Microsoft PowerPoint - jkoren10.ppt
|
|
- Slađana Zarić
- пре 5 година
- Прикази:
Транскрипт
1 Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni test Nedostaci 1 Dickey-Fuller-ov (DF) test jediničnog korena Model: X t = φx t-1 + e t Hipoteze: H 0 : Serija poseduje jedinični koren, φ=1 H 1 : Serija je stacionarna, φ <1 Alternativna specifikacija polaznog modela: X t = ϕx t-1 + e t tako da je hipoteza φ=1 ekvivalentna hipotezi ϕ =0 φ-1= ϕ. 2 Ekonomski fakultet, Beograd,
2 DF test za različite determinističke komponente DF test τ τ µ τ t Determinističke komponente E(X t ) Nema 0 Konstanta µ Konstanta+ Linearni trend µ+bt, t=1,2, b>0, konstantni prirast (uklon) X t =b+greska, X t =b+x t-1 +greska Parametar uz t u očekivanoj vrednosti vremenske serije odgovara slobodnom članu u modelu prve diference serije sa jediničnim korenom 3 Dickey-Fuller-ov test jediničnog korena Tri varijante Dickey Fuller-ovog testa (DF test): τ, τ µ,τ t Nulta (H 0 ) i alternativna (H 1 ) hipoteza: i) τ H 0 : X t = X t-1 +e t, Serija je slučajan hod H 1 : X t = φx t-1 +e t, φ<1, Serija je stacionarna oko nule. ii) τ µ H 0 : X t = X t-1 +e t, Serija je slučajan hod H 1 : X t =φx t-1 +konstanta+e t,φ<1, Serija je stacionarna oko nenulte srednje vrednosti iii) τ t H 0 : X t = b+x t-1 +e t, Serija je slučajan hod sa konstantnim prirastom H 1 : X t = φx t-1 +konstanta +trend+e t, φ<1, Serija je trend-stacionarna 4 Ekonomski fakultet, Beograd,
3 Kako se dolazi do vrednosti DF test statistika za različite determinističke komponente? Varijante DF testa τ Odgovarajući model X t = ϕx t-1 + e t τ µ X t = ϕ X t-1 + β 0 +e t τ t X t = ϕ X t-1 + β 0 +βt +e t 5 Računanje statistike Primenom metoda ONK se ocenjuje model oblika: X t = ϕ X t-1 + β 0 +βt +e t DF test je količnik ocene parametra ϕ i odgovarajuće standardne greške DF test ima formu standardnog t-odnosa. DF test nema t-raspodelu u uslovima istinitosti nulte hipoteze. DF test poseduje nestandardnu raspodelu. Kritične vrednosti se mogu odrediti metodom Monte-Karlo, kao što je prvi uradio Fuller (1976). Moguće je odrediti kritičnu vrednost za svaki obim uzorka, MacKinnon, (1991). 6 Ekonomski fakultet, Beograd,
4 Pravilo odlučivanja T kritične vrednosti za 5% τ τ µ τ t Nulta hipoteza o postojanju jediničnog korena se odbacuje za dovoljno malu vrednost statistike (kada je izračunata vrednost manja od kritične). Nulta hipoteza o postojanju jediničnog korena se prihvata za dovoljno veliku vrednost statistike (kada je izračunata vrednost veća od kritične). 7 Određivanje broja jediničnih korena I Ako je H 0 prihvaćeno kao tačno, onda se zaključuje da je serija integrisana prvog reda, X t I(1). Međutim, potrebno je utvrditi da li je broj jediničnih korena tačno jedan ili eventualno dva. Nastavljamo testiranje: H 0 : X t I(2) protiv H 1 : X t I(1) H 0 : X t I(1) protiv H 1 : X t I(0). Sada je polazna serija u analizi X t. Relevantna specifikacija: X t = φ X t-1 + β 0 +βt +e t /- X t-1 X t = ϕ X t-1 + β 0 +βt +e t, φ-1= ϕ 2 X t = ϕ X t-1 + β 0 +βt +e t. Regresiramo 2 X t na X t-1, konstantu i trend i proveravamo da li je t- odnos za ocenu uz X t-1 veći ili manji od odgovarajuće kritične vrednosti DF testa. 8 Ekonomski fakultet, Beograd,
5 Određivanje broja jediničnih korena II Ako je H 0 odbačeno, onda se zaključuje da je serija X t I(1), odnosno da poseduje tačno jedan jedinični koren. Ako je H 0 prihvaćeno kao tačno, onda se zaključuje da je serija integrisana drugog reda, X t I(2). Potrebno je utvrditi da li je broj jediničnih korena tačno dva ili eventualno tri. Nastavljamo testiranje: H 0 : X t I(3) protiv H 1 : X t I(2) H 0 : 2 X t I(1) protiv H 1 : 2 X t I(0). Sada je polazna serija u analizi 2 X t. 2 X t = φ 2 X t-1 + β 0 +βt +e t. /- 2 X t-1 2 X t = ϕ 2 X t-1 + β 0 +βt +e t,, φ-1= ϕ 3 X t = ϕ 2 X t-1 + β 0 +βt +e t. Regresiramo 3 X t na 2 X t-1 konstantu i trend i proveravamo da li je t- odnos za ocenu uz 2 X t-1 veći ili manji od odgovarajuće kritične vrednosti DF testa. DF manje od kritične vrednosti, H 1 : X t I(2) se prihvata. DF veće od kritične vrednosti, H 0 : X t I(3) se prihvata. Testiranje se nastavlja... 9 Algoritam testiranja I I korak: Primenjuje se τ t statistika τ t > τ tt Postoji bar jedan jedinični koren τ t < τ tt Serija je trend-stacionarna. Ako je τ t > τ t t prelazimo na II korak: Da li u seriji postoji konstantni prirast (uklon)? SW test: Da li je srednja vrednost X t različita od nule? II.1. DA: Serija ima jedan jedinični koren sa prirastom. II.2. NE: Ponavljamo testiranje ali prema τ µ. III korak: Iz II.1. Da li postoji i drugi jedinični koren? Iz II.2. Da li serija ima jedan koren, ali bez konstantnog prirasta? 10 Ekonomski fakultet, Beograd,
6 Algoritam testiranja II 11 Prošireni DF test Augmented DF test, ADF(K) X t = β 0 + βt +φx t-1 + δ 1 X t-1 + δ 2 X t-2 + +δ K X t-k + e t ADF test je količnik ocene parametra ϕ i odgovarajuće standardne greške ocene. ADF i DF imaju istu graničnu raspodelu: koristimo iste kritične vrednosti Parametar K može se odrediti na više načina: Metod od posebnog ka opštem Metod od opšteg ka posebnom Informacioni kriterijumi. 12 Ekonomski fakultet, Beograd,
7 Informacioni kriterijum (oznaka IC) Koristi se u izboru optimalnog broja parametara u ekonometrijskom modelu Sadrži dve komponente: 1. Komponenta koja je funkcija neobjašnjenog varijabiliteta zavisne promenljive modela 2. Komponenta kojom se kažnjava gubitak broja stepeni slobode zbog dodavanja novih parametara (tzv. kaznena komponenta) 13 Informacioni kriterijum (II) Definicija u kontekstu izbora K: 2 ( K + 3 ) IC( K ) = ln[ s ( K )] + g T g nenegativna funkcija (kaznena) s 2 (K) je ocena varijanse slučajne greške modela. Dodavanje novih objašnjavajućih promenljivih (rast K) ima suprotne efekte na dve komponente: varijabilitet slučajne greške modela opada vrednost kaznene komponente raste. Cilj je da se izabere takvo K kojim se minimizira vrednost IC 14 Ekonomski fakultet, Beograd,
8 Vrste informacionih kriterijuma Funkcija g Kaznena komponenta Naziv Oznaka 2 2(K+3)/T Akaike AIC lnt (lnt)(k+3)/t Schwarz SC ili SIC 2lnlnT (2lnlnT)(K+3)/T Hannan-Quinn HQC ili HQIC 15 Odnos između informacionih kriterijuma T 8,lnT > 2 SC > AIC T 16,2lnlnT > 2 HQ > AIC T 16,SC > HQ > AIC Napomena ln8 = 2.08 ln16 = lnln16 = Ekonomski fakultet, Beograd,
9 Osnovno ograničenje ADF testa Ako je serija stacionarna sa autoregresionim parametrom koji je blizak vrednosti 1, onda se primenom ADF testa u najvećem broju slučajeva dobija rezultat da postoji jedinični koren. Testom ne može da se diskriminiše da li je φ=1 ili φ=0.95, posebno na uzrocima malog obima. Ako je serija generisana kao X t = 0.95X t-1 + e t onda bi testom morala da se odbaci nulta hipoteza o prisustvu jediničnog korena. Jedan od načina da se prevaziđe dati problem jeste da se nulta hipoteza definiše kao tvrđenje o stacionarnosti. 17 Nulta hipoteza o stacionarnosti Alternativna postavka hipoteza KPSS test H 0 : X t je stacionarna vremenska serija H 1 : X t poseduje jedinični koren (Kwiatkowski, Phillips, Schmidt and Shin, 1992). Paralelna upotreba ADF i KPSS testa povećava pouzdanost statističkog zaključivanja. 18 Ekonomski fakultet, Beograd,
10 Dodatna ograničenja ADF testa Test je osetljiv na postojanje strukturnog loma Trajan strukturni lom u trendu stacionarne vremenske serije: primena ADF testa sugeriše postojanje jediničnog korena. Jednokratni strukturni lom u prvoj diferenci seriji sa jediničnim korenom: primena ADF testa sugeriše stacionarnost polazne serije. 19 Primer I Ukupan izvoz privrede Srbije - log 1995:1 2004: Ukupan izvoz 20 Ekonomski fakultet, Beograd,
11 Primer II Indeks cena na malo privrede Srbije - log 2001:1-2009:1 5.0 Indeks cena na malo (log).09 Inflacija (prva diferenca logaritma indeksa cena na malo) Primer III Nominalni devizni kurs - log 2001:1-2009: Nominalni devizni kurs (log).07 Prva diferenca nom inalnog deviznog kursa Ekonomski fakultet, Beograd,
Microsoft PowerPoint - DS-1-16 [Compatibility Mode]
Ekonometrija 1-D Analiza vremenskih serija Predavač: Zorica Mladenović, zorima@eunet.rs, http://avs.ekof.bg.ac.rs kabinet: 414 1 Struktura predmeta Izučavaju se dve oblasti: Analiza vremenskih serija Analiza
ВишеMicrosoft PowerPoint - avs12-17 [Compatibility Mode]
Osobenosti ekonomskih vremenskih serija Zorica Mladenović 1 Ključna svojstva ekonomskih vremenskih serija Postojanje trenda Postojanje sezonskih varijacija Postojanje nestandardnih opservacija: strukturni
ВишеPaper Title (use style: paper title)
Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:
ВишеMicrosoft PowerPoint - Intervencija10.ppt
ANALIZA INTERVENCIJE I STRUKTURNOG LOMA Inervencija: poznai egzogeni događaj koji uiče na kreanje vremenske serije. Primeri: Promene u poliičkom okruženju Promena ekonomske poliike i spoljnorgovinskog
ВишеПрва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских
Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је
ВишеMicrosoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]
Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa
ВишеРЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр
РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања
ВишеOSNOVI EKONOMETRIJE - Ekonomska analiza i politika - Međunarodna ekonomija (opcija Međunarodne finansije)
OSNOVI EKONOMETRIJE - Ekonomska analiza i politika - Međunarodna ekonomija (opcija Međunarodne finansije) avs.ekof.bg.ac.rs Predavači: Prof. Zorica Mladenović, zorima@eunet.rs Prof. Aleksandra Nojković,
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
ВишеТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
Више943.B.pdf
SVEUČILIŠTE U RIJECI EKONOMSKI FAKULTET JOSIPA TOLJANIĆ EMPIRIJSKA ANALIZA UTJECAJA IZDATAKA ZA OBRAZOVANJE NA GOSPODARSKI RAST ZEMALJA EU DIPLOMSKI RAD RIJEKA, 2015. SVEUČILIŠTE U RIJECI EKONOMSKI FAKULTET
ВишеMicrosoft Word - AIDA2kolokvijumRsmerResenja.doc
Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa
ВишеSlide 1
Str. 9 UVOD Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Dokazano je... Da li vama treba statistika? Top ten najboljih zanimanja (Blic, 6.3.2010.): 1. Aktuari 2. Softverski inženjeri
ВишеMere slicnosti
Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti
ВишеMicrosoft PowerPoint - vezbe 4. Merenja u telekomunikacionim mrežama
Merenja u telekomunikacionim mrežama Merenja telefonskog saobraćaja Primer 1 - TCBH Na osnovu najviših vrednosti intenziteta saobraćaja datih za 20 mernih dana (tabela), pomoću metode TCBH, pronaći čas
ВишеMicrosoft PowerPoint - PDPL FBF ZG spec 2011.ppt [Read-Only] [Compatibility Mode]
Farmaceutsko-biokemijski fakultet Poslijediplomski specijalistički studij Kolegij Biostatistika Predavanje i ostali podatci Statistička obradba podataka: uvodna razmatranja Mladen Petrovečki mi.medri.hr(e-prilozi
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA PRELIMINARNI RASPORED ISPITA ZA JANUARSKI ISPITNI ROK 2008. GODINE Predmet Od. P/U Datum Sala Napomena Akcionarstvo i berzansko poslovanje ME U 03.02.2008----10:00 201 Arhitektura
ВишеРепубличко такмичење
1 РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ОСНОВА ЕКОНОМИЈЕ БЕОГРАД, МАРТ 2015. Питања саставио: доцент др Ђорђе Митровић, Универзитет у Београду, Економски факултет 1. Монетаристи су Питања 1 поен а. сматрали да је незапосленост
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA PRELIMINARNI RASPORED ISPITA ZA SEPTEMBARSKI ISPITNI ROK 2008. GODINE Predmet Od. P/U Datum Sal. Napomena Akcionarstvo i berzansko poslovanje ME U 29.08.2008----09:00 Institut
ВишеMicrosoft Word - Raspored ispita Jun.doc
FAKULTET ORGANIZACIONIH NAUKA KONAČAN RASPORED ISPITA ZA JUNSKI ISPITNI ROK 8. GODINE Predmet Od. P/U Datum Sale Napomena Akcionarstvo i berzansko poslovanje ME U 21/06/8---- Arhitektura računara i oper.
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
ВишеSTABILNOST SISTEMA
STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja
ВишеMIP-heuristike (Matheuristike) Hibridi izmedu metaheurističkih i egzaktnih metoda Tatjana Davidović Matematički institut SANU
MIP-heuristike (Matheuristike) Hibridi izmedu metaheurističkih i egzaktnih metoda Tatjana Davidović Matematički institut SANU http://www.mi.sanu.ac.rs/ tanjad (tanjad@mi.sanu.ac.rs) 21. januar 2013. Tatjana
ВишеNaslovna_0:Naslovna _0.qxd.qxd
Децембар СТАТИСТИЧКИ БИЛТЕН Децембар 2011 УРЕДНИШТВО БРАНКО ХИНИЋ, главни уредник Чланови ЈЕЛЕНА МАРАВИЋ МАРИНА МЛАДЕНОВИЋ-КОМАТИНА ВЕСЕЛИН ПЈЕШЧИЋ БИЉАНА САВИЋ ДР МИЛАН ШОЈИЋ Статистички билтен Издаје
Више~ Методологија ~ ИНДЕКС ПРОМЕТА ИНДУСТРИЈЕ ПРАВНИ ОСНОВ Статистичка активност се спроводи у складу са Законом о статистици Републике Српске ( Службени
~ Методологија ~ ИНДЕКС ПРОМЕТА ИНДУСТРИЈЕ ПРАВНИ ОСНОВ Статистичка активност се спроводи у складу са Законом о статистици Републике Српске ( Службени гласник Републике Српске, број 85/03) и Статистичким
ВишеЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,
ВишеMakroekonomija
Makroekonomija Prof.dr Maja Baćović 14/02/2019. Cilj kursa Upoznati studente sa osnovnim makroekonomskim problemima, načinom mjerenja makroekonomskih aktivnosti, međuzavisnostima na makro-nivou i mogućnošću
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA KONAČAN RASPORED ISPITA ZA OKTOBARSKI ISPITNI ROK (po datumu) Predmet Odsek P/U Datum Sala Upravljanje kvalitetom dokumentacije UK P 22/09/2007----09:00 RC Informacioni sistemi
ВишеMate_Izvodi [Compatibility Mode]
ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеPostojanost boja
Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
ВишеIstrazivanje trzista 15, dec 2018
MARKETINŠKO ISTRAŽIVANJE Faktorska analiza i analiza skupina 2 Tehnike analize međuzavisnosti Faktorska analiza i analiza skupina se nazivaju tehnikama analize međuzavisnosti, jer analiziraju zavisnost
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеТехничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић
Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,
Више06 Poverljivost simetricnih algoritama1
ЗАШТИТА ПОДАТАКА Симетрични алгоритми заштите поверљивост симетричних алгоритама Преглед биће објашњено: коришћење симетричних алгоритама заштите како би се заштитила поверљивост потреба за добрим системом
ВишеMicrosoft Word - 13pavliskova
ПОДЗЕМНИ РАДОВИ 4 (5) 75-8 UDK 6 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 5494 ИЗВОД Стручни рад УПОТРЕБА ОДВОЈЕНОГ МОДЕЛА РЕГЕНЕРАЦИЈЕ ЗА ОДРЕЂИВАЊЕ ПОУЗДАНОСТИ ТРАНСПОРТНЕ ТРАКЕ Павлисковá Анна, Марасовá
ВишеKombinatorno testiranje
Kombinatorno testiranje Uvod Na ponašanje aplikacije utiče puno faktora, npr. ulazne vrednosti, konfiguracije okruženja. Tehnike kao što je podela na klase ekvivalencije ili analiza graničnih vrednosti
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
Више1
ТЕСТ: ТЕОРИЈА И ПРАКСА ПЕРСОНАЛНОГ ФИТНЕСА 1. Наведи разлике између термина рекреација и фитнес: 2. Наведи бар два начина за дозирање интензитета на тренингу издржљивости: 3. Наведи шест параметара који
ВишеPowerPoint Presentation
Prof. dr Pere Tumbas Prof. dr Predrag Matkovid Identifikacija i izbor projekata Održavanje sistema Inicijalizacija projekata i planiranje Implementacija sistema Dizajn sistema Analiza sistema Faze životnog
ВишеProgramski jezici i strukture podataka 2018/2019. Programski jezici i strukture podataka Računarske vežbe vežba 10 Zimski semestar 2018/2019. Studijsk
Programski jezici i strukture podataka Računarske vežbe vežba 10 Zimski semestar 2018/2019. Studijski program: Informacioni inženjering Informacioni inženjering 1 Rekurzivne funkcije Binarna stabla Informacioni
ВишеMicrosoft Word - Predmet 6-Primjena upravljackog racunovodstva maj 2019 RJESENJE
I ТЕСТ ПIТАЊА КОМИСИЈА ЗА РАЧУНОВОДСТВО И РЕВИЗИЈУ БОСНЕ И ХЕРЦЕГОВИНЕ ИСПИТ ЗА СТИЦАЊЕ ПРОФЕСИОНАЛНОГ ЗВАЊА СЕРТИФИКОВАНИ РАЧУНОВОЂА (ИСПИТНИ ТЕРМИН: МАЈ 2019. ГОДИНЕ) ПРЕДМЕТ 6: ПРИМЈЕНА УПРАВЉАЧКОГ
ВишеФебруар 2018
Фебруар 2018 СТАТИСТИЧКИ БИЛТЕН Фебруар 2018 НАРОДНА БАНКА СРБИЈЕ Београд, Краља Петра 12 Тел. 011/3027-100 Београд, Немањина 17 Тел. 011/333-8000 www.nbs.rs ISSN 1451-6349 Садржај Преглед текућих кретања..................................................
ВишеSlide 1
Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti
ВишеPowerPoint Presentation
Факултет организационих наука Центар за пословно одлучивање Системи за препоруку П8: Системи за препоруку Закључивање на основу случајева Системи за препоруку 2 Закључивање на основу случајева ПРОНАЂЕНО
ВишеANALIZA TRŽIŠTA NEKRETNINA 08
ANALIZA TRŽIŠTA NEKRETNINA 08 HEDONIČKI INDEKS NEKRETNINA JUN 2018 U junu 2018. godine, CBCG sprovela je redovnu anketu o kretanju cijena nekretnina u Podgorici. Pitanja u upitniku su se odnosila na kvalitativne
ВишеMicrosoft PowerPoint - Topic02 - Serbian.ppt
Tema 2 Kriterijumi kvaliteta za softverske proizvode DAAD Project Joint Course on Software Engineering Humboldt University Berlin, University of Novi Sad, University of Plovdiv, University of Skopje, University
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеVEŽBE IZ OPERACIONIH ISTRAŽIVANJA
VEŽBE IZ OPERACIONIH ISTRAŽIVANJA Glava 4 1. Metoda grananja i odsecanja 2. Metoda grananja i ograničavanja 3. Metoda implicitnog prebrojavanja MARIJA IVANOVIĆ marijai@math.rs Metoda grananja i odsecanja
ВишеУниверзитет у Нишу Природно-математички факултет Департман за математику Процеси обнављања и нека њихова уопштења Мастер рад Ментор: Проф. др Марија М
Универзитет у Нишу Природно-математички факултет Департман за математику Процеси обнављања и нека њихова уопштења Мастер рад Ментор: Проф. др Марија Милошевић Студент: Јелена Милошевић Ниш, 218. Садржај
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
ВишеIRL201_STAR_sylab_ 2018_19
Detaljni izvedbeni nastavni plan za kolegij: Statistika i analiza znanstvenih podataka Akademska godina: 2018/2019 Studij: Diplomski sveučilišni studiji: Biotehnologija u medicini, Istraživanje i razvoj
ВишеUNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš,
UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš, 2015. Sadržaj Uvod... 4 Glava 1 Uvodni pojmovi...
ВишеDOKTORSKE STUDIJE IZ JAVNOG ZDRAVLJA 2009/2010
ДОКТОРСКЕ СТУДИЈЕ из: EПИДЕМИОЛОГИЈЕ, ЈАВНОГ ЗДРАВЉА, КАРДИОЛОГИЈЕ, ПУЛМОЛОГИЈЕ, НЕУРОЛОГИЈЕ, НЕФРОЛОГИЈЕ, РАДИОЛОГИЈЕ И РЕКОНСТРУКТИВНЕ ХИРУРГИЈЕ 03/04. - Други семестар Обавезни предмет БИОСТАТИСТИКА
ВишеНовембар 2013
Новембар 2013 СТАТИСТИЧКИ БИЛТЕН Новембар 2013 У Р Е Д Н И Ш Т В О БРАНКО ХИНИЋ, главни уредник Чланови ЈЕЛЕНА МАРАВИЋ МАРИНА МЛАДЕНОВИЋ-КОМАТИНА ВЕСЕЛИН ПЈЕШЧИЋ БИЉАНА САВИЋ ДР МИЛАН ШОЈИЋ Статистички
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеTeorija igara
Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak
ВишеMicrosoft PowerPoint - 03_Prezentacija 1_Lea_ [Compatibility Mode]
Efikasnost i efektivnost državnih pomoći Lea J. Lekočević SAM GIZ ekspert za državne pomoći Podgorica, 30. oktobar 2013. godine Page 1 Opšti nalazi Evropa 2010 strategija EZ za rast u ovoj deceniji jedinstveno
Више07jeli.DVI
Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine
ВишеApresentação do PowerPoint
III.3. Primjer neparametrijskog testa: χ 2 -test (hi-kvadrat test) III.3.1. Općenito o χ 2 -testu Često je potrebno usporediti razne skupine ispitanika po učestalostima (frekvencijama) i vidjeti razlikuju
ВишеMicrosoft PowerPoint - PDPL FBF ZG SPEC uvodno 2013 I.ppt [Read-Only] [Compatibility Mode]
Farmaceutsko-biokemijski fakultet Poslijediplomski specijalistički studij Razvoj lijekova Kolegij Biostatistika Predavanje i ostali podatci Statistička obradba podataka: uvodna razmatranja Mladen Petrovečki
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
Вишеχ2 test
χ es uporebljava se kada želimo uvrdii odsupaju li dobivene - opažene rekvencije ( o ) od eoreskih ili očekivanih rekvencija uz određene hipoeze ( ). χ es o spada u neparamerijsku saisiku, primjenjiv i
Вишеuntitled
Фебруар СТАТИСТИЧКИ БИЛТЕН Фебруар 2010 УРЕДНИШТВО БРАНКО ХИНИЋ, главни уредник Чланови ЈЕЛЕНА МАРАВИЋ МАРИНА МЛАДЕНОВИЋ-КОМАТИНА ВЕСЕЛИН ПЈЕШЧИЋ БИЉАНА САВИЋ ДР МИЛАН ШОЈИЋ Статистички билтен Издаје
ВишеIstraživanje turističkog tržišta
ISTRAŽIVANJE TURISTIČKOG TRŽIŠTA asistent:branislava Hristov Stančić branislava@ekof.bg.ac.rs Suština i sadržaj istraživanja tržišta Istraživanje tržišta istraživanje marketinga Istraživanje marketinga
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеMicrosoft Word - CAD sistemi
U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja
ВишеИндекси извозних и увозних цијена Референтни метаподаци према Euro SDMX структури метаподатака (ESMS) Републички завод за статистику Републике Српске
Индекси извозних и увозних цијена Референтни метаподаци према Euro SDMX структури метаподатака (ESMS) Републички завод за статистику Републике Српске 1. Контакт 2. Ажурирање метаподатака 3. Презентација
ВишеMicrosoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]
ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u
Вишеkvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1
kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.
ВишеSeminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja
Seminar 13 (Tok funkcije) Obavezna priprema za seminar nalazi se na drugoj stranici ovog materijala. Ove materijale obražujemo na seminarima do kraja semestra. Potrebno predznanje Ovaj seminar saºima sva
ВишеТехничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји
Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Велибор
ВишеMicrosoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеMicrosoft PowerPoint - Topic02 - Serbian.ppt
Tema 2 Kriterijumi kvaliteta za softverske proizvode DAAD Project Joint Course on Software Engineering Humboldt University Berlin, University of Novi Sad, University of Plovdiv, University of Skopje, University
ВишеЈун 2017
Јун 2017 СТАТИСТИЧКИ БИЛТЕН Јун 2017 НАРОДНА БАНКА СРБИЈЕ Београд, Краља Петра 12 Тел. 011/3027-100 Београд, Немањина 17 Тел. 011/333-8000 www.nbs.rs ISSN 1451-6349 Садржај Преглед текућих кретања..................................................
ВишеEKONOMSKI RAST I RAZVOJ
Univerzitet u Travniku Fakultet za menadžment i poslovnu ekonomiju EKONOMSKI RAST I RAZVOJ Makroekonomske performanse privrede reprezentiraju četiri osnovna pokazatelja: stopa privrednog rasta, stopa inflacije,
ВишеMicrosoft Word - Master rad VERZIJA ZA STAMPU
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Радослав Божић Примене стратификованог узорка - мастер рад - Нови Сад, 2012 Садржај Предговор...3 1. Увод...4
ВишеP1.3 Projektovanje makroasemblera
ПРОЈЕКТОВАЊЕ МАКРОАСЕМБЛЕРА Макроасемблер Потребна проширења асемблера 1 МАКРОАСЕМБЛЕР Макроасемблер преводи полазни програм написан на макроасемблерском језику у извршиви машински програм. Приликом израде
ВишеProjektovanje informacionih sistema i baze podataka
Realni sistem i informacioni sistem Ulaz Realni sistem Izlaz Unos Baza podataka Izveštaji Realni sistem i informacioni sistem Sistem se definiše kao skup objekata (entiteta) i njihovih međusobnih veza
ВишеClassroom Expectations
АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеUniverzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljan
Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljana Jovanović Niš, 2019. "Fundamentalni koncept portfolio
ВишеMicrosoft Word - 14Celobrojno.doc
3. CELOBROJNO LINEARNO PROGAMIRANJE 3.1. MODELI CELOBROJNOG PROGRAMIRANJA Svaki matematički model, sa funkcijom kriterijuma minimuma ili maksimuma, u kojem bar jedna primarna promenljiva mora biti celobrojna
Више2015_k2_z12.dvi
OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai
ВишеMicrosoft Word - REGIONALNA EKONOMIJA EVROPSKE UNIJE_Ispit.doc
UNIVERZITET U NOVOM SADU EKONOMSKI FAKULTET U SUBOTICI SOFIJA ADŽIĆ REGIONALNA EKONOMIJA EVROPSKE UNIJE ISPITNA PITANJA Školska 2012/2013 godina Verzija 2.0 Subotica, septembar 2012. REGIONALNA EKONOMIJA
ВишеАприл 2019
Април 2019 СТАТИСТИЧКИ БИЛТЕН Април 2019 НАРОДНА БАНКА СРБИЈЕ Београд, Краља Петра 12 Тел. 011/3027-100 Београд, Немањина 17 Тел. 011/333-8000 www.nbs.rs ISSN 1451-6349 Садржај Преглед текућих кретања..................................................
ВишеStrateski marketing
Vesna Damnjanovic Način polaganja ispita na predmetu Strateški marketing 70 % ocene Case Study analiza projektni zadatak (potrebno je da studenti ispoštuju zadatu strukturu projektnog zadatka). Ne vrši
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеСтруктура инкубаторских станица Референтни метаподаци према Euro SDMX структури метаподатака (ESMS) Републички завод за статистику Републике Српске 1.
Структура инкубаторских станица Референтни метаподаци према Euro SDMX структури метаподатака (ESMS) Републички завод за статистику Републике Српске 1. Контакт 2. Ажурирање метаподатака 3. Презентација
ВишеSlide 1
1 MATEMATIČKI MODELI EFIKASNOSTI 3/21/2019 Gordana Savić, Milan Martić, Milena Popović 2 Informacije o predmetu Nastavnici Pravila polaganja Sadržaj predmeta Literatura Podsećanje Linearno programiranje
ВишеEKONOMSKI FAKULTET BEOGRAD
EKONOMSKI FAKULTET BEOGRAD PREDMET: STRATEGIJSKI MENADŽMENT II GODINA, OBAVEZAN ZA SVE SMEROVE Naziv kursa: Strategijski menadžment Obim kursa : 60h predavanja + 60h vežbi Nastavnici: 1. dr Dragan Đuričin,
ВишеStatistika, Prehrambeno-tehnološki fakultet 1 Zaključivanje o jednoj slučajnoj varijabli Numeričke karakteristike distribucije populacije nazivamo par
Statistika, Prehrambeno-tehnološki fakultet 1 Zaključivanje o jednoj slučajnoj varijabli Numeričke karakteristike distribucije populacije nazivamo parametrima. Statističko zaključivanje odnosi se na donošenje
ВишеPowerPoint Presentation
GRANIČNE TEME MIKROEKONOMIJE Dr JOVAN ĐURAŠKOVIĆ Moralni hazard 2 Moralni hazard predstavlja sklonost ka nepoštenom ponašanju osobe nad kojom ne postoji savršen nadzor Bolji nadzor, veće nadnice i odložena
ВишеРЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)
РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 136. став
Више