Microsoft Word - SISTEMI DIFERENCIJALNIH JEDNACINA,zadaci.doc

Слични документи
Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc

INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a

Microsoft Word - PARCIJALNI IZVODI I DIFERENCIJALI.doc

Kontinuirani sustavi

Microsoft Word - IZVODI ZADACI _4. deo_

Microsoft Word - IZVODI ZADACI _I deo_.doc

Microsoft Word - Integrali vi deo

Zadatak 3.1 Navesti kineti~ke jedna~ine za sistem sa ~etiri nivoa, predstavljen na slici, uzimaju}i u obzir da je brzina neradijacionih prelaza S32 i

Microsoft Word - IZVODI ZADACI _2.deo_

Microsoft Word - ASIMPTOTE FUNKCIJA.doc

Microsoft Word - PARNOST i NEPARNOST FUNKCIJE.PERIODICNOST

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci iii deo.doc

My_P_Red_Bin_Zbir_Free

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n

9. : , ( )

Microsoft Word - KVADRATNA FUNKCIJA.doc

untitled

Microsoft Word - Algebra i funkcije- napredni nivo doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - GRAFICI TRIGONOMETRIJSKIH FUNKCIJA-II deo.doc

Microsoft Word - KUPA-obnavljanje.doc

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

TEORIJA SIGNALA I INFORMACIJA

Microsoft Word - INTEGRALI ZADACI - v deo

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Mate_Izvodi [Compatibility Mode]

Microsoft Word - 7. cas za studente.doc

Динамика крутог тела

Microsoft Word - VEROVATNOCA II deo.doc

Microsoft Word - INTEGRALI ZADACI - v deo

ЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА

Microsoft Word - PRIMENA INTEGRALA.doc

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft Word - MATRICE ZADACI ii deo

Microsoft Word - IZVOD FUNKCIJE.doc

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

8. ( )

Microsoft Word - INTEGRALI ZADACI.doc

Microsoft Word - KRIVOLINIJSKI INTEGRALI zadaci _I deo_.doc

Microsoft Word - integrali IV deo.doc

Матрична анализа конструкција

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Algebarski izrazi (4. dio)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

Analiticka geometrija

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

My_P_Trigo_Zbir_Free

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - inicijalni test 2013 za sajt

Microsoft Word - ELEMENTARNE FUNKCIJE.doc

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

Analiticka geometrija

Microsoft Word - 1. REALNI BROJEVI- formulice

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

Орт колоквијум

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

MAT-KOL (Banja Luka) XXV (1)(2019), DOI: /МК A ISSN (o) ISSN (o) JOŠ JEDAN DO

Microsoft Word - Integrali III deo.doc

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)

STABILNOST SISTEMA

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar,

Microsoft Word - 6ms001

Microsoft Word - 13pavliskova

Microsoft Word - predavanje8

DJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Kvadrupolni maseni analizator, princip i primena u kvali/kvanti hromatografiji

Орт колоквијум

Министарство просветe и спортa Републике Србије

My_ST_FTNIspiti_Free

Microsoft Word - Trigonometrijski oblik kompleksnog broja.doc

No Slide Title

P1.1 Analiza efikasnosti algoritama 1

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Орт колоквијум

untitled

Транскрипт:

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: 7 d Ša j idja kod ovih adaaka? Jdnu od jdnačina difrniramo, o js nañmo ivod l jdnačin i u amnimo drugu jdnačinu. Moramo da napravimo da osan samo jdna nponaa! 7 d 5 7 5 7 5 prvo uvdmo onak i da bi lakš radili...naravno da j i i prv jdnačin iraimo 7, a nju difrniramo sad amnimo u prvu jdnačinu, a i ovo šo smo iraili 7 7 5 7 57 5 7 7 557 7 7 oarasili smo s od, pa sad radimo kao d.j. drugog rda, dakl prvo karakrisičnu jdnačinu 7 ± i i, i, Da vas podsimo malo orij i ovog dla...

LINEARNA HOMOGENA D.J. SA KONSTANTNIM KOEFICIJENTIMA a a o Njoj najpr pridružujmo karakrisičnu jdnačinu: a a U avisnosi od ršnja karakrisičn jdnačin ralikujmo ri slučaja: i su ralna i raličia, onda j : i su ralna i jdnaka ršnja, onda j : i su konjugovano komplksni brojvi : abi, a-bi, onda j : a osb a b Pošo su naša ršnja i i,, očigldno j a - i b, pa j ršnj: os Da nañmo sada. Vć smo iraili 7 ali ovd rba, pa ćmo dobijno ršnj po difrnirai i o amnii u ovo. os os os amnimo u 7 os os 7 os os os 7 7 os os os os os Dakl, konačno ršnj j : os os os

. Rši sism jdnačina: d n aboravimo: i Kao i malopr, prvu jdnačinu ćmo difrnirai, i amnii i drug jdnačin. Y moramo iraii i prv i o amnii u. srdimo... ovo j nhomogna linarna d.j. podsi s..., 4, ± pa j homogno ršnj po jdnako: H Sada imamo opij: Modu varijaij konsanaa ili modu nodrñnih kofiijnaa. Mislimo da j boljlakš ići na nodrñn kofiijn. X A B X A Ovo amnimo u X

- A AB - A A-B -A A-B pa j odavd -A i -A-B pa j A i B, o js X Dakl : j ršnj po Kako j, naći ćmo ivod od i o amnii u. [ - - ] srdimo... Dakl, konačno ršnj j :. Rši sism jdnačina: d d 4

4 ovd j i Iraimo i prv jdnačin Difrnirajmo prvu jdnačinu: i amnimo ovd i 4 4 4 4 srdimo... 5 ovo j nhomogna linarna d.j. drugog rda ±,, H našli smo homogno ršnj, op biramo modu nodrñnih kofiijnaa Y AB Y A ovo mnjamo u 5 Y A A B 5 A A B 5 pa j odavd A 5 i AB, o js A 5 i B - Y AB pa j Y 5-, vraimo s u homogno ršnj H Y 5 dobili smo ršnj po, sad da nañmo po, ali najpr da nadjmo ivod od 5 amnimo u 5-5 srdimo 4 dobili smo ršnj po

dakl, konačno ršnj j : 5 4 4. Rši sism jdnačina: d d Naravno i ovd j, i Prvu jdnačinu ćmo difrnirai: i u amnii i, dakl :, a pošo j o j odnosno - - - - ovo j homogna linarna d.j. drugog rda karakrisična jdnačina ±,, pa j ršnj po : Sada ražimo ršnja po i po.vraimo s na počni sism: Odumimo od rć prvu jdnačinu! - Ovd ćmo amnii sa onim šo smo iračunali dobijamo i a kad nañmo ivod od ovoga

- amnimo i - - ovo malo prisrdimo... Ovo j linarna d.j. po q p p p Tako smo dobili i ršnj po : Još da nañmo ršnj po! ovo naravno ingralimo da bi dobili [ ] Dakl Konačno j :

5. Rši sism jdnačina: 4 os i nañi ršnj a koj j 4 i Najpr ćmo i prv jdnačin iraii : 4 os os 4 os 4 Sada ćmo difrnirai prvu jdnačinu i sisma: 4 os 4 ovd amnimo - -4 - - - 4 4 8 - amnimo os - - 4 4 8 - srdimo... 4 os difrniramo os os os op difrniramo os os Dakl, našli smo os Da bi našli, poći ćmo od os 4 os [ os - os - os] srdimo... 4 4 4 8

Dobili smo opš ršnj: os 8 4 Da nañmo ono koj adovoljava uslov: 4 i 4 os odavd j očigldno 4 4 8 odavd dobijamo Tražno ršnj koj adovoljava da uslov j : os 4 8 SIMETRIČNI OBLIK. Nalažnjm prvih ingrala rši sism: d d Ućmo prva dva člana ov jdnakosi: d očigldno možmo sv pomnožii sa d ingralimo

d pa j ln ln ln odnosno ln ln a odavd j o js pa j prvi prvi ingral. Dakl j prvi prvi ingral. U vćini adaaka nij ško naći prvi prvi ingral, ali kod drugog prvog ingrala nasaju problmi... Uvk ima opiju da i dobijnog ršnja irai jdnu nponau i o amni u počnu dau jdnačinu. Mož probai da prko nkog rika olakša sbi posao...rimo a naš primr : d d Idja j da prvom članu jdnakosi dodamo i gor i dol,a drugom članu d d Sabrmo sad prva dva člana jdnakosi d d d možmo apisai kao d d d d sv pomnožimo sa d d odavd j d - d pa kad o ingralimo, dobijamo - odakl j a o j ražni drugi prvi ingral Ršnj j dakl: prvi prvi ingral drugi prvi ingral Ov dv rlaij dfinišu opši ingral sisma!

. Nalažnjm prvih ingrala rši sism: d d Sabraćmo prva dva člana jdnakosi: d d sv pomnožimo sa - d d ovo ingralimo odavd j vo ga prvi prvi ingral Iraimo odavd i o amnimo u prva dva člana jdnakosi d d oslobodimo s agrada i prisrdimo... d napravimo mal imn... d odnosno pa j odavd j a ovo j linarna d.j. prvog rda p q p p ln p p q ln Dakl: vraimo ovd da j i srdimo

odavd iraimo o js j drugi prvi ingral Rlaij koj dfinišu opši ingral sisma su : prvi prvi ingral drugi prvi ingral Nćmo vas viš ovd mučii sa sismima u simričnom obliku jr s parijaln difrnijaln jdnačin rad prko ovakvih sisma, pa ćmo u uvrdii gradivo.