Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):

Величина: px
Почињати приказ од странице:

Download "Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):"

Транскрипт

1 Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): (a) Nacrtajte stem-and-leaf dijagram za te podataka. (b) Odredite karakterističnu petorku tih podataka, izračunajte raspon i interkvartil uzorka. (c) Izračunajte aritmetičku sredinu, uzoračku varijancu i standardnu devijaciju. (d) Grupirajte podatke u razrede i nacrtajte histogram uzorka. (a) (b) steam leaf x (1) 1.4, x (4) 15.9, d 3.5, m x (1) + x (13) , q L x ( 5 4 ) x (6) (x (7) x (6) ) 13.15, q U x ( 75 4 ) x (18) (x (19) x (18) ) 14.95, d q , Karakteristična petorka: (1.4, 13.15, 14.05, 14.95, 15.9). (c) x , s 1 3 ( ) 1.085, s 1.04 (d) k 5, c razredi f i relativna frekvencija razreda [1.4, 13.1] [13.1, 13.8] [13.8, 14.5] [14.5, 15.] [15., 15.9] Slika 1:

2 Zadatak Rezultati ispitivanja pjene koja sadrži 5% lauril-sulfata dani su u tablici. y je tok tekućine koja prolazi kroz pjenasti sloj (ml/min), a x je zapremina tekućine koju sadrži pjena (ml). x y (a) Procijenite pravac regresije za dane podatke. Nacrtajte procijenjeni pravac. Koliki je protok tekućine ako je zapremina 8 ml? (b) Izračunajte Pearsonov koefcijent korelacije od X i Y. Prokomentirajte njegovu vrijednost. (a) x 9.34, ȳ 8.01, s x 1 6 ( ) 34.03, s y 1 6 ( ) 10.0, s xy 1 ( ) 18.3, 6 β , α y 0.54x Slika : (b) r pozitivna korelacija (kad x raste, y raste) > 0 Zadatak 3 Slučajan pokus sastoji se od bacanja homogenog numeriranog tetraedra dva puta za redom, pri čemu su svi mogući ishodi jednako vjerojatni. S X označimo rezultat prvog, a sa Y rezultat drugog bacanja. Odredite vjerojatnost dogadaja max{x, Y } 4 ako je min{x, Y } 3. A : max{x, Y } 4 : {(1, 4), (, 4), (3, 4), (4, 1), (4, ), (4, 3), (4, 4)}, B : min{x, Y } 3 : {(3, 3), (3, 4), (4, 3)} P (A B) P (A B) P (B) k(a B) k(ω) k(b) k(ω)

3 Zadatak 4 U uzorku, čiji dio čini 55% muškaraca, 70% muškaraca i 60% žena puši. vjerojatnost da slučajno odabrana osoba ne puši? Kolika je H 1 odabran je mušakarac, H odabrana je žena P (H 1 ) 0.55, P (H ) 0.45 A odabrana osoba ne puši P (A H 1 ) 0.3, P (A H ) 0.4 P (A) Zadatak 5 Bacamo kocku puta. Slučajna varijabla X zbraja dobivene rezultate. Opišite X. Odredite očekivanje. P (X ) 1, P (X 3) , P (X 4) , P (X 5) , P (X 6) 5 36, P (X 7) , P (X 8) 5 4, P (X 9) , P (X 10) , P (X 11) , P (X 1) E[X] Zadatak 6 Pri svakom gadanju cilja iz oružja, vjerojatnost promašaja je 0.9. Naći vjerojatnost da od 0 gadanja broj pogodaka ne bude manji od 7 niti veći od 10. X B(0, 0.1) ( ) 0 P (X 7) ( ) 0 P (X 8) ( ) 0 P (X 9) ( ) 0 P (X 10) P (7 X 10) P (X 7) + P (X 8) + P (X 9) + P (X 10) Zadatak 7 Istraživanjem je utvrdeno da broj izlazaka na ispit iz Biostatistike možemo opisati slučajnom varijablom X sa očekivanjem 3 i varijancom Procijenite vjerojatnost da će student na ispit izaći izmedu 1 i 5 puta. X broj izlazaka na ispit iz Biostatistike, X N(3, 0.09) P (1 X 5) ( 1 3 P 0.3 X 5 3 ) 0.3 P ( 6.67 X 6.67) Φ 0 (6.67) { a cos x, x π/4 Zadatak 8 Za koje a R je funkcija f(x) 0, inače vjerojatnosti neke slučajne varijable? Izračunajte P (0 < X π/8). funkcija gustoće

4 π/4 + 0dx + a cos xdx + π/4 π/4 a sin x 1 a 1 0dx 1 x, F (x) x x π/4, F (x) 0 + x π/4, F (x) 1 x 0dt 0 ( ) sin t x cos tdt P (0 < X π/8) F (π/8) F (0) 4. sin x Zadatak 9 Promjer cijevi tipa ML mora biti u prosjeku 100 mm. Pomoću šlucajno izabranog uzorka želi se kontrolirati proizvedena serija veličine 400 komada. Prosječni promjer proizvoda izabranih u uzorak iznose 104 mm, a standardno odstupanje je 1. mm. Uz razinu značajnosti 3% testirajte hipotezu da je prosječni promjer cijevi u kontroliranoj seriji veći od 100 mm? x Z H 0 : µ 100 H 1 : µ > z Z > z 0.03 H 0 odbacujemo, tj. prosječni promjer cijevi je veći od Zadatak 10 Pretpostavlja se kako 3 4 kućanstava jednoga grada posjeduje TV. U slučajnom uzorku izabranih kućanstava njih 70.5% odnosno 730 posjeduje TV. Može li se na temelju rezultata uzorka prihvatiti navedena pretpostavka uz razinu značajnosto 0.05? H 0 : p 0.75 H 1 : p n 730 n Z (1 0.75) + 1 z Z < z 0.05 H 0 odbacujemo, tj. postotak kučanstava koji posjeduju TV nije 75%. Zadatak 11 Dani su podaci o broju uspostavljenih veza u minuti sa satelitom unutar telekomunikacijskog sustava. Br. veza u minuti Br. mjerenja Testirajte hipotezu o Poissonovoj razdiobi uz nivo značajnosti α 0.1. λ f ! f ! e , f ! e , f e ! e , f e ,!

5 (6 18.) ( ) ( ) ( ) ( ) H podaci ne odgovaraju Poissonovoj razdiobi. χ 0.1(5 1 1) 6.3, H > χ 0.1(3) Zadatak 1 Kod procesa kemijskog pročišćavanja korištena su 3 različita razgradivača, a dobivene su vrijednosti izražene kao postotak čiste supstance. Uz razinu značajnosti α 0.05 provjerite da li neki od razgradivača daju veći postotak čiste supstance. razgradivač razgradivač razgradivač H 0 : µ 1 µ µ 3 x , x 91.1, x , x SST , SSE 6.575, MST 5.68, MSE 0.78 F 3.31 f 0.05 (, 8) 4.46 F > f 0.05 (, 8) H 0 odbacujemo, tj. neki od razgradivača daju veći postotak čiste supstance. Zadatak 13 Promatrano je 5 automobila u jednom prodajno izložbenom salonu rabljenih automobila te je zabilježena njihova starost i njihova vrijednost. Postoji li, uz razinu značajnosti 0.05, linearna veza izmedu tog dvoje? Odredite 95% pouzdan interval za koeficijent smjera pravca. Starost automobila (u godinama) Vrijednost automobila H 0 : α 0 H 1 : α 0 x.1, ȳ 6000, s x 1.7, s xy 875 ˆα , ˆβ y 6515x ˆσ 3756, t 0.05 (3) 3.18 T < t 0.05 (3) H 0 odbacujemo, tj. postoji linearna veza α α

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

Slide 1

Slide 1 Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

Statistika, Prehrambeno-tehnološki fakultet 1 Zaključivanje o jednoj slučajnoj varijabli Numeričke karakteristike distribucije populacije nazivamo par

Statistika, Prehrambeno-tehnološki fakultet 1 Zaključivanje o jednoj slučajnoj varijabli Numeričke karakteristike distribucije populacije nazivamo par Statistika, Prehrambeno-tehnološki fakultet 1 Zaključivanje o jednoj slučajnoj varijabli Numeričke karakteristike distribucije populacije nazivamo parametrima. Statističko zaključivanje odnosi se na donošenje

Више

35-Kolic.indd

35-Kolic.indd Sandra Kolić Zlatko Šafarić Davorin Babić ANALIZA OPTEREĆENJA VJEŽBANJA TIJEKOM PROVEDBE RAZLIČITIH SADRŽAJA U ZAVRŠNOM DIJELU SATA 1. UVOD I PROBLEM Nastava tjelesne i zdravstvene kulture važan je čimbenik

Више

Raspodjela i prikaz podataka

Raspodjela i prikaz podataka Kolegij: ROLP Statistička terminologija I. - raspodjela i prikaz podataka 017. Neki temeljni statistički postupci u znanstvenom istraživanju odabir uzorka prikupljanje podataka određivanje mjerne ljestvice

Више

Elektronika 1-RB.indb

Elektronika 1-RB.indb IME I PREZIME UČENIKA RAZRED NADNEVAK OCJENA Priprema za vježbu Snimanje strujno-naponske karakteristike diode. Definirajte poluvodiče i navedite najčešće korištene elementarne poluvodiče. 2. Slobodni

Више

Paper Title (use style: paper title)

Paper Title (use style: paper title) Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:

Више

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij,

MATEMATIKA - MATERIJALI Sadržaj Matematika 1 3 Kolokviji drugi kolokvij, MATEMATIKA - MATERIJALI Sadržaj Matematika 3 Kolokviji........................................................... 4 drugi kolokvij, 8.2.2003............................................... 5 drugi kolokvij,

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Slide 1

Slide 1 Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Matej Šupljika ANALIZA UKUPNIH RASHODA LOKALNIH JEDINICA U RAZDOBLJU 2002.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Matej Šupljika ANALIZA UKUPNIH RASHODA LOKALNIH JEDINICA U RAZDOBLJU 2002. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Matej Šupljika ANALIZA UKUPNIH RASHODA LOKALNIH JEDINICA U RAZDOBLJU 2002.-2012. Diplomski rad Voditelj rada: Prof. dr. sc. Katarina

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 3 Status predmeta Web stranica predmeta/mudri Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 3 Status predmeta Web stranica predmeta/mudri Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

Више

GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje g

GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje g GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ 2018. Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje gledanosti televizije, mjesečno će donositi analize

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje g

GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje g GLEDANOST TELEVIZIJSKIH PROGRAMA LIPANJ 2016. Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje gledanosti televizije, mjesečno će donositi analize

Више

Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских

Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

Cestovni promet (redovni i izvanredni studenti) Syllabus predmeta Statistika u prometu Akademska godina: 2018/2019. Izradila: Kristina Devčić, v.pred.

Cestovni promet (redovni i izvanredni studenti) Syllabus predmeta Statistika u prometu Akademska godina: 2018/2019. Izradila: Kristina Devčić, v.pred. Cestovni promet (redovni i izvanredni studenti) Syllabus predmeta Statistika u prometu Akademska godina: 2018/2019. Izradila: Kristina Devčić, v.pred. Nositelj predmeta: Kristina Devčić, v.pred. Ovaj sylllabus

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 – usporedba podataka hitnih medicinskih intervencija za godine i

Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 – usporedba podataka hitnih medicinskih intervencija za godine i Služba za medicinsku informatiku i biostatistiku Istraživanje kvalitete zraka Slavonski Brod: Izvještaj 3 usporedba podataka hitnih medicinskih intervencija za 1.1.-31.8.2016. godine i 1.1.-31.8.2017.

Више

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања

Више

Kvantna enkripcija

Kvantna enkripcija 19. studenog 2018. QKD = Quantum Key Distribution Protokoli enkriptirane komunikacije koji koriste tzv. tajni ključ zahtijevaju da on bude poznat isključivo dvjema strankama (pošiljatelju i primatelju

Више

Predložak za diplomski/seminarski/konstrukcijski rad

Predložak za diplomski/seminarski/konstrukcijski rad SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mateja Antolković STATISTIČKA ANALIZA PREŽIVLJAVANJA I PRIMJENE Diplomski rad Voditelj rada: Prof.dr.sc. Siniša Slijepčević Zagreb,

Више

GLEDANOST TELEVIZIJSKIH PROGRAMA TRAVANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje

GLEDANOST TELEVIZIJSKIH PROGRAMA TRAVANJ Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje GLEDANOST TELEVIZIJSKIH PROGRAMA TRAVANJ 2018. Agencija za elektroničke medije u suradnji s AGB Nielsenom, specijaliziranom agencijom za istraživanje gledanosti televizije, mjesečno će donositi analize

Више

Microsoft PowerPoint - Prezentacija2

Microsoft PowerPoint - Prezentacija2 KARAKTERIZACIJA POVRŠINSKI AKTIVNIH TVARI AEROSOLA S URBANOG PODRUČJA ZAGREBA KORIŠTENJEM ELEKTROKEMIJSKIH METODA Sanja Frka a, Jelena Dautović a, Zlatica Kozarac a, Božena Ćosović a, Silvije Davila b

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

GLEDANOST TELEVIZIJSKIH PROGRAMA PROSINAC Agencija za elektroničke medije u suradnji sa AGB Nielsenom, specijaliziranom agencijom za istraživanj

GLEDANOST TELEVIZIJSKIH PROGRAMA PROSINAC Agencija za elektroničke medije u suradnji sa AGB Nielsenom, specijaliziranom agencijom za istraživanj GLEDANOST TELEVIZIJSKIH PROGRAMA PROSINAC 2014. Agencija za elektroničke medije u suradnji sa AGB Nielsenom, specijaliziranom agencijom za istraživanje gledanosti televizije, mjesečno će donositi analize

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

IRL201_STAR_sylab_ 2018_19

IRL201_STAR_sylab_ 2018_19 Detaljni izvedbeni nastavni plan za kolegij: Statistika i analiza znanstvenih podataka Akademska godina: 2018/2019 Studij: Diplomski sveučilišni studiji: Biotehnologija u medicini, Istraživanje i razvoj

Више

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Sos.indd

Sos.indd STRUČNI RADOVI IZVAN TEME Krešimir Šoš Vlatko Vučetić Romeo Jozak PRIMJENA SUSTAVA ZA PRAĆENJE SRČANE FREKVENCIJE U NOGOMETU 1. UVOD Nogometna igra za igrača predstavlja svojevrsno opterećenje u fiziološkom

Више

Državna matura iz informatike

Državna matura iz informatike DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja

Више

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode] Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa

Више

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno

Више

Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljan

Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljan Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljana Jovanović Niš, 2019. "Fundamentalni koncept portfolio

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Microsoft Word - V03-Prelijevanje.doc

Microsoft Word - V03-Prelijevanje.doc Praktikum iz hidraulike Str. 3-1 III vježba Prelijevanje preko širokog praga i preljeva praktičnog profila Mali stakleni žlijeb je izrađen za potrebe mjerenja pojedinih hidrauličkih parametara tečenja

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

No Slide Title

No Slide Title Statistika je skup metoda za uređivanje, analiziranje i grafičko prikazivanje podataka. statistika???? Podatak je kvantitativna ili kvalitativna vrijednost kojom je opisano određeno obilježje (svojstvo)

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Osnovni pojmovi teorije verovatnoce

Osnovni pojmovi teorije verovatnoce Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

knjiga.dvi

knjiga.dvi 1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Jelena Beštak ANALIZA TRAJANJA STUDIRANJA NA PREDDIPLOMSKOM STUDIJU MATEMA

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Jelena Beštak ANALIZA TRAJANJA STUDIRANJA NA PREDDIPLOMSKOM STUDIJU MATEMA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Jelena Beštak ANALIZA TRAJANJA STUDIRANJA NA PREDDIPLOMSKOM STUDIJU MATEMATIČKOG ODSJEKA PMF-A SVEUČILIŠTA U ZAGREBU Diplomski

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

ТЕОРИЈА УЗОРАКА 2

ТЕОРИЈА УЗОРАКА 2 ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR

Више

Ukoliko Vam za bilo koji zadatak treba pomoć, slobodno pozovite. Postoji mogućnost kompletnog kursa, kao i individualnih časova. Zadatke prikupio i ot

Ukoliko Vam za bilo koji zadatak treba pomoć, slobodno pozovite. Postoji mogućnost kompletnog kursa, kao i individualnih časova. Zadatke prikupio i ot Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje. Pokazati da je to preslikavanje linearni operator, naći matricu, sopstvene vrednosti i sopstvene vektore tog operatora. 2. Odrediti vrednost parametra

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

DOKTORSKE STUDIJE IZ JAVNOG ZDRAVLJA 2009/2010

DOKTORSKE STUDIJE IZ JAVNOG ZDRAVLJA 2009/2010 ДОКТОРСКЕ СТУДИЈЕ из: EПИДЕМИОЛОГИЈЕ, ЈАВНОГ ЗДРАВЉА, КАРДИОЛОГИЈЕ, ПУЛМОЛОГИЈЕ, НЕУРОЛОГИЈЕ, НЕФРОЛОГИЈЕ, РАДИОЛОГИЈЕ И РЕКОНСТРУКТИВНЕ ХИРУРГИЈЕ 03/04. - Други семестар Обавезни предмет БИОСТАТИСТИКА

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 {

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 { Rokovi iz Matematike za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi Rexiti jednaqinu z 4 + i i+ = MATEMATIKA { septembar 5godine x Odrediti prodor prave p : = y = z kroz ravan

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

48-Blazevic.indd

48-Blazevic.indd znanstveni radovi izvan teme Iva Blažević Damir Božić Jelena Dragičević Originalni znanstveni rad RELACIJE IZMEĐU ANTROPOLOŠKIH OBILJEŽJA I AKTIVNOSTI PREDŠKOLSKOG DJETETA U SLOBODNO VRIJEME 1. UVOD Tjelesno

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

Edicija osnovni udžbenik Osnivač i izdavač edicije Univerzitet u Novom Sadu Poljoprivredni fakultet Trg Dositeja Obradovića br.8, Novi Sad Godina osnivanja 1954. Glavni i odgovorni urednik edicije Dr Nedeljko

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

izmene i dopune2

izmene i dopune2 Дана: 8..07. Број: 5/7/400 На основу члана 63 став. и члана 54. Закона о јавним набавкама ( Сл. гласник РС бр. 4/0, 4/05 и 68/05, у даљем тексту ЗЈН), Комисија за јавну набавку број 8-07-О-0, сачињава

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Marija Radnić STATISTIČKE METODE U PLANIRANJU FARMACEUTSKIH ISPITIVANJA Di

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Marija Radnić STATISTIČKE METODE U PLANIRANJU FARMACEUTSKIH ISPITIVANJA Di SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Marija Radnić STATISTIČKE METODE U PLANIRANJU FARMACEUTSKIH ISPITIVANJA Diplomski rad Voditelji rada: prof. dr. sc. Siniša Slijepčević

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

2-Milinovic.indd

2-Milinovic.indd LJETNA ŠKOLA KINEZIOLOGA REPUBLIKE HRVATSKE Ivan Milinović Marko Čule Mislav Papec Prethodno znanstveno priopćenje UTJECAJ PLIOMETRIJSKOG TRENINGA NA KVANTITATIVNE PROMJENE U NEKIM MORFOLOŠKIM I MOTORIČKIM

Више

Apresentação do PowerPoint

Apresentação do PowerPoint III.3. Primjer neparametrijskog testa: χ 2 -test (hi-kvadrat test) III.3.1. Općenito o χ 2 -testu Često je potrebno usporediti razne skupine ispitanika po učestalostima (frekvencijama) i vidjeti razlikuju

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

Sonniger katalog_2017_HR_ indd

Sonniger katalog_2017_HR_ indd Br. 1 u Europi Novo u ponudi zračna zavjesa G R I J A Č I Z R A K A Z R A Č N E Z A V J E S E Br. 1 u Europi SONNIGER JE EUROPSKI PROIZVOĐAČ MODERNIH, EKOLOŠKI I OPTIMALNO ODABRANIH UREĐAJA ZA TRŽIŠTE

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb

I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb #5 Makroskopska magnetostatika I Makroskopske jednadžbe magnetostatike II Termodinamički potencijali predavanja 20** Jednadžbe magnetostatike Magnetske odzivne funkcije Rješavanje jednadžbi magnetostatike

Више

Microsoft Word - Predmet 13-Napredni finansijski menadzment novembar 2018 RJESENJE

Microsoft Word - Predmet 13-Napredni finansijski menadzment novembar 2018 RJESENJE КОМИСИЈА ЗА РАЧУНОВОДСТВО И РЕВИЗИЈУ БОСНЕ И ХЕРЦЕГОВИНЕ ИСПИТ ЗА СТИЦАЊЕ ПРОФЕСИОНАЛНОГ ЗВАЊА ОВЛАШЋЕНИ РЕВИЗОР (ИСПИТНИ ТЕРМИН: НОВЕМБАР 2018. ГОДИНЕ) ПРЕДМЕТ 13: НАПРЕДНИ ФИНАНСИЈСКИ МЕНАЏМЕНТ ЕСЕЈИ

Више

94-Jozic.indd

94-Jozic.indd Marijan Jozić Miroslav Hrženjak Prethodno znanstveno priopćenje UTJECAJ PROGRAMIRANOG TAEKWONDO TRENINGA NA ANTROPOLOŠKI STATUS UČENIKA PETOG I ŠESTOG RAZREDA OSNOVNE ŠKOLE 1. UVOD Kao i svaki drugi trenažni

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више