Microsoft PowerPoint - 09 PEK EMT Optimizacija 4 od 4-Algoritam (2012).ppt [Compatibility Mode]

Величина: px
Почињати приказ од странице:

Download "Microsoft PowerPoint - 09 PEK EMT Optimizacija 4 od 4-Algoritam (2012).ppt [Compatibility Mode]"

Транскрипт

1 Da s odstimo i i i: Odrditi vrdosti aramtara oa [,... ] o ć garatovati da odziv (x, ima žu vrdost * (x. Mtod: raž miimuma fuci grš E(x,; (orma za vatitativu rocu odstuaa dobiog od žog odziva. E(x, (x, - * (x E iara fucia od Agoritam otrimizaci Agoritam otrimizaci Da s odstimo Odrđiva očtog rša, o,,..., Izračuava fucigrš E i, i,..., m Izračuava orci Korcia vrdosti aramtara,,..., aramtara,,..., E i < ε S < ε S da Agoritam otrimizaci Da s odstimo iovi robma: -Otimizacia u s-ravi - Otimizacia u frvcisom domu (m - Otimizacia i i u frvcisom domu (m> (amai -ti st, - Otimizacia u frvcisom domu (mzov agoritam - Otimizacia iarih oa u dosmrom domu (m< - Otimizacia sa ograičm Agoritam otrimizaci 4

2 Amitudsa fucia zadata otiuao u itrvau [f d, f g ] Aroimacioa fucia taođ zadata otiuao, tao da masimao odstua u itrvau miimao; (Čbišvva fucia [f d, f g ]. ucia grš dfiisaa sa: E max fd < f < fg * { w( f [ ( f ( f, ]} š iz rthod itraci trba da obzbdi roma zaa fuci grš, gd bro aramtara. Na ta ači fucia grš imać taču sa masimaom gršom (strma tač, račuaući i tač a graici itrvaa Agoritam otrimizaci 5 Estrma tač su f,,..., f f d,..., f f g Agoritam otrimizaci 6 Estrma tač su f,,..., f f d f f, f fd < f <... < f fg M f fg raži s da vrdost grš u strmaim tačama bud ε. ada * (f -(f, (- ε,,...,. * (f -(f, - (- ε g (f, 0 0,,..., Agoritam otrimizaci 7 g(f *, (f -(f, - (- ε 0,,...,. iarizaciom g dobia s: g ( g ( g ( g ( Δε 0, ε,..., (f, ( Δε *(f (f, ( ε, šavam ovog sistma od dači odrđuu s riraštai aramtara i Δε.,..., Agoritam otrimizaci 8

3 Maom modifiaciom mož da s fisira vrdost grš, ai s ostava dfiisaa da graica itrvaa g (f, * (f -(f, - (- ε 0,,...,. g ( (f, g ( g ( 0, *(f (f, ( ε,,...,,..., šavam ovog sistma od dačia odrđuu s riraštai aramtara Agoritam otrimizaci 9 Počto rš za vrdosti aramtzara mora da obzbdi roma zaa fuci grš. Kao aći t vrdosti? Odrdi s vidistatih tačaa u itrvau [f d, f g ] f fg fd (i, i,..., oi Dfiiš s ova fucia grš iarizu i s i ( * (f oi -(f oi, 0,,...,. i ( i( i ( 0, i,..., Agoritam otrimizaci 0 (foi, *(f oi (f oi,, i,..., Primr: šavam ovog sistma od dačia odrđuu s riraštai aramtara a osovu oih s dobiau očta rša oa ć obzbditi roma zaa u tačama f oi. Protovati ov fitar čia ć amitudsa aratristia da s ađ u osčom osgu a sici Agoritam otrimizaci Agoritam otrimizaci

4 Primr: mzov agoritam Primr: A mi Arosimacioa fuicia oa obzbđu zadovo tražih usova ao a a i a su ozati aramtri Agoritam otrimizaci Za A mi 09i 0.9 A smax 0.05 Moguć mđurš š Agoritam otrimizaci 4 Protova u D ržimu Bro usova < broa aramtara m < E * i i - i (, i,..., m. E ( i E ( Ei( i E E i( E (, i 0, i,..., m i,..., m Protova u D ržimu; m < U matričom obiu mx E, i i, i,..., m ;,...,, < m Izabr s m aramtara i od ih s formira vtor E, ; m x m x (m < m i ( * i i (, i,..., m < ima -m mata vtor dimzi m Agoritam otrimizaci Agoritam otrimizaci 6

5 Protova u D ržimu; m < D bii č i Δ t b ći Δ Z t d fi iš Da bi izračuai, trba aći. Zato dfiišmo ormu [ ] ( ( ( ( P( Zamom za dobia s ( P( Δ Agoritam otrimizaci 7 Protova u D ržimu; m < Miimum orm P( dobia s za 0 Δ Δ P( Miimum orm P( dobia s za 0 ( Odavd s dobia sistm od (-mx(-m iarih dačia o I ( ( I Agoritam otrimizaci 8 Protova u D ržimu; m < Postua sdći: Postua sdći:. Izabr s r-m aramtara oi či. Matrica s razdvoi a i. odrdi s iz I 4. odrdi s iz [ ] Agoritam otrimizaci 9 Protova u D ržimu; m < Primr: Odrditi i tao da bud 6 i Odrditi,, i 4 tao da bud c 6 i m, Agoritam otrimizaci 0

6 Protova u D ržimu; m < Primr: Δ Δ Δ 6 4 Δ 4 4 Δ Δ Agoritam otrimizaci Protova u D ržimu; m < Primr: 6 6 Δ Δ 0 0 c 4 Δ 4 Odavd s odrđuu Δ i Δ 4 a zatim i Δ i Δ Δ Δ 6 Δ Δ 4 c Δ Δ Agoritam otrimizaci Protova u D ržimu; m < Primr: Agoritam otrimizaci Origiao Pridružo za c Pridružo za Protova u D ržimu; m < Primr: Agoritam otrimizaci 4

7 Otimizacia sa ograičm rdosti aramtara da budu ozitiv > 0 f(,, f( S S S S Agoritam otrimizaci 5 Otimizacia sa ograičm rdosti aramtara da budu u osgu mi < < u max u ( u u ( ( u ( t t Agoritam otrimizaci 6 Otimizacia sa ograičm Agoritam otrimizaci 7 Otimizacia sa ograičm P t i i i đ d t Postoi racia izmđu dva aramtra: ubici ama: Γ r ΔΓ ΔΓ r Δr Γ r ΔΓ r ΔΓ Γ r Δr r ubici odzatora: ubici odzatora: g Δ Δ g Δg Agoritam otrimizaci 8 g g g

8 Otimizacia rimr: Šta trba da zamo? Emtaro (za otis i otimizaci? Osova (za 6 I. Uvod: Šta smo aučii?. Koraci u agoritmu otimizaci?. Otimizacia sa ograičm? Agoritam otrimizaci 9 EDA - aboratory for Ectroic Dsig Automatio htt://da.fa.i.ac.yu/ 0 Šta trba da zamo? Isita itaa a mzov agoritam. b Odrđiva očtog rša za mzov agoritam. c Postua otimizaci bro aramtara > broa usova. d Primr rotovaa u D ržimu bro aramtara brou usova. Otimizacia sa ograičm vrdosti aramtara. f Otimizacia sa orisaim aramtrima. EDA - aboratory for Ectroic Dsig Automatio htt://da.fa.i.ac.yu/ Sdćg časa ogiča simuacia I Циљ, метод, могућности Хијерархијски нивои логичке симулације Логичка стања Модлеовање логичких елемената Модел Мд логичке функције Модели кашњења Хазарди (статички и динамички Јачина сигнала. Литература: В. Литовски, Пројектовање електронских кола (стр Agoritam otrimizaci

9 Pag: / 8

10 Pag:4 / 8

11 Pag:5 / 8

12 Pag:6 / 8

13 Pag:7 / 8

14 Pag:8 / 8

Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode] Oseg u kome se alazi vredost odziva aziva se toleracia odziva F < F < F i 2... m i i i F i Fi Doa toleracia odziva Gora toleracia odziva Izračuavae toleracia i Fi Fi < 0 za Fi > 0 Doi rirašta odziva Δ

Више

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode] ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u

Више

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc

Microsoft Word - BROJNI REDOVI zadaci _II deo_.doc BROJNI REDOVI ZADACI ( II DEO) Dlmbrov kritrijum Ako z rd ostoji lim + - z r > rd divrgir - z r odlučivo - z r < kovrgir r od vži: Primr. Isitti kovrgciju rd! Ršj: Njr d odrdimo. Ovd j to! ( zči uzimmo

Више

Microsoft Word - ELEMENTARNE FUNKCIJE.doc

Microsoft Word - ELEMENTARNE FUNKCIJE.doc ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc

Microsoft Word - EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE.doc EKSTREMNE VREDNOSTI I MONOTONOST FUNKCIJE EKSTREMNE VREDNOSTI su maksimum i (ili minimum funkcij. Nadjmo prvi izvod i izjdnačimo ga sa 0, 0. Ršnja t jdnačin,,... ( naravno ako ih im mnjamo u počtnu funkciju

Више

untitled

untitled EORIJA EEKRIČNIH KOA lic primri prmr mrž dv pr rv lic primri i udri prmr imriči mrž dv pr rv Prmri i idli ivi mrž dv pr rv Filri Fourir-ov rd priodič fuci S u olim ložopriodičim icim Fourir-ov rformci

Више

Microsoft Word - Vjezbe_AEESI_Idio_09_10.doc

Microsoft Word - Vjezbe_AEESI_Idio_09_10.doc 3. sistemu ade 3 gue eletaa: I gua: Temoeletae (TE) oje oivaju 5 % otošje, a ade sa oloviom svoje ue (omiale) sage. Evivaleta stmia aateistie egulatoa (evivaleti oeicijet samoegulacije) je 0. II gua: Hidoeletae

Више

Satnica.xlsx

Satnica.xlsx ПОНЕДЕЉАК 10.06.19 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 64 А3 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 46 Ч1 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 70 Ч2 2Б Алгоритми и програмирање - КОЛОКВИЈУМ

Више

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh Slicnost trouglova Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a,, c su stranice trougla suprotne vrhovima A, B, C redom. -m a, m, m c su tezisnice iz vrhova A, B, C redom. -h a, h, h c su

Више

Microsoft Word - SIORT1_2019_K1_resenje.docx

Microsoft Word - SIORT1_2019_K1_resenje.docx I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2

Више

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле

М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би ле М И Л Е Н А К У Л И Ћ Ј ЕД НО Ч И Н К А ЗА П Е ТО РО ПУТ ИЗ БИ ЛЕ ЋЕ Сред пу ша ка, ба јо не та, стра же око нас, Ти хо кре ће на ша че та, кроз би лећ ки крас. Би ле ћан ка, 1940. Да ли те бе ико ве се

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.

Више

Technology management performance indicators in global country rankings

Technology management performance indicators in global country rankings PATTERN метод (Planning Assistance Through Technical Evaluation of Relevance Numbers) Менаџмент технологије и развоја 2018/19 PATTERN метод Метод нормативног предвиђања Метод стабла значајности Стабло

Више

Feng Shui za ljubav MONTAZA 3:Feng Shui_Love Int. Mech.qxd

Feng Shui za ljubav MONTAZA 3:Feng Shui_Love Int. Mech.qxd POVOLJNE I NEPOVOLJNE FENG [UI F O RMULE za LJUBAV ANGI MA VONG POVOLJNE I NEPOVOLJNE FENG [UI FORMULE za LJUBAV Naziv originala: FENG SHUI DOs & TABOOs for love Angi Ma Wong Naziv knjige: Povoljne i nepovoljne

Више

Microsoft PowerPoint - 12a PEK EMT VHDL 1 od 4 - Uvod (2011).ppt [Compatibility Mode]

Microsoft PowerPoint - 12a PEK EMT VHDL 1 od 4 - Uvod (2011).ppt [Compatibility Mode] VHDL jezik za opis hardvera VHDL jezik za opis hardvera VHDL jezik za opis hardvera Prof. Dr Predrag Petković Dr Miljana Milić Sadržaj 1. Šta je VHDL? 2. Opis hardvera 3. Signali 4. Osnove VHDL pravopisa

Више

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x

Више

Satnica.xlsx

Satnica.xlsx ПОНЕДЕЉАК 01.07.2019 А1 А2 2Б 2Б Математика 2 Математика 2 64 46 Дискретна математика Дискретна математика 50 40 2Б Математика 2 40 Дискретна математика 13 Б-РИИ Дискретна математика 6 2М-УПС Рачунарски

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

Tеорија одлучивања

Tеорија одлучивања Tеорија одлучивања Аналитички хијерархијски процес Циљ предавања Упознавање са АХП медотом Врсте АХП методе Предности и недостаци АХП методе Софтвери АХП Expert Choice MakeItRational (.com) Пример АХП

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vežbe 6. Jedadžbe diferecia Koriste se u opisu diskretog sustava modelom s ulazo-izlazim variablama. Određivae odziva sustava svodi se a problem rešavaa edadžbi diferecia. Načie

Више

zad_6_2.doc

zad_6_2.doc .. S- i S- komunikacioni standardi Zadatak. Pomoću MX i čipa, potrebno je realizovati konvertor S- na S-. MX ima raspored pinova kao na slici..,0μf +V +V ULZ V CC T IN T IN OUT IN T OUT 0 9 OUT IN T OUT

Више

АНКЕТА О ИЗБОРУ СТУДИЈСКИХ ГРУПА И МОДУЛА СТУДИЈСКИ ПРОГРАМИ МАСТЕР АКАДЕМСКИХ СТУДИЈА (МАС): А) РАЧУНАРСТВО И АУТОМАТИКА (РиА) и Б) СОФТВЕРСКО ИНЖЕЊЕ

АНКЕТА О ИЗБОРУ СТУДИЈСКИХ ГРУПА И МОДУЛА СТУДИЈСКИ ПРОГРАМИ МАСТЕР АКАДЕМСКИХ СТУДИЈА (МАС): А) РАЧУНАРСТВО И АУТОМАТИКА (РиА) и Б) СОФТВЕРСКО ИНЖЕЊЕ АНКЕТА О ИЗБОРУ СТУДИЈСКИХ ГРУПА И МОДУЛА СТУДИЈСКИ ПРОГРАМИ МАСТЕР АКАДЕМСКИХ СТУДИЈА (МАС): А) РАЧУНАРСТВО И АУТОМАТИКА (РиА) и Б) СОФТВЕРСКО ИНЖЕЊЕРСТВО И ИНФОРМАЦИОНЕ ТЕХНОЛОГИЈЕ (СИИТ) У циљу бољег

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 1: Увод и историјски развој теорије система UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES Катедра за управљање системима Наставници:

Више

Microsoft Word - Metoda neodredjenih koeficijenata

Microsoft Word - Metoda neodredjenih koeficijenata Metoda eodredjei oeficijeata Pisali ste am da vam ova metoda ije baš ajjasija, u smislu ao izabrati fuciju za artiularo rešeje. Poušaćemo u ovom fajlu da vam a eolio rimera objasimo to. Da se odsetimo:

Више

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt Deformacija opruge: 8FD Gd n f m 4 8Fwn Gd 1 Broj zavojaka opruge Kod pritisnih opruga sa velikim brojem promena opterećenja preporučuje se da se broj zavojaka završava na 0.5, npr..5, 4.5, 5.5... Ukupan

Више

DM

DM CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je

Више

Microsoft Word - Akreditacija 2013

Microsoft Word - Akreditacija 2013 07.10.2017 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Модул: СВИ Година I Од II до IV Семестар I II IV-VIII Лабораторијски практикум - Увод у рачунарство Алгоритми и програмирање Математика 1 Математика

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode] Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska

Више

Microsoft Word - Akreditacija 2013

Microsoft Word - Akreditacija 2013 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Модул: СВИ Година I Од II до IV Семестар I II IV-VII 18.09.2017 Алгоритми и програмирање 19.09.2017 Математика 1 20.09.2017 Математика 2 21.09.2017 Увод у

Више

Microsoft PowerPoint - pred_14.ppt

Microsoft PowerPoint - pred_14.ppt Digitala obraba otiuiraih igala Sigali i utavi atoi o tri oova oraa:. rtvorba vrmi otiuiraog igala u vrmi irta igal. obraba vrmi irtog igala 3. rtvorba obrađog irtog igala u vrmi otiuirai igal - - -.5

Више

Microsoft Word - Smerovi 1996

Microsoft Word - Smerovi 1996 ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 СТАРИ НАСТАВНИ ПЛАН И ПРОГРАМ (1996) Смер: СВИ Филозофија и социологија 20.08.2019 Теорија друштвеног развоја 20.08.2019 Програмирање 20.08.2019 Математика I 21.08.2019

Више

Microsoft Word - Akreditacija 2013

Microsoft Word - Akreditacija 2013 ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Модул: СВИ Година I Од II до IV Семестар I II IV-VII Лабораторијски практикум Физика Лабораторијски практикум - Увод у рачунарство

Више

Satnica.xlsx

Satnica.xlsx САТНИЦА ПОЛАГАЊА ИСПИТА У ИСПИТНОМ РОКУ СЕПТЕМБАР 2018/2019 ПОНЕДЕЉАК 19.08.2019 Објектно оријентисано програмирање 41 2Б-ТЕЛ Методе преноса у телекомуникационим системима 1 2Б-ТЕЛ Моделовање и симулација

Више

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil PRIER 1 Srčuti stv cetričo ztegutog štp, u svemu prem sici. Štp je prvougoog poprečog prese b/h = 14/ cm, optereće je silom Zd = 116 N (stlo + sredjetrjo opt.). Nstv izvesti s dve drvee podvezice debljie

Више

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i

AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i AKVIZICIJA PODATAKA SA UREĐAJEM NI USB-6008 NI USB-6008 je jednostavni višenamjenski uređaj koji se koristi za akviziciju podataka (preko USBa), kao i za generisanje željenih izlaznih signala (slika 1).

Више

Microsoft Word - Akreditacija 2013

Microsoft Word - Akreditacija 2013 ИСПИТНИ РОК: ОКТОБАР 2 2017/2018 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Модул: СВИ Година I Од II до IV Семестар I II IV-VIII Лабораторијски практикум - Алгоритми и програмирање Лабораторијски практикум

Више

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе

Више

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ Испит из Основа рачунарске технике OO - 27/2 (9.6.2.) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећој слици: S Q R Q Асинхрони RS флип флопреализован помоћу НИ

Више

ORGANIZACIJA I TEHNOLOGIJA DRUMSKOG SAOBRAĆAJA

ORGANIZACIJA I TEHNOLOGIJA DRUMSKOG SAOBRAĆAJA ORGANIZACIJA I TEHNOLOGIJA DRUMSKOG SAOBRAĆAJA Peto predavanje VOZNI PARK I NJEGOVA PODJELA, RAD VOZNOG PARKA, VREMENSKI BILANS RADA VOZNOG PARKA, IZMJERITELJI RADA Prof.dr Mirsad Kulović 9. VOZNI PARK

Више

Microsoft PowerPoint - MODELOVANJE-predavanje 9.ppt [Compatibility Mode]

Microsoft PowerPoint - MODELOVANJE-predavanje 9.ppt [Compatibility Mode] MODELONJE I SIMULIJ PROES 9. Rešavanje dinamičkih modela; osnovni pojmovi upravljanja procesima http://elektron.tmf.bg.ac.rs/mod Dr Nikola Nikačević METODE Z REŠNJE LINERNIH DINMIČKIH MODEL 1. remenski

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

ÂÈØÀ ÒÅÕÍÈ×ÊÀ ØÊÎËÀ

ÂÈØÀ ÒÅÕÍÈ×ÊÀ ØÊÎËÀ Инжењерска информатика Производно машинство Безбедност на раду 24.05. 14 00 Техничко цртање и компј.графика 23.05. 14 00 Информатика и рачунарство 22.05. 11 00 Познавање и примена материјала 24.05. 14

Више

у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у

у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у у ве ли кој по све ће но сти је зи ку, сте кла је сво је по бор ни ке ме ђу ком пет е н т н и ји м ч и т а о ц и м а, ш т о не с у м њи в о и м по н у је ов ом п и сц у. Е, с а д, д а л и ћ е С р д и ћ

Више

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач Београд, 30.01.2016. а) одредити дужине извијања свих штапова носача, ако на носач делују само концентрисане силе, б) ако је P = 0.8P cr, и на носач делује расподељено оптерећење f, одредити моменат савијања

Више

Slide 1

Slide 1 Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са

Више

RASPORED

RASPORED Satnica polaganja ispita u Junskom ispitnom roku školske 0/0. godine za period od. do.0.0. godine Datum:.0.0. godine Vreme: 09,00 sati N aziv predm eta Grupa B r. II kolokvijum iz predmeta Mikroračunarski

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

Осень 5 ТЕ Ы ЕРА: 5 Ф о о, о а о а а. а о о ма ког а как о ч м ам а. а - ко м чак а, ч о а а о о м м к ма ог а а. о как м м м м агам ч ко а - га о, ч

Осень 5 ТЕ Ы ЕРА: 5 Ф о о, о а о а а. а о о ма ког а как о ч м ам а. а - ко м чак а, ч о а а о о м м к ма ог а а. о как м м м м агам ч ко а - га о, ч Осень 5 ТЕ Ы ЕРА: 5 Ф о о, о а о а а. а о о ма ког а как о ч м ам а. а - ко м чак а, ч о а а о о м м к ма ог а а. о как м м м м агам ч ко а - га о, ч а а, го о о о о- мо о а о м ам ач м о ч о ч - а. ка

Више

No Slide Title

No Slide Title Pozicion srdnj vrijdnosti Pozicion srdnj vrijdnosti s odrđuju na osnovu mjsta pozicij koju zauzimaju u sriji. MODUS I MEDIJANA Modus j vrijdnost obiljžja koj u posmatranoj sriji ima najvću rkvnciju najčšć

Више

25. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoqno Sarajevo, 14. april ZADACI PRVI RAZRED 1. Na xahovskom tur

25. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoqno Sarajevo, 14. april ZADACI PRVI RAZRED 1. Na xahovskom tur 5. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoo Sarajevo 14. aril 018. ZADACI PRVI RAZRED 1. Na xahovsom turiru odigrao je uuo 100 artija. Dva igraa su austila turir.

Више

Microsoft Word - vodicitm.doc

Microsoft Word - vodicitm.doc Универзитет у Београду Машински факултет ВОДИЧ кроз основне академске студије Информационе технологије у машинству Школска 2019/2020. година Београд, октобар 2019. године Структура студија које се од 1.10.2005.

Више

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних

Више

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли

Више

Betonske i zidane konstrukcije 2

Betonske i zidane konstrukcije 2 5. STTIČKI PRORČUN PLOČE KRKTERISTIČNOG KT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 44 15 4 4 5. Statički proračun ploče karakterističnog kata 5.1. naliza opterećenja Stambeni prostor: 15 4 5, parket

Више

НАСТАВНИ ПЛАН ОДСЕКА ЗА ТЕЛЕКОМУНИКАЦИЈЕ И ИНФОРМАЦИОНЕ ТЕХНОЛОГИЈЕ 2. година 3. семестар Предмет Статус Часови (П + В + Л) Кредити 3.1 Математика 3 O

НАСТАВНИ ПЛАН ОДСЕКА ЗА ТЕЛЕКОМУНИКАЦИЈЕ И ИНФОРМАЦИОНЕ ТЕХНОЛОГИЈЕ 2. година 3. семестар Предмет Статус Часови (П + В + Л) Кредити 3.1 Математика 3 O НАСТАВНИ ПЛАН ОДСЕКА ЗА ТЕЛЕКОМУНИКАЦИЈЕ И ИНФОРМАЦИОНЕ ТЕХНОЛОГИЈЕ 2. година 3. семестар 3.1 Математика 3 O 3+3+0 6 3.2 Теорија електричних кола O 3+2+0 6 3.3 Основи електронике O 3+2+1 6 3.4 Програмирање

Више

Algoritmi i arhitekture DSP I

Algoritmi i arhitekture DSP I Univerzitet u Novom Sadu Fakultet Tehničkih Nauka Katedra za računarsku tehniku i međuračunarske komunikacije Algoritmi i arhitekture DSP I INTERNA ORGANIACIJA DIGITALNOG PROCESORA A OBRADU SIGNALA INTERNA

Више

Microsoft Word - Akreditacija 2008

Microsoft Word - Akreditacija 2008 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2008) Модул: СВИ Година I Од II до IV Семестар I II IV-VII 18.09.2017 Алгоритми и 19.09.2017 Математика I 20.09.2017 Математика II 21.09.2017 Увод у рачунарство

Више

IZMENE I DOPUNE 2

IZMENE I DOPUNE 2 На основу члана 63. став 1. Закона о ЈН (''Службени гласник РС'', бр. 124/12, 14/2015 и 68/15) КОМИСИЈА за јн мв образована Решењем бр. 404-138-4/16-IV сачинила је: ИЗМЕНЕ И ДОПУНЕ КОНКУРСНЕ ДОКУМЕНТАЦИЈЕ

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: ЈУН 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 17.06.2019 Статички електрицитет у технолошким процесима Електронска кола за управљање

Више

Microsoft Word - Master 2013

Microsoft Word - Master 2013 ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 19.08.2019 Електромагнетна компатибилност у електроенергетици Управљање дистрибутивном

Више

Х а л и ло ви ће в а л и т е р а р н а с у г е с т и ја д а смо з а б о р а ви л и д а с е ч у д и мо, а са мим тим за бо ра ви ли да ми сли мо и ства

Х а л и ло ви ће в а л и т е р а р н а с у г е с т и ја д а смо з а б о р а ви л и д а с е ч у д и мо, а са мим тим за бо ра ви ли да ми сли мо и ства Х а л и ло ви ће в а л и т е р а р н а с у г е с т и ја д а смо з а б о р а ви л и д а с е ч у д и мо, а са мим тим за бо ра ви ли да ми сли мо и ства ра мо; за бо ра ви ли да се оду шевља ва мо, опа жа

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

Microsoft PowerPoint - 01 PEK EMT Uvod (2013).ppt [Compatibility Mode]

Microsoft PowerPoint - 01 PEK EMT Uvod (2013).ppt [Compatibility Mode] Projektovanje elektronskih kola Prof. o.dr Predrag Petković, dr Miljana Milić Katedra za elektroniku Elektronski fakultet Niš 8.02.203. Projektovanje elektronskih kola Literatura: V. Litovski Projektovanje

Више

Microsoft Word - oae-09-dom.doc

Microsoft Word - oae-09-dom.doc ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić Osnovi analogne elektronike domaći zadaci - 2009 Osnovi analogne elektronike 3 1. Domaći zadatak 1.1. a) [5] Nacrtati direktno spregnut

Више

ТА ТЈА Н А ЈА Н КО ВИ Ћ ЗА ЕМИ СИ ЈУ РАЗ ГО ВО РИ С ПО ВО ДОМ 204 Мо гу да поч нем? Да? Да кле, пр во на шта по ми слим кад чу јем реч бом бар до ва њ

ТА ТЈА Н А ЈА Н КО ВИ Ћ ЗА ЕМИ СИ ЈУ РАЗ ГО ВО РИ С ПО ВО ДОМ 204 Мо гу да поч нем? Да? Да кле, пр во на шта по ми слим кад чу јем реч бом бар до ва њ ТА ТЈА Н А ЈА Н КО ВИ Ћ ЗА ЕМИ СИ ЈУ РАЗ ГО ВО РИ С ПО ВО ДОМ 204 Мо гу да поч нем? Да? Да кле, пр во на шта по ми слим кад чу јем реч бом бар до ва ње је М и р т а. М и р т а, н а гл а в ној аут о буској

Више

DODATAK-A

DODATAK-A Dodatak - ačuae sa približim broevima. Osovi pomovi Približi bro, e bro koi se ezato razlikue od tače vredosti i koi zameue u račuau. ezultati merea su uvek približi broevi. Međurezultati i rezultati proračua

Више

ma??? - Primer 1 Spregnuta ploca

ma??? - Primer 1 Spregnuta ploca Primer 1 - proračun spregnute ploče na profilisanom limu 1. Karakteristike spregnute ploče Spregnuta ploča je raspona 4 m. Predviđen je jedan privremeni oslonac u polovini raspona ploče u toku građenja.

Више

Algoritmi

Algoritmi Projektovanje algoritama L09.1. Topološko sortiranje Današnje teme Topološko sortiranje Povezanost grafa jako povezane komponente Minimum Spanning Trees (razapinjuće stablo) Lektira: 22. Elementary Graph

Више

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode]

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode] Programski jezik C organizacija izvornog programa Prevođenje Pisanje programa izvorni program Prevođenje programa izvršni program Izvršavanje programa rezultat Faze prevođenja Pretprocesiranje Kompilacija

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

Microsoft Word - PLANIMETRIJA.doc

Microsoft Word - PLANIMETRIJA.doc PLANIMETRIJA Mguglvi Za pravile mguglve sa straica važi: - O ima sa simetrije - Ak je brj straica para je ujed cetral simetriča - Ok svakg pravilg mgugla se mže pisati kružica čiji se cetri pklapaju -

Више

PROGRAM

PROGRAM 2019 PROGRAM AKADEMIJA REGIONALNOGA RAZVOJA I FONDOVA EU 2019. Europska unija Zajedno do fondova EU SADRŽAJ 1. EDUKATIVNE AKTIVNOSTI AKADEMIJE REGIONALNOGA RAZVOJA I FONDOVA EU... 4 MODUL 1: Što su fondovi

Више

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx

Microsoft PowerPoint - Basic_SIREN_Basic_H.pptx Smart Integration of RENewables Regulacija frekvencije korištenjem mikromreža sa spremnicima energije i odzivom potrošnje Hrvoje Bašić Završna diseminacija projekta SIREN FER, 30. studenog 2018. Sadržaj

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vježbe 6. Jedadžbe diferecija Koriste se u opisu diskretog sustava modelom s ulazo-izlazim varijablama. Određivaje odziva sustava svodi se a problem rješavaja jedadžbi diferecija.

Више

PowerPoint Presentation

PowerPoint Presentation Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика

Више

Računalne mreže Osnove informatike s primjenom računala

Računalne mreže Osnove informatike s primjenom računala Računalne mreže Računalne mreže Računalnu mrežu čine komunikacijskim kanalima povezani mrežni uređaji i računala kako bi dijelili informacije i resurse Svaku računalnu mrežu sačinjavaju osnovni elementi:

Више

INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a

INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matematike u industrijskom inženjerstvu, Diskutovati po a, b R i rešiti sistem linearnih jednačina a INDUSTRIJSKO INŽENJERSTVO ISPIT IZ Matmatik u industrijskom inžnjrstvu, 6.9... Diskutovati po a, b R i ršiti sistm linarnih jdnačina b + by = a. Za linarnu funkciju f(,, 3 = 3 3 izračunati minimum i tačku

Више

12-7 Use of the Regression Model for Prediction

12-7  Use of the Regression Model for Prediction P r c e Pojam Aalza treda Sezoska cklča kompoeta Ideks brojev Vremeske serje Pojam Vremeske serje predstavljaju z mjereja jede promjeljve kroz vrjeme. Aalza vremeskh serja astoj da otkrje razumje regularost

Више

promotivni period

promotivni period promotivni period METEOR je fabrika dekorativnih svetiljki i stubova čiji se proizvodi izdvajaju po svojoj funkcionalnosti, dizajnu i kvalitetu. Fabrika, od svog osnivanja 1960. godine, neprekidno unapređuje

Више

Упорна кап која дуби камен

Упорна кап која дуби камен У БЕ О ГРА ДУ, УПР КОС СВЕ МУ, ОБ НО ВЉЕ НЕ ПЕ СНИЧ КЕ НО ВИ НЕ Упор на кап ко ја ду би ка мен Би ло је то са др жај но и гра фич ки јед но од нај бо љих из да ња на ме ње них пре вас ход но по е зи ји

Више

3 SRCE OD SILIKONA Vesna Radusinović

3 SRCE OD SILIKONA Vesna Radusinović 3 SRCE OD SILIKONA Vesna Radusinović 4 5 Copyright 2004 Vesna Radusinović Copyright 2008 ovog izdanja, LAGUNA Ve dra nu i Ma re tu 6 7 E, od le pi ću stvar no! Ova lu da ča mi već tre ći put vra ća je

Више

FIZIČKA ELEKTRONIKA

FIZIČKA ELEKTRONIKA Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA VEŽBE NA RAČUNARU IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar smer EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Strujno-naponske karakteristike

Више

Kontinuirani sustavi

Kontinuirani sustavi Signali i sstavi Aditorn vjžb 8. Kontinirani sstavi Zadatak. Kontinirani sstav zadan j modlom na slici. Odrdit difrncijaln jdnadžb koja opisj ovaj sstav i izračnajt odziv na pobd: (t) U cos(ω t) - x x

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

Microsoft Word - eg_plan_mart2007.doc

Microsoft Word - eg_plan_mart2007.doc 1 Информатор Електротехничког факултета ЕНЕРГЕТИКА С Т А Т У Т 004 и 0004 Информатор Електротехничког факултета НАСТАВНИ ПЛАН ОДСЕКА ЗА ЕНЕРГЕТИКУ СМЕР ЗА ЕЛЕКТРОЕНЕРГЕТСКЕ СИСТЕМЕ (ЕЕС). семестар.1 Математика

Више

З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шт

З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шт З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шта ва, а на ро чи то њи хо во осни ва ње, упра вља ње,

Више

Microsoft PowerPoint - 3 PIK (Ocena uspesnosti).ppt

Microsoft PowerPoint - 3 PIK   (Ocena uspesnosti).ppt Fizičko projektovanje 3. Potpuno projektovanje po narudžbini Sadržaj:. Uvod Stilovi projektovanja 2. CMOS proces 3. Potpuno projektovanje po narudžbini 4. Delimično projektovanje po narudžbini Sadržaj:

Више

IErica_ActsUp_paged.qxd

IErica_ActsUp_paged.qxd Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne

Више

RASPORED

RASPORED PETAK, 08.11.2013. GODINE U 09,00 SATI OPTOELEKTRONSKI KOM. SISTEMI RAČUNARSKI SISTEMI PETAK, 08.11.2013. GODINE U 14,00 SATI ADAPTIVNA OBRADA SIGNALA ADAPTIVNE ANTENE I MIMO SISTEMI AKUSTIKA I PSIHOAKUSTIKA

Више

Betonske i zidane konstrukcije 2

Betonske i zidane konstrukcije 2 7. PROVJERA OSIVOSTI ZIĐA U OSIA I A VERTIKALO OPTEREĆEJE I DJELOVAJE VJETRA PROGRA IZ KOLEGIJA BETOSKE I ZIDAE KOSTRUKCIJE 94 7. Provjra nosivosti ziđa u osima i na vrtialno optrćnj i djlovanj vjtra Slia

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

Prelom broja indd

Prelom broja indd ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 8 СМЕДЕРЕВО, 4. ЈУН 2009. ГОДИНЕ 88. СКУПШТИНА ГРАДА СМЕДЕРЕВА На осно ву чла на 32. став 1. тач ка 6, а у ве зи са чла ном 66. став 3. За ко на о ло кал ној са мо у пра ви

Више