m. Na kraju bi dobili isti rezultat da se krenulo i s nekom druom vrijednošću promjera D. (j) 3

4 Iteracije D [m] k /D Re λ,, 5,43 5,3,58,73 4,99 5,446,73,74 3,998 5,45 3,73 Iz tablice je očito da se nakon drue iteracije promjer D prestao mijenjati u prve četiri znamenke, pa se za konačno rješenje usvaja D =7 mm. 4

5 3. Treba odrediti snau koju pumpa predaje fluidu u sustavu za hlađenje kada je izveden kao otvoreni, prema slici (a), te kao zatvoreni prema slici (b). U oba je slučaja protok u sustavu =5 l/s, a promjenu ustoće i viskoznosti s temperaturom se može zanemariti. Zadano je: ρ=998, k/m 3, ν=,. -6 m /s, L a =,4 m, D=8 mm, k=,5 mm, =,4 m, h=,5 m, svi lokalni ubici u otvorenom sustavu ΣK a =4,, a u zatvorenom ΣK b =4,8, L b =L a +. hla eni objekt hla eni objekt L a L = L + D k D k b a hladnjak pumpa ρν, h pumpa P a =? P b =? (a) (b) Riješenje: hla eni objekt z= ρ, ν Slika (a) Otvoreni sustav h Problem strujanja u otvorenom sustavu će se riješiti postavljanjem modificirane Bernoullijeve jednadžbe od točke na slobodnoj površini spremnika do točke na izlazi iz cijevi sustava za hlađenje, kao što je prikazano na slici (a). U otvorenom sustavu za hlađenje cirkulira stalno jedan te isti fluid, te se može pretpostaviti da je razina fluida u spremniku stalno na istoj visini te da je brzina strujanja u točki približno jednaka nuli. Prema tome je očito da je kinetička enerija mlaza u točki sa stajališta strujanja izubljena. Ako se usvoji da se ravnina z= poklapa sa slobodnom površinom u spremniku, modificirana Bernoullijeva jednadžba od točke do točke lasi v v La v hp = + + Ka +λ (a) D 5

6 iz koje je očito da će se visina dobave pumpe trošiti na svladavanje eodetske visine, lokalnih i linijskih ubitaka, a da će se dio visine dobave pretvoriti u kinetičku eneriju izlazno mlaza. Tražena se visina dobave pumpe može izračunati direktno iz izraza (a) jer su poznati i protok i promjer cjevovoda. Brzina strujanja fluida je 4 v = =,995 m s (b) D π Reynoldsov broj je vd 4 Re = = 6,63 (c) ν iz čea se zaključuje da je strujanje u cijevi turbulentno, te se koeficijent trenja λ računa iz izraza,35 λ = (d) k 5,74 ln + 3,7,9 D Re što uvršteno u izraz (a) daje visinu dobave pumpe h p =,8 m. Snaa koju pumpa predaje fluidu je tada Pa = ρhp = 37,4 W (e) Slika (b) Zatvoreni sustav Slika (b) prikazuje zatvoreni sustav hlađenja u kojem cirkulira jedan te isti rashladni fluid. U ovom su slučaju strujnice zatvorene krivulje, te se modificirana Bernoullijeva jednadžba može postaviti npr. od ulaza u pumpu, točka na slici (b), duž strujnice kroz pumpu, hlađeni objekt i hladnjak ponovo do točke na ulazu u pumpu. S obzirom da polazna točka odovara dolaznoj u Bernoullijevoj jednadžbi se izjednačuju dovedena enerija i enerija ubitaka, tj. vrijedi v Lb v hp = K +λ (f) b D Iz ornje je jednadžbe očito da će se visina dobave pumpe trošiti samo na svladavanje lokalnih i linijskih ubitaka trenja. Brzina i koeficijent trenja λ su jednaki kao i u prethodnom slučaju, te je h =,4 m. p Snaa pumpe u ovom slučaju je Pb = ρhp =,6 W () Očito je u zatvorenom sustavu potrebna puno manja snaa pumpe neo u otvorenom jer u zatvorenom sustavu nije potrebno svladavati eodetsku visinu, a nema ni ubitka kinetičke enerije. 6

7 4. ρ,ν K u D =? L, k Treba odrediti promjer D cjevovoda da bi se na izlazu iz mlaznice dobilo 9% raspoložive potencijalne enerije u obliku kinetičke enerije izlazno mlaza uz protok od =,55 m 3 /s. Koliki je promjer D 3 mlaznice. Zadano je: ρ=998, k/m 3, ν=, m /s, L=39 m, k=, mm, =74 m, K u =,, K m =,6. K m D 3 Riješenje: Ovdje se radi o cjevovodu koji dovodi fluid iz akumulacijsko jezera do Pelton turbine, dje se traži da se turbini privede što više raspoložive enerije. Zbo toa će se fluid transportirati kroz cjevovod veliko promjera D, u kojem će strujanje biti malom brzinom, te će i ubici mehaničke enerije biti mali. Pred mlaznicom će tlak biti visok, a u mlaznici će se ta enerija tlaka pretvoriti u kinetičku eneriju mlaza. ρ,ν K u Slika (a) K m 3 Slika (a) prikazuje cjevovod s ucrtanim karakterističnim točkama. U točki na ulazu u cjevovod nastaje lokalni ubitak mehaničke enerije koji se obračunava kroz koeficijent lokalno ubitka K u, od točke do točke postoje linijski ubici, a od točke do točke 3, ponovo lokalni ubitak u mlaznici koji je zadan koeficijentom K m lokalno ubitka. S obzirom da nije nalašeno uz koju se visinu brzine računa ovaj lokalni ubitak, podrazumijeva se veća visina brzine, a u ovom slučaju to je izlazna brzina. Visinska razlika označuje raspoloživu potencijalnu eneriju po jedinici težine fluida, a kinetička enerija mlaza po jedinici težine fluida je v 3, dje je v 3 brzina mlaza. Traži se da kinetička enerija mlaza bude 9% raspoložive potencijalne enerije, tj. v3,9 = (a) odakle je brzina v 3 =7,3 m/s. Promjer D 3 mlaznice koji će osiurati traženu brzinu v 3 kod zadano protoka slijedi iz jednadžbe kontinuiteta 4 D3 = = mm (b) v π 3 7

8 Promjer D cjevovoda će se odrediti iz modificirane Bernoullijeve jednadžbe, koja postavljena od točke do točke 3 lasi v3 v3 v L = + Km + Ku + λ (c) D i jednadžbe kontinuiteta D π D3 π = v = v3 (d) 4 4 dje je sa v označena brzina u cijevi promjera D. Uvrštavanjem jednadžbe (d) u (c) se dobiva v3 8 = ( + Km) + 5 ( KuD+ λl) (e) π D iz koje se može izraziti promjer D u obliku 8 ( KuD+ λl) D= { D} =,36 5,{ D} + 39λ (f) m m 5 v 3 π ( + Km ) Reynoldsov broj je 5 4 6,7 Re = = () πdν { D} m Iz jednadžbe (f) je očito da za određivanje promjera D treba poznavati koeficijent trenja λ koji je funkcija Reynoldsova broja, a za čije je određivanje potrebno poznavati promjer D, te je očito nužan iterativni postupak. Iterativni postupak započinje pretpostavljanjem promjera. Jedan od načina je da se u jednadžbi (f) pretpostavi koeficijent trenja λ=,, a da se član,d zanemari. Tada je 5 D =,36 39, =, 49 m (h) Sljedeća tablica prikazuje rezultate iterativno postupka koji započinje s vrijednošću D. Broj iteracije D, m k D Re λ,49,4739,4745,47,4,54. 6,3. 6,65,66 U ornjoj tablici je koeficijent trenja λ izračunat iz izraza (7.6) jer se očito radi o turbulentnom strujanju. Vrijednost promjera D u ornjoj tablici se prestala mijenjati u prve tri znamenke te se može usvojiti da je konačna vrijednost D=474 mm. Isti bi se rezultat dobio da se krenulo od neke drue vrijednosti promjera D. Za kontrolu se može izračunati brzinu v= 4 D π = 3,m s, koja uvrštena u polaznu modificiranu Bernoullijevu jednadžbu (c) daje visinu =73,9 m, što se vrlo dobro slaže sa zadanom vrijednošću =74 m, te je time dokazana točnost rezultata. 8

9 5. p M K u K k ρ, ν D, k h=? K m d K k Treba odrediti visinu h, protok i snau P F koja se troši na svladavanje trenja, u situaciji prema slici. Koliku bi visinu h id doseao mlaz i koliki bi bio protok id da je fluid idealan. Zadano je: ρ=999 k/m 3, ν=,3. -6 m /s, D=65 mm, d=3 mm, L uk =9,9 m, k=,45 mm, =,4 m, K k =,9, K u =,5, K m =,5 (uz izlaznu brzinu), p M =,86 bar. L uk Riješenje: Osnovni zadatak u ovom primjeru je naći protok, odnosno brzinu na izlazu iz mlaznice jer je tada jednostavno odrediti visinu h koju će dosenuti mlaz. Zadatak se kao i uvijek rješava primjenom modificirane Bernoullijeve jednadžbe i jednadžbe kontinuiteta. Na slici (a) su ucrtane karakteristične točke sustava. p M Točka se nalazi na ρ, ν slobodnoj površini fluida u h=? velikom spremniku, tako da K u je brzina u točki jednaka d nuli. Neka je izlazna brzina u z= točki označena sa v, a K brzina strujanja u cijevi s v. m Ukupni lokalni i linijski D, k ubici mehaničke enerije su K k L uk Slika (a) hf = ( Ku + Kk) v + K v L v m + λ (a) D dje je lokalni ubitak u mlaznici izračunat s izlaznom brzinom v. Modificirana Bernoullijeva jednadžba od točke do točke lasi pm v hf ρ + = + (b) a jednadžba kontinuiteta D π d π = v = v (c) 4 4 Ako se brzine v i v u jednadžbama (a) i (b) izraze s pomoću protoka, te jednadžba (a) uvrsti u jednadžbu (b), slijedi izraz K k 9

10 L u k 8 + K K + K + λ m D pm = + (d) π d D ρ U ornjem su izrazu nepoznati protok i koeficijent trenja λ, koji zavisi od protoka, te će za određivanje protoka trebati primijeniti iterativni postupak. Za tu svrhu će se u izraz (d) uvrstiti sve poznate veličine, nakon čea se dobiva,63 { } 3 = (e) m s 6 6,45 + 8,53 λ Reynoldsov broj izražen s pomoću protoka je 4 6 Re = 7,33 { } m 3 s πdν = (f) U izrazima (e) i (f) sve konstante su dimenzijske, a s obzirom da su sve veličine uvrštavane u SI sustavu jedinica, protok će biti izražen u m 3 /s. Koeficijent trenja λ za turbulentno strujanje se računa iz izraza,35 λ = () k 5,74 ln + 3,7,9 D Re Iterativni postupak započinje s pretpostavljenom vrijednošću koeficijenta trenja λ u režimu potpuno izražene hrapavosti, koja se dobije iz izraza () za Re. Nakon toa se iz izraza (e) računa protok, a iz izraza (f) Reynoldsov broj koji uvršten u izraz () daje koriiranu vrijednost koeficijenta trenja λ, s kojom započinje nova iteracija. Rezultati iterativno postupka su sumirani u sljedećoj tablici Broj iteracije λ, m 3 /s Re,8,,,956,9,9,6. 5,59. 5 Očito se protok u posljednje dvije iteracije slaže u prve četiri sinifikantne znamenke te se iterativni postupak prekida i usvaja =9, l/s. Iz jednadžbe (c) slijede brzine v=,77 m/s i v =3, m/s, a iz jednadžbe (a) uz λ=, prema ornjoj tablici h F =,54 m. Snaa koja se troši na svladavanje ubitaka je P F = ρh F = 9 W. Visina h koju dosene mlaz se određuje iz Bernoullijeve jednadžbe od točke do točke prema slici (a). U obje točke vlada atmosferski tlak, a s obzirom da je točka najviša točka mlaza, u njoj je brzina jednaka nuli. Ako se zanemari utjecaj sile trenja između mlaza i okolne atmosfere, može se tvrditi da od točke do točke nema ubitaka mehaničke enerije, te vrijedi v h 8,64 m = = (h) Kada bi fluid bio idealan, tj. strujanje bez ubitaka mehaničke enerije, brzina strujanja bi se računala na temelju Bernoullijeve jednadžbe koja ima oblik jednadžbe (b) uz h F =, odnosno vid = pm + = 4,8m s (i) ρ Protok bi bio id =,5 l/s, a mlaz bi dosenuo visinu h id =,8 m.

11 Napomena: Kao što je kod istjecanja fluida kroz otvor na velikom spremniku uveden koeficijent korekcije brzine C v, tako bi se i u ovom slučaju moao definirati isti taj koeficijent kao odnos stvarne i idealne brzine strujanja što bi u ovom slučaju bilo v Cv = =,878 (j) vid U ovom slučaju koeficijent C v obuhvaća sve lokalne i linijske ubitke mehaničke enerije, koji se također mou pokazati jednim jedinstvenim koeficijentom lokalno ubitka uz izlaznu brzinu Kuk = =,94 (k) Cv v Isti taj koeficijent se može izračunati iz izraza (a) uz uvjet hf = K, tj. uk L v Kuk = Km + Ku + Kk + λ =, 94. (l) D v

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

mfb_jun_2018_res.dvi

mfb_jun_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Смена:... Напомене: Испит траjе 80 минута. Коришћење литературе

Више

12_vjezba_Rj

12_vjezba_Rj 1. zadatak Industrijska parna turbina treba razvijati snagu MW. U turbinu ulazi vodena para tlaka 0 bara i temperature 400 o C, u kojoj ekspandira adijabatski na 1 bar i 10 o C. a) Potrebno je odrediti

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

VISOKO UČINKOVITE TOPLINSKE PUMPE ZRAK/VODA S AKSIJALNIM VENTILATORIMA I SCROLL KOMPRESOROM Stardandne verzije u 10 veličina Snaga grijanja (Z7;V45) 6

VISOKO UČINKOVITE TOPLINSKE PUMPE ZRAK/VODA S AKSIJALNIM VENTILATORIMA I SCROLL KOMPRESOROM Stardandne verzije u 10 veličina Snaga grijanja (Z7;V45) 6 VISOKO UČINKOVITE TOPLINSKE PUMPE ZRAK/VODA S AKSIJALNIM VENTILATORIMA I SCROLL KOMPRESOROM Stardandne verzije u 10 veličina Snaga grijanja (Z7;V45) 6 37 kw // Snaga hlađenja (Z35/V7) 6 49 kw ORANGE HT

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,

Више

(Microsoft Word - 1. doma\346a zada\346a)

(Microsoft Word - 1. doma\346a zada\346a) z1 1 Izračunajte z 1 + z, z 1 z, z z 1, z 1 z, z, z z, z z1 1, z, z 1 + z, z 1 z, z 1 z, z z z 1 ako je zadano: 1 i a) z 1 = 1 + i, z = i b) z 1 = 1 i, z = i c) z 1 = i, z = 1 + i d) z 1 = i, z = 1 i e)

Више

CVRSTOCA

CVRSTOCA ČVRSTOĆA 12 TEORIJE ČVRSTOĆE NAPREGNUTO STANJE Pri analizi unutarnjih sila koje se pojavljuju u kosom presjeku štapa opterećenog na vlak ili tlak, pri jednoosnom napregnutom stanju, u tim presjecima istodobno

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Microsoft PowerPoint - predavanje_sile_primena_2013

Microsoft PowerPoint - predavanje_sile_primena_2013 Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да

Више

Stručno usavršavanje

Stručno usavršavanje TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u

Више

10_Perdavanja_OPE [Compatibility Mode]

10_Perdavanja_OPE [Compatibility Mode] OSNOVE POSLOVNE EKONOMIJE Predavanja: 10. cjelina 10.1. OSNOVNI POJMOVI Proizvodnja je djelatnost kojom se uz pomoć ljudskog rada i tehničkih sredstava predmeti rada pretvaraju u proizvode i usluge. S

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj

Више

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних

Више

Slide 1

Slide 1 BETONSKE KONSTRUKCIJE 2 vježbe, 12.-13.12.2017. 12.-13.12.2017. DATUM SATI TEMATSKA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponavljanje poznatih postupaka

Више

Sonniger katalog_2017_HR_ indd

Sonniger katalog_2017_HR_ indd Br. 1 u Europi Novo u ponudi zračna zavjesa G R I J A Č I Z R A K A Z R A Č N E Z A V J E S E Br. 1 u Europi SONNIGER JE EUROPSKI PROIZVOĐAČ MODERNIH, EKOLOŠKI I OPTIMALNO ODABRANIH UREĐAJA ZA TRŽIŠTE

Више

ANALIZA BRODSKIH PROPULZIJKSKIH SUSTAVA

ANALIZA BRODSKIH PROPULZIJKSKIH SUSTAVA KINEMIK BROSKOG IJK, prema [] Za razvijanje teorija o radu brodskog vijka važno je poznavati kinematičke odnose strujanja oko vijka. a bi se stvorio uzgon, kao što je poznato to je sila okomita na smjer

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

Klimaoprema katalog PPZEN

Klimaoprema katalog PPZEN 3/S3 v 2.4 (hr) ISTRUJNA ROZETA STUBIŠNI DISTRIBUTER VRTLOŽNI DISTRIBUTER STUBIŠNI KRILASTI IR, SDV, DSK www.klimaoprema.hr 9 SADRŽAJ Istrujna rozeta, tip IR... 211 Stubišni distributer vrtložni, tip SDV...

Више

BS-predavanje-3-plinovi-krutine-tekucine

BS-predavanje-3-plinovi-krutine-tekucine STRUKTURA ČISTIH TVARI Pojam temperature Porastom temperature raste brzina gibanja plina, osciliranje atoma i molekula u kristalu i tekućini Temperatura izražava intenzivnost gibanja atoma i molekula u

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod Evaluacijska anketa nastavnika i nastavnih predmeta provedena je putem interneta.

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

Tehnički katalog Regulator protoka sa integrisanim regulacionim ventilom (PN 16, 25, 40*) AFQM, AFQM 6 - ugradnja u potis ili povrat Opis AFQM 6 DN 40

Tehnički katalog Regulator protoka sa integrisanim regulacionim ventilom (PN 16, 25, 40*) AFQM, AFQM 6 - ugradnja u potis ili povrat Opis AFQM 6 DN 40 Tehnički katalog Regulator protoka sa integrisanim regulacionim ventilom (PN 16, 5, 40*) AFQM, AFQM 6 - ugradnja u potis ili povrat Opis AFQM 6 DN 40, 50 AFQM DN 65-15 AFQM DN 150-50 AFQM(6) je regulator

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

Microsoft PowerPoint - Prvi tjedan [Compatibility Mode]

Microsoft PowerPoint - Prvi tjedan [Compatibility Mode] REAKTORI I BIOREAKTORI PODJELA I OSNOVNI TIPOVI KEMIJSKIH REAKTORA Vanja Kosar, izv. prof. KEMIJSKI REAKTOR I KEMIJSKO RAKCIJSKO INŽENJERSTVO PODJELA REAKTORA I OPĆE BILANCE TVARI i TOPLINE 2 Kemijski

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

UDŽBENIK 2. dio

UDŽBENIK 2. dio UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

CJENIK KUĆNE I KOMERCIJALNE SERIJE AZURI DC INVERTER ZIDNI KLIMA UREĐAJI SUPRA STANDARDNO UKLJUČENO -- Wifi sučelje -- Led display -- Automatski rad -

CJENIK KUĆNE I KOMERCIJALNE SERIJE AZURI DC INVERTER ZIDNI KLIMA UREĐAJI SUPRA STANDARDNO UKLJUČENO -- Wifi sučelje -- Led display -- Automatski rad - AZURI DC INVERTER ZIDNI KLIMA UREĐAJI SUPRA STANDARDNO UKLJUČENO Wifi sučelje Led display Automatski rad Automatsko pokretanje Inteligentno odmrzavanje Samodijagnoza Filter za pročišćivanje zraka Cold

Више

Nastavno pismo 3

Nastavno pismo 3 Nastavno pismo Matematika Gimnazija i strukovna škola Jurja Dobrile Pazin Obrazovanje odraslih./. Robert Gortan, pro. Derivacije. Tablica sadržaja 7. DERIVACIJE... 7.. PRAVILA DERIVIRANJA... 7.. TABLICA

Више

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka) . D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

Proracun strukture letelica - Vežbe 6

Proracun strukture letelica - Vežbe 6 University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović

Више

U N I V E R Z I T E T U Z E N I C I U N I V E R S I TA S S T U D I O R U M I C A E N S I S Z E N Univerzitet u Zenici Mašinski fakultet Aleksandar Kar

U N I V E R Z I T E T U Z E N I C I U N I V E R S I TA S S T U D I O R U M I C A E N S I S Z E N Univerzitet u Zenici Mašinski fakultet Aleksandar Kar U N I V E R Z I T E T U Z E N I C I U N I V E R S I T S S T U D I O R U M I C E N S I S Z E N Univerzitet u Zenici Mašinski fakultet leksandar Karač Riješeni ispitni zadaci iz Otpornosti materijala Zenica,

Више