Microsoft Word - 13pavliskova
|
|
- Vasilij Brkić
- пре 5 година
- Прикази:
Транскрипт
1 ПОДЗЕМНИ РАДОВИ 4 (5) 75-8 UDK 6 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 5494 ИЗВОД Стручни рад УПОТРЕБА ОДВОЈЕНОГ МОДЕЛА РЕГЕНЕРАЦИЈЕ ЗА ОДРЕЂИВАЊЕ ПОУЗДАНОСТИ ТРАНСПОРТНЕ ТРАКЕ Павлисковá Анна, Марасовá Даниела У овом раду је описано пар модела регенерације, који се такође могу применити на временско праћење трајности транспортних трака. Кључне речи: једначина регенерације, помоћна једначина једначине регенерације, матрица вероватноће прелаза УВОД Употреба транспортних трака обезбеђује веома продуктиван и економичан транспорт различитих материјала. Како би се потпуно искористиле њихове бројне предности, потребно је знати које су све структурне компоненте једне транспортне траке. Посебну пажњу треба обратити на траку, јер је то компонента која је, током њеног коришћења, изложена различитим врстама оптерећења, што може довести до хабања и оштећења. Та оштећења могу се појавити дуж целе траке, али на неким тачкама она могу представљати значајан ризик, и са тог аспекта се могу сматрати нарочито опасним. За решавање горе наведених проблема, чини се да би биле погодне методе операционих истраживања. У пракси се скоро сви регенерациони процеси одвијају у континуитету, али с обзиром на тешкоће које су везане са њиховим симулирањем и решавањем, често се симулирају као не-континуални процеси. МОДЕЛ СА ХОМОГЕНОМ СТАРОСНОМ СТРУКТУРОМ Овај модел је заснован на следећим претпоставкама:. Регенерациони процес се прати у сваком тренутку у једнаким интервалима.. Серија се састоји од технички хомогених елемената.. У почетку се цела серија састоји од само нових елемената. 4. Број елемената у серији се не мења. 5. Узима се у обзир само хабање које води ка коначном пропадању, делимично хабање се не узима у обзир. 6. Застарелост и трошкови се не узимају у обзир. БЕРГ Факулта, ТУ Кошице, Словачка
2 76 Павлисковá А.; Марасовá Д.;, дефини- Основни елемент је вероватноћа пропадања сана односом N N r N r () где је: N број елемената на почетку праћења, N је број предмета N у току рада у периоду к, а r је вероватноћа опстанка. N Модели појединачне регенерације омогућавају да се одреди број могућих регенерација у к-том периоду. Као средство за одређивање тог броја, коришћена је следећа једначина... () На почетку је број елемената одређен као. Број елемената елиминисних на крају првог периода, а затим и број корективних процедура после првог периода је, што се може одредити ако је позната вероватноћа пропадања елемената у првом периоду. Настављамо у истом правцу за следеће периоде, и добијамо следећи систем једначина и код () (4) Главна метода за решавање модела потиче из једначине регенерације (). То је линеарна диференцијална једначина са константним коефицијентима и са почетним условима. Решавање модела је сведено на решавање једначине.
3 Употреба одвојеног модела регенерације Ако имамо овакву једначину y y y... y (5) можемо да проучавамо при којим вредностима је y решење диференцијалне једначине (5). Након замењивања добијамо помоћну једначину ове диференцијалне једначине.... Помоћна једначина једначине регенерације је.... Корени помоћне једначине имају неколико особина које олакшавају решавање. Један корен је увек једнак броју један ( ). Други корени где је к,,...,т су или негативн или комплексни број. За сваки корен важи где је к,,...,т, што произилази из претпоставке. Ако су сви корени прост број, онда је исправна ова једначина... (6) Константе,,..., се могу одредити из Т система линеарних једначина, ако се у (6) замене вредности,,...,т-. Имамо систем (7)... Вредности,,..., Т- су познате из решавања почетних услова. Када је Т тачна је (6), и то у следећем облику
4 78 Павлисковá А.; Марасовá Д.; (8) Односи, ( ) и однос између корена и коефицијената ове једначине служи за добијање следећег система једначина ( ) ( ) (9) Решавањем овога добијамо ( )( ) ( )( ) ( )( ),, А из тога добијамо ( )( ) ( )( ) ( )( ) () Метод израчунавања броја регенерација се може илустровати примером фиктивне серије од транспортних трака. Њихов рок трајања је године. Вероватноћа пропадања у појединачним периодима је а., а.7, а.. Потребно је одредити број обновљених транспортних трака за период од година. Већ знамо да је Т,,. Једначина регенерације је..7. А помоћна једначина једначине регенерације је..7. Корени помоћне једначине су, 555., Пошто су сви корени прости, према једначини () тачно је да
5 Употреба одвојеног модела регенерације (.555) ( ) На основу тог односа добијамо, 74, 9, 4 6, 5 47, 6 56, 7 5, 8 54, 9 5, 5, а r, r.8, r 5. Број промена је приказан у табели. Табела к Као што је јасно из табеле, после друге године, на пример, има 74 нове траке, 6 трака старе једну годину и трака од две године. После неколико година, број промењених трака ће бити постојан. Систем одвојене регенерације се може описати стањима S, S,..., S, што се може сматрати старошћу елемената. Ако знамо вероватноће прелаза између стања, можемо и да одредимо и користимо матрицу вероватноће прелаза. Током сваког периода елеменат може или пропасти или се може обновити или пребацити на следећу годину. Вероватноћа пропадања као и вероватноћа опстанка су условне вероватноће. Условна вероватноћа пропадања се назива мера пропадања l. Условна вероватноћа опстанка је r r једнака. Пошто је то матрица заснована на претпоставци, где у r свакој линији има само два елемента различита од нуле, условна вероватноћа опстанка је једнака. Матрица вероватноће r прелаза P би била следећа
6 8 Павлисковá А.; Марасовá Д.; r r r r r P r r () Матрица P садржи не-негативне елементе и укупан износ у свакој линији је једнак броју један. Ова матрица је матрица условне вероватноће Марковљевих ланаца. Вектор вероватноће почетних стања ()с установљава могућу класификацију старости засновану на броју година, слично (), (),... Да бисмо одредили (), исправан је следећи однос () ().P () У случају хомогене старосне структуре то је () (,,,,) () (а,r,,,) () ().P ().P () () ().P () (4) () (-).P (5) Употребом односа (4) могуће је израчунати старосну структуру у било ком периоду. Ако се вратимо на претходни проблем, матрица вероватноће прелаза је P,.8.8 () (,,),
7 Употреба одвојеног модела регенерације () (,,)..7.8 () (,8,) (,8,),..8..8, итд. Као што смо претходно показали, при решавању модела реенерације, важну улогу игра крајња вредност где је (крајњи број регенерација). Неопходан и довољан услов за постојање ове крајње вредности је тај да би следећа неједначина била тачна за корене помоћне једначине једначине регенерације. i <, и,,,т. Крајњи број регенерација се може користити као приближно решење код довољно великог броја. МОДЕЛ СА ХЕТЕРОГЕНОМ СТАРОСНОМ СТРУКТУРОМ Главна разлика између ова два модела састоји се у чињеници да се, на почетку, серија састоји од предмета различите старости. Ако је број предмета у различитим годинама v к, к,,,т-, онда је тачно да је v N. Трајност елемената зависи од броја периода током којих је елемент био у функцији и од броја периода током којих би предмет требало да буде у функцији. Након извођења једначине регенерације, видећемо да је у овом случају ситуација иста као код (4). Код модела са хетерогеном старосном структуром само су почетни услови различити. ЗАКЉУЧАК Из свега претходно наведеног, очигледно је да су описане методе погодне за симулирање броја трака којима је потребна замена. Примена методе на стварне податке у раду, а који се тичу транспортних трака, може бити тема неких будућих истраживања.
8 8 Павлисковá А.; Марасовá Д.; ЛИТЕРАТУРА. Josef Lber, Rom Hše: Operčí výzm. Státí peddgogicé ldtelsví Prh 98.. A Pvlisová, Michl ehlár, Jrj Vyhisý: Spoľhlivosť pásových doprvíov.zborí. medziárodej oferecie LOADO, str ISSN 45-7X.. omová M., Mrsová D.: Alýz rizí pri pásových doprvíoch. Bezpečá prác 5/, str Diel Mrsová, A Pvlisová: Odhd životosti doprvých pásov. Eletroicý zborí ISBN , str Превод на српски: Аутори
Microsoft Word - 7. cas za studente.doc
VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке
ВишеGrađevinski Fakultet Univerziteta u Beogradu
Грађевински факултет Универзитета у Београду МОСТОВИ Упутство за прегледање мостова и прорачун рејтинга моста Вежбе 6 1 Марковљев ланац Моделирање пропадања конструкције Прелазне вероватноће р 11 вероватноћа
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
ВишеSTABILNOST SISTEMA
STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеTeorija igara
Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеРЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр
РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]
Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
ВишеЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,
ВишеMicrosoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt
Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
ВишеРационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје
Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеMere slicnosti
Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti
ВишеPrimjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеMAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА
MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеM e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn
M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =
ВишеMicrosoft PowerPoint - jkoren10.ppt
Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
ВишеТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
ВишеУНИВЕРЗИТЕТ У БЕОГРАДУ МАШИНСКИ ФАКУЛТЕТ Предмет: КОМПЈУТЕРСКА СИМУЛАЦИЈА И ВЕШТАЧКА ИНТЕЛИГЕНЦИЈА Задатак број: Лист/листова: 1/1 Задатак 5.1 Pостоје
Лист/листова: 1/1 Задатак 5.1 Pостоје софтвери за препознавање бар кодова који знатно олакшавају велики број операција које захтевају препознавање објеката. Слика 1: Приказ свих слова за које је ART-1
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
ВишеMicrosoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]
6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
ВишеSlide 1
Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са
Више5 - gredni sistemi
Гредни системи бетонских мостова 1 БЕТОНСКИ МОСТОВИ ГРЕДНИ СИСТЕМИ Типови гредних система бетонских мостова Решетка Проста греда Греда с препустима Герберова греда Континуална греда Укљештена греда 2 Трајекторије
ВишеМатрична анализа конструкција
. 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на
ВишеРАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр
РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита
ВишеРепублички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум: године Тема: Елементи и начин
Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум:.06.2009. године Тема: Елементи и начин вредновања графичког рада из раванских носачи 1 Увод:
ВишеMicrosoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]
INŽENJERSKE SIMULACIJE Aleksandar Karač Kancelarija 1111 tel: 44 91 20, lok. 129 akarac@ptf.unze.ba Nermin Redžić Kancelarija 4202 tel: 44 91 20, lok.128 nermin.redzic@ptf.unze.ba www.ptf.unze.ba http://ptf.unze.ba/inzenjerske-simulacije
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеSlide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.
ВишеPredavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt
1 BETONSKE KONSTRUKCIJE TEMELJI OBJEKATA Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Temelji objekata 2 1.1. Podela 1.2. Temelji samci 1.3. Temeljne trake 1.4. Temeljne grede
ВишеProjektovanje tehnoloških procesa
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА Департман за производно машинство Пројектовање технолошких процеса Тема: Др Мијодраг Милошевић Технолошки процеси израде производа Део производног процеса у коме се врши измена
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеSlide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 1: Увод и историјски развој теорије система UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES Катедра за управљање системима Наставници:
ВишеFTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva
Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
ВишеОрт колоквијум
Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат
Више*ИЗВЈЕШТАЈ О ПРОВЕДЕНОЈ ПРЕВЕНТИВНОЈ АКТИВНОСТИ* "Возило након зимских услова 2015" АМС РС и ауто мото друштва у сарадњи са Министарством унутрашњих п
*ИЗВЈЕШТАЈ О ПРОВЕДЕНОЈ ПРЕВЕНТИВНОЈ АКТИВНОСТИ* "Возило након зимских услова 2015" АМС РС и ауто мото друштва у сарадњи са Министарством унутрашњих послова Републике Српске и Министарством саобраћаја
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеMicrosoft PowerPoint - OMT2-razdvajanje-2018
OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja
ВишеOsnovni pojmovi teorije verovatnoce
Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
Вишеkvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1
kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.
ВишеSlide 1
Upravljanje troškovima Osnovi organizacije - vežbe Troškovi Predstavljaju novčano izražena trošenja sredstava i rada. Postoji više različitih klasifikacija troškova, u zavisnosti od aspekta posmatranja.
ВишеPowerPoint Presentation
Metode i tehnike utvrđivanja korišćenja proizvodnih kapaciteta Metode i tehnike utvrđivanja korišćenja proizvodnih kapaciteta Sa stanovišta pristupa problemu korišćenja kapaciteta, razlikuju se metode
ВишеТехничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић
Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,
ВишеPowerPoint Presentation
ТЕХНОЛОШКО ПРЕДВИЂАЊЕ Развој научног предвиђања Најзначајнија промена метода и техника се везује за појаву НАУЧНОГ предвиђања. Историјско-библиографски метод (са вештине на науку) Три фазе: 1. Религијска
ВишеZakon o transportu opasnog tereta
AKTIVA sistem doo, Novi Sad Osnivanje preduzeća i radnji Računovodstvena agencija Poresko savetovanje Propisi besplatno www.aktivasistem.com Obrasci besplatno ZAKON O TRANSPORTU OPASNOG TERETA - prečišćeni
ВишеPRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee
PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem
ВишеИспитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит
Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних
ВишеI колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x
I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеUredba Komisije (EU) br. 178/2010 od 2. ožujka o izmjeni Uredbe (EZ) br. 401/2006 u pogledu oraščića (kikirikija), ostalih sjemenki uljarica, or
03/Sv. 37 Službeni list Europske unije 141 32010R0178 L 52/32 SLUŽBENI LIST EUROPSKE UNIJE 3.3.2010. UREDBA KOMISIJE (EU) br. 178/2010 od 2. ožujka 2010. o izmjeni Uredbe (EZ) br. 401/2006 u pogledu oraščića
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеАНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ
АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универзитет у Београду Краљице Марије 16, 11000 Београд mtravica@mas.bg.ac.rs
ВишеTеорија одлучивања
Tеорија одлучивања Аналитички хијерархијски процес Циљ предавања Упознавање са АХП медотом Врсте АХП методе Предности и недостаци АХП методе Софтвери АХП Expert Choice MakeItRational (.com) Пример АХП
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са
ВишеMicrosoft Word - Molekuli-zadaci.doc
Задаци Други колоквијум - Молекулски спектри Пример 1 Израчунајте апсорбанцију раствора, ако је познато да је транспаренција 89% на 00 nm. А 0,071 λ 00 nm таласна дужина на којој је мерена апсорбанција
ВишеMicrosoft PowerPoint - MODELOVANJE-predavanje 9.ppt [Compatibility Mode]
MODELONJE I SIMULIJ PROES 9. Rešavanje dinamičkih modela; osnovni pojmovi upravljanja procesima http://elektron.tmf.bg.ac.rs/mod Dr Nikola Nikačević METODE Z REŠNJE LINERNIH DINMIČKIH MODEL 1. remenski
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеALGEBRA I (2010/11)
ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije
ВишеUniverzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o
Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima
ВишеИспит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ
Испит из Основа рачунарске технике OO - 27/2 (9.6.2.) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећој слици: S Q R Q Асинхрони RS флип флопреализован помоћу НИ
ВишеPowerPoint Presentation
Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика
ВишеEНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као
EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно
ВишеЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Фебруар 8. Трофазни уљни енергетски трансформатор са номиналним подацима: S =
ВишеMicrosoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
ВишеИспит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след
Испит из Основа рачунарске технике OO - / (...) Р е ш е њ е Задатак Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на следећој слици: S R Асинхрони RS флип флопреализован помоћу НИЛИ кола је
ВишеMicrosoft Word - Predmet 13-Napredni finansijski menadzment novembar 2018 RJESENJE
КОМИСИЈА ЗА РАЧУНОВОДСТВО И РЕВИЗИЈУ БОСНЕ И ХЕРЦЕГОВИНЕ ИСПИТ ЗА СТИЦАЊЕ ПРОФЕСИОНАЛНОГ ЗВАЊА ОВЛАШЋЕНИ РЕВИЗОР (ИСПИТНИ ТЕРМИН: НОВЕМБАР 2018. ГОДИНЕ) ПРЕДМЕТ 13: НАПРЕДНИ ФИНАНСИЈСКИ МЕНАЏМЕНТ ЕСЕЈИ
ВишеMicrosoft Word - inicijalni test 2013 za sajt
ИНИЦИЈАЛНИ ТЕСТ ИЗ МАТЕМАТИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА ЗЕМУНСКЕ ГИМНАЗИЈЕ шк. 13 14. Циљ Иницијални тест за ученике првог разреда Земунске гимназије организован је с циљем увида у предзнање ученика, тј.
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
Више