Klasični linearni regresioni model

Величина: px
Почињати приказ од странице:

Download "Klasični linearni regresioni model"

Транскрипт

1 Klasč lear regreso model (KLRM) - jedostav - Zorca Mladeovć Ključe teme Postavka pretpostavke KLRM Svojstva ocea parametara u KLRM Elemet statstčkog zaključvaja u KLRM Predvđaje u KLRM Ekoomsk fakultet, Beograd, 9.

2 Postavka pretpostavke KLRM 3 Formulacja pretpostavke klasčog learog regresoog modela Posmatramo populacou regresou pravu: Y + + e,,,..., Zavsost je leara po postavc modela. Zavsa velča Y predstavljea je zrom: Sstematske kompoete, + Slučaje kompoete, e Nvo Y dekompouje se a determstčk stohastčk deo. 4 Ekoomsk fakultet, Beograd, 9.

3 Formulacja pretpostavke klasčog learog regresoog modela (II) Kako Y zavs od slučaje greške potreo je defsat pretpostavke kojma se opsuju svojstva slučaje greške e. Uvod se ukupo 5 pretpostavk. Počet model zajedo sa pretpostavkama č klasč lear regreso model Često se dodaje prdev jedostav, jer je polaz model jedostav regreso model. 5 Pretpostavke jedostavog KLRM (I) Red roj pretpostavke.. 3. Formulacja Očekvaa vredost slučaje greške je ula Slučaje greške su homoskedastče, odoso poseduju stu varjasu Slučaje greške su međusoo ekorelsae Zaps E( e ) v( e ) E( e ) cov( e, e ) E( e e ). za svako za svako za svako, j koj su razlčt. j j 6 Ekoomsk fakultet, Beograd, 9. 3

4 Pretpostavke jedostavog KLRM (II) Red roj pretpostavke Formulacja Slučaja greška ma ormalu raspodelu Ojašjavajuća promeljva je slučaja promeljva, već poseduje determstčku prrodu Zaps : N(, ) e cov(, e ) za svako za svako 7 Detaljje o svakoj od pretpostavk KLRM Smsao mplkacje pretpostavke. Šta ako je pretpostavka arušea? 8 Ekoomsk fakultet, Beograd, 9. 4

5 Pretpostavka : Očekvaa vredost slučaje greške je ula Implkacja: U proseku slučaja greška e utče a vo zavse promeljve E ( e ) E( Y ) + Ako je pretpostavka arušea: Meja se počet smsao sloodog člaa: E( e ) k cost. e k + u Y Y + + e ( + k) + + u sl.cla 9 Pretpostavka : Varjasa slučaje greške je stala Slučaje greške su homoskedastče Implkacje:. Svaka slučaja greška ma stu varjasu ezavso od vredost ojašjavajuće promeljve: v( e ) v( e )... v( e ) cost.. Varjasa zavse promeljve odgovara varjas slučaje greške v( e ) v( Y ) E Y E( Y ) E e ( ) ( ). Ekoomsk fakultet, Beograd, 9. 5

6 Pretpostavka : Varjasa slučaje greške je stala Slučaje greške su homoskedastče Ako je pretpostavka arušea: Varjase slučajh grešk razlkuju se po pojedm opservacjama: v( e ) v( e ) v( e ) Slučaje greške su heteroskedastče Heteroskedastčost se često javlja u podacma preseka.... Pretpostavka : Lev grafk: homoskedastčost Des grafk: heteroskedastčost Ekoomsk fakultet, Beograd, 9. 6

7 Pretpostavka 3: Slučaje greške su međusoo ekorelsae Odsustvo autokorelacje Implkacje: Slučaje greške su ekorelsae Cov (e, e j ) za j Nema pravlost u korelacooj struktur slučajh grešk Pretpostavka se vezuje za podatke vremeskh serja. Elemet za slučajh grešaka su uređe u odosu a vreme: Cov (e t, e t-j ) za j,,... Medjusoa povezaost se opsuje termom autokorelacja. Po ovoj pretpostavc autokorelacja je ula. 3 Pretpostavka 3: Slučaje greške su međusoo ekorelsae Odsustvo autokorelacje Ako je pretpostavka arušea: Postoj autokorelacja Slučaje greške su korelsae Cov (e, e j ) za j slede prepozatljv orazac u kretaju U podacma vremeskh serja: Slučaje greške koje su uređee tokom vremea su korelsae Uočajea ozaka: Cov (e t, e t-j ) za j,,... 4 Ekoomsk fakultet, Beograd, 9. 7

8 Pretpostavka 3 (Odsustvo autokorelacje, poztva egatva autokorelacja) 5 Pretpostavka 4: Slučaja greška poseduje ormalu raspodelu Implkacje:. Slučaja greška ouhvata utcaj velkog roja međusoo ezavsh epredvdljvh utcaja.. Cetrala grača teorema: zr velkog roja takvh člaca aproksmra se ormalom raspodelom 3. Parametr ormale raspodele: Sredja vredost je ula (. pretpostavka) Varjasa je (. pretpostavka) Zaps: e : N, ( ) 6 Ekoomsk fakultet, Beograd, 9. 8

9 Pretpostavka 4: Slučaja greška poseduje ormalu raspodelu Implkacje: Zavsa promeljva takodje poseduje ormalu raspodelu Parametr ormale raspodele Y Sredja vredost je + Varjasa je E( e ) E(Y ) E( + + e ) +. v( e ) e : N(, ) Y v(y ) E Y : N( +, ). ( E( Y )) v(y ) E( + + e ) E( e ). 7 Pretpostavke.,. 4. Grafčk prkaz 8 Ekoomsk fakultet, Beograd, 9. 9

10 Pretpostavka 4: Slučaja greška poseduje ormalu raspodelu Ako je pretpostavka arušea: Slučaja greška ema ormalu raspodelu. To je ajčešće posledca pogreše postavke modela. O tome kasje. 9 Pretpostavka 5: Ojašjavajuća promeljva je determstčka Implkacje: Ojašjavajuća promeljva ma karakter egzogee velče. Ta velča je defsaa uutar ekoomskog segmeta kojem prpada zavsa promeljva. Ojašjavajuća promeljva je korelsaa sa slučajom greškom. Ako je pretpostavka arušea: Ojašjavajuća promeljva je slučaja promeljva korelsaa je sa slučajom greškom Defsaa je uutar sstema: edogea velča, kao zavsa, jer je pod utcajem ste slučaje greške. Meja se smsao ocee aga. Ekoomsk fakultet, Beograd, 9.

11 Ekoomsk fakultet, Beograd, 9. Implkacja avedeh pretpostavk a ocee parametara po metodu ONK Ocea je leara fukcja slučaje promeljve Y Posledce: Ocea je slučaja promeljva Ocea ma ormalu raspodelu. ( )( ) ( ) ( ) ( ) ( ) ( ) + x x w, w Y Y Y Y ),, N( : ),Y, N( : e Svojstva ocea dojeh prmeom metoda ONK u KLRM Karakterstke ocea parametara Kako se mer varjasa ocea parametara?

12 Svojstva ocea koje su dojee prmeom metoda ONK Ako su zadovoljee pretpostavke KLRM tada se prmeom metoda ONK dojaju - ajolje - leare - eprstrase ocee (NLNO) koje su - kozstete. Bt dokaz se zvode a tal. 3 Kako mermo preczost ocea? Svak drug uzorak daje ove ocee parametara. Ako se sa promeom uzorka ocee malo razlkuju, oda oe maju malu varjasu orato. Preczost ocee se mer a osovu ocee varjase ocea. Kvadrat kore z ocee varjase je stadarda greška ocee. Da se zračuale stadarde greške ocea potreo je prethodo ocet varjaltet slučaje greške modela. U ptaju je ocea parametra. 4 Ekoomsk fakultet, Beograd, 9.

13 Ocea varjase slučaje greške modela Varjasa slučaje greške e je: v(e ) E[(e )-E(e )] odoso: v(e ) E(e ) Ako slučaje greške le pozate tada oceu varjase dol a sledeć ač: s e Međutm, e zamo vredost e. Al, pozate su am vredost rezduala e : s e Ova ocea je prstrasa ocea parametra. 5 Ocea varjase slučaje greške modela (II) Neprstrasa ocea je: s e gde je rezduala suma kvadrata uzorka. e je om Kvadrat kore, s, je stadarda greška regresje, odoso stadarda devjacja rezduala. Sada možemo da aalzramo ocee varjas ocea parametara. Ozake za ocee varjas: s s 6 Ekoomsk fakultet, Beograd, 9. 3

14 Ocee varjas ocea parametara v( ) E ( E( ))... + ( ) v( ) E E( )... x x vˆ( ) s s + s s + x x s vˆ( ) s s s x x 7 Stadarde greške ocea parametara zavse od sledećh faktora:. Varjaltet modela (s l s). Što je već varjaltet modela, to je već stepe raspršeost slučaje greške modela, a tme već varjaltet zavse promeljve Y. Rezultat: eprecze ocee parametara.. Suma kvadrata odstupaja od artmetčke srede. U ptaju je mera varjalteta ojašjavajuće promeljve. Veća vredost ove sume utče a povećaje preczost ocea, odoso a pad jhovog varjalteta. 3. Om uzorka. Javlja se eksplcto u meocu formule za stadardu grešku sloodog člaa mplcto u meocu formule za oe ocee kroz zr kvadrata odstupaja od artmetčke srede. Već om uzorka pruža vše formacja. Tme se smajuje varjaltet ocea parametara. 4. Stadarda greška ocee sloodog člaa zavs od artmetčke srede podataka za. Podac su udaljej od y-ose što je vredost ove artmetčke srede veća. Rezultat: epreczja ocea sloodog člaa. 8 Ekoomsk fakultet, Beograd, 9. 4

15 Šta se dešava ako je suma relatvo velka? ( ) relatvo mala l Y Y Y Y 9 Prmer: zračuavaje odgovarajućh stadardh grešaka ocea u jedostavom modelu Prethodo je ocejea zavsost potrošje od dohotka z 5 goda: 5 x y x Y R e Ŷ y e y x (. 686) Ekoomsk fakultet, Beograd, 9. 5

16 Prmer: zračuavaje odgovarajućh stadardh grešaka ocea u jedostavom modelu (II) Ocea varjase slučaje greške modela: s e Ocea varjase ocee aga: s s s x Ocea varjase ocee sloodog člaa: 64.6 s s s x 3 Fal zaps modela Uočajeo se sv doje rezultat zapsuju a sledeć ač: Ŷ R. 93 ( ) (. 53) Ispod ocea parametara avode se redom odgovarajuće stadarde greške ocea. Deso od ocejeog modela daje se vredost koefcjeta determacje. Model je sprema za statstčku aalzu testraja hpoteza. 3 Ekoomsk fakultet, Beograd, 9. 6

17 Elemet statstčkog zaključvaja u KLRM 33 Statstčko zaključvaje u KLRM Testraje hpoteza o vredostma parametara KLRM Formraje tervalh ocea parametara KLRM Progozraje udućh vredost zavse promeljve 34 Ekoomsk fakultet, Beograd, 9. 7

18 Testraje hpoteze: osov elemet Iteresuje as da l parametar aga uzma tačo određeu vredost. Postavljamo dve hpoteze: ultu (ozaka H ) alteratvu hpotezu (ozaka H ). Nulta hpoteza je skaz čju valjaost sptujemo, odoso testramo. Alteratva hpoteza ouhvata sva alteratva tvrđeja. Na prmer, teresuje as da l se zavsa promeljva meja u stom omu kao ojašjavajuća, odoso da l je jedako. Korstmo sledeću otacju: H : H : 35 Kako ostvart dskrmacju zmeđu hpoteza? Raspodela verovatoće ocea dojeh metodom ONK Ocee koje su dojee prmeom metoda ONK su same ormalo raspodeljee: e : N(, Y : N( +, ) : N(,v( )) ) : N(,v( )) 36 Ekoomsk fakultet, Beograd, 9. 8

19 Raspodela verovatoće ocea dojeh metodom ONK (II) Stadardzovajem slučajh promeljvh dojamo: v ( ) : N (, ) v ( ) : N(, ) Međutm, varjase ocea v( ) v() su su epozate velče. Ako h zamemo odgovarajućm oceama, tada dojamo slučaje promeljve sa t-raspodelom (zvod se a tal) : t : t s s 37 Testraje hpoteza: algortam Posmatramo model olka: Y + + e,,,..., Testramo valdost hpoteze: H : * protv H : * Korac u postupku testraja:. Ocejujemo:,, s( ) s() a pozat ač.. Račuamo test-statstku korsteć sledeću formulu: * t : t s( ) gde je * vredost u uslovma važeja ulte hpoteze. 38 Ekoomsk fakultet, Beograd, 9. 9

20 Testraje hpoteza: algortam (II) 3. Sastav deo testraja hpoteze je zor voa začajost, koj se često ozačava sa. To je verovatoća odacvaja ulte hpoteze u stuacj kada je oa tača. Uočajeo se korst vo začajost 5%. Nvo začajost određuje velču olast prhvataja, odoso eprhvataja valdost ulte hpoteze. Olast odacvaja ulte hpoteze je krtča olast testa. 39 Testraje hpoteza: algortam (III) 4. Defšemo pravlo odlučvaja: krterjum po kojem odacujemo ultu hpotezu. * * Ho : * : t P t ( / ) t ( / ) s s *.5, P t (.5) t (.5).95. s f(x).5% Krtca olast 95% Olast prhvataja Ho.5% Krtca olast 4 Ekoomsk fakultet, Beograd, 9.

21 Testraje hpoteza: algortam (IV) * s H ( t (.5)) prhvatamo kao tacu hpotezu * s H ( t (.5)) odacujemo kao etacu hpotezu uz vo zacajost 5% Alteratva otacja H * t s (.5) odacujemo kao etacu uz vo zacajost 5% 4 Testraje hpoteza: algortam (V) 5. Sprovodmo testraje: Ako zračuata test-statstka lež u olast prhvataja ulte hpoteze, tada se ulta hpoteza e odacuje. Orato, ako zračuata test-statstka prpada krtčoj olast testa, tada ultu hpotezu odacujemo za dat vo začajost. 4 Ekoomsk fakultet, Beograd, 9.

22 Prmer testraja hpoteza Podsećamo a oceu modela: Ŷ R. 93 ( ) (. 53) Testramo valjaost ulte hpoteze H : protv alteratve H :. Potrea am je krtča vredost t raspodele za 5-3 stepe sloode vo začajost 5%. Buduć da je test dvostra da je ukupa velča krtče olast 5%, korstmo sledeću otacju: t 3 (.5) l t 3 (.5%) Talce: t 3 (.5).6 43 Određvaje krtče olast testa f(x).5% krtca olast.5% krtca olast Ekoomsk fakultet, Beograd, 9.

23 Hpoteze: H : H : Testraje hpoteze Izračuata test-statstka: *.686 t 5.9 s.53 Kako je odacujemo hpotezu H a datom vou začajost. Ne možemo smatrat da je margala skloost a potrošj jedaka vredost jeda. 45 Testraje drugh hpoteza Može as teresovat sledeće: H : l H :. H : H : H : H : 46 Ekoomsk fakultet, Beograd, 9. 3

24 Specjal tp hpoteze: t-odos Opšt olk testa koj smo korstl je: * t s Pretpostavmo da as teresuje H : protv H :. Ako je tača ulta hpoteza, tada ojašjavajuća promeljva e utče a kretaje zavse promeljve. Tme proveravamo opravdaost postavke modela. 47 Specjal tp hpoteze: t-odos (II) Test-statstka se azva t-odos, zato što za test-statstka postaje odos ocee odgovarajuće stadarde greške ocee: t s s.686 t.94, H : prhvata se kao taco. Zaključak: dohodak () ostvaruje statstčk začaja utcaj a potrošju (Y). 48 Ekoomsk fakultet, Beograd, 9. 4

25 Specjal tp hpoteze: t-odos (III) Opravdaost prsustva sloodog člaa proverava se prema shodu testraja sledećh hpoteza: H : protv H : t s 8.7 t.33, H : prhvata se kao taco. Zaključak: u ocejeom modelu potreo je uključt slooda čla. 49 Prmer prmee testraja hpoteza Prethod rezultat: Na osovu mesečh podataka u perodu: jauar 998- decemar 8. goda (3 podatka) oceje je model vredovaja kaptala za stopu prosa akcja kompaje Mcrosoft: ( ) R R.+.6 R R + e, R.33 j f m f Da l je rzk posedovaja ovh akcja jedak opštem tržšom rzku? Da l je ocea sloodog člaa očekvaa? Ekoomsk fakultet, Beograd, 9. 5

26 Prmer prmee testraja hpoteza (II) Dodat rezultat sadrž stadarde greške ocea: (.9 ) (.6) ( ) R R R R e j f. +.6 m f +, R.33 Da l je rzk posedovaja ovh akcja jedak opštem tržšom rzku? Odgovor: da, prema rezultatma testraja. H : β, H : β.6 t.65 s.6 t3 N(,) t3(.5).96 H : β se e odacuje Prmer prmee testraja hpoteza (III) Dodat rezultat: (.9 ) (.6) ( ) R R R R e j f. +.6 m f +, R.33 Da l je slooda čla statstčk začaja? Odgovor: e, prema rezultatma testraja. H : β, H : β. t. s.9 H : β se e odacuje. t3 N(,) t3 (.5).96 Ekoomsk fakultet, Beograd, 9. 6

27 Formraje tervalh ocea parametara Ocee parametara mogu t tačkaste tervale. Do sada smo razmatral samo tačkastu oceu. Itervala ocea parametra predstavlja grace tervala uutar koga očekujemo stvaru vredost parametra uz određeu verovatoću. Korstmo pozat rezultat: P t ( / ) t ( / ) s.5, P t (.5) t (.5).95. s Formraje tervalh ocea parametara (II) Dvoju ejedakost rešavamo u fukcj od epozatog parametra: ( ).5, P t (.5) s + t (.5) s.95. Itervala ocea parametra aga sa verovatoćom 95%: ( t s ) (.5) Itervala ocea parametra sloodog člaa sa verovatoćom 95%: (.5) t s ( ) Ekoomsk fakultet, Beograd, 9. 7

28 Prmer orazovaja tervalh ocea epozath parametara Rezultat prethodog ocejvaja: Ŷ ( ) (. 53) Itervala ocea za Tačkasta ocea Stad. greš. ocee t-krt. Izračuavaje tervale ocee Itervala ocea uz verovatoću 95% Beta ( ) ( ) , Beta ( ) (. 59, 555. ) Ekoomsk fakultet, Beograd, 9. 8

12-7 Use of the Regression Model for Prediction

12-7  Use of the Regression Model for Prediction P r c e Pojam Aalza treda Sezoska cklča kompoeta Ideks brojev Vremeske serje Pojam Vremeske serje predstavljaju z mjereja jede promjeljve kroz vrjeme. Aalza vremeskh serja astoj da otkrje razumje regularost

Више

Univerzitet u Ni²u Prirodno matemati ki fakultet Departman za matematiku Linearni regresioni modeli i problemi njihove primene Master rad Student: Mil

Univerzitet u Ni²u Prirodno matemati ki fakultet Departman za matematiku Linearni regresioni modeli i problemi njihove primene Master rad Student: Mil Uverztet u N²u Prrodo matemat k fakultet Departma za matematku Lear regreso model problem jhove prmee Master rad Studet: Mla Nkol Metor: dr Aleksadar Nast N², oktobar 2014. 2 Sadrºaj Predgovor....................................

Више

SveuĊilište u Rijeci

SveuĊilište u Rijeci Sveučlšte u Rjec Fakultet za meadžmet u turzmu ugostteljstvu SVEUĈILIŠI PREDDIPLOMSKI STUDIJ»Poslova ekoomja u turzmu hoteljerstvu» Prručk z predmeta S T A T I S T I K A Šra kolegja: PST00 ECTS bodov:

Више

Pitanje

Pitanje Mašsk fakultet Nš Ispta ptaja-sstem 50 PREDMET: SIMULACIJE LOGISTIČKIH PROCESA 00/0.. Šta je Smulacja? Smulacja je postupak mtraja operacja stvarh procesa koj se dešavaju u prrod. Blo da su uraďee ručo

Више

Microsoft Word - Repetitorij vjerojatnosti i statistike (verzija 1.8.)

Microsoft Word - Repetitorij vjerojatnosti i statistike (verzija 1.8.) REPETITORIJ VJEROJATNOSTI I STATISTIKE ZA STUDENTE ELEKTROTEHNIKE prpremo: mr.sc. Boja Kovačć, vš predavač erecezraa autorzraa verzja Sadržaj PREDGOVOR... 3. OSNOVE KOMBINATORIKE... 4.. Permutacje kombacje.

Више

KORELISANOST REZULTATA MERENJA

KORELISANOST REZULTATA MERENJA Grđevsk fkultet Osek geoeju geoformtku PROSTIRANJE SLUČAJNIH GREŠAKA U MODELIMA MERENJA Teorj grešk geoetsk merej Verj 00409 Prof r Brko Božć, plgeož SADRŽAJ ZAKONI PRENOSA GREŠAKA MERENJA grešk fukcje

Више

Dean Učkar UDK Jelena Nikolić Izvorni znanstveni rad Original scientific paper SML MODEL I HRVATSKO TRŽIŠTE KAPITALA SML MODEL AND CROATIAN CA

Dean Učkar UDK Jelena Nikolić Izvorni znanstveni rad Original scientific paper SML MODEL I HRVATSKO TRŽIŠTE KAPITALA SML MODEL AND CROATIAN CA Dea Učkar UDK 336.761 Jelea Nkolć Izvor zastve rad Orgal scetfc paper SL ODEL I HRVATSKO TRŽIŠTE KAPITALA SL ODEL AND CROATIAN CAPITAL ARKET ABSTRACT Through ths research the authors tested the possblty

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

Microsoft PowerPoint - FER_nastupno_predavanje_Kopriva

Microsoft PowerPoint - FER_nastupno_predavanje_Kopriva Sadržaj Sljepo razdvajaje sgala aalzom ezavsh kompoeata Što je sljepo razdvajaje sgala: ICA vs. PCA ear statčk problem Ivca Koprva ear damčk problem 9. studeog 007. Kjge, Web strace, J. V. Stoe, Idepedet

Више

PowerPoint Presentation

PowerPoint Presentation Strojo učeje 4 II do Lear model omslav Šmuc PMF, Zagreb, 03 7//3 S: Strojo učeje Leare metode Regresja Osov pojmov Ulaz vetor varjabl egl. attrbutes, features: =,,, d Broj ulazh varjabl: d Izlaza l clja

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

Zadci za I razred za sve smerove

Zadci za I razred za sve smerove Zdc I rred sve smerove Isptt d l je tutologj sledeć sk formul p q p q Odredt proporcje Šest uček ured školsko dvoršte d Z kolko d uček vršlo st poso? U l lkoholog pć m l vode Kolko u stom pću m procet

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vježbe 6. Jedadžbe diferecija Koriste se u opisu diskretog sustava modelom s ulazo-izlazim varijablama. Određivaje odziva sustava svodi se a problem rješavaja jedadžbi diferecija.

Више

Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode] Oseg u kome se alazi vredost odziva aziva se toleracia odziva F < F < F i 2... m i i i F i Fi Doa toleracia odziva Gora toleracia odziva Izračuavae toleracia i Fi Fi < 0 za Fi > 0 Doi rirašta odziva Δ

Више

DM

DM CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je

Више

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z Osječki matematički list 3 03), -3 Luka Marohić Boja Kovačić Boja Radišić Sažetak U člaku se ajprije za svaki priroda broj pokazuje da poliom π x) = x x ima jedistveu pozitivu realu ultočku ϕ. Zatim se

Више

Microsoft Word PRCE.doc

Microsoft Word PRCE.doc Iva Prce * Domiika Crjac ** Martia Crjac *** POMORSKO OSIGURANJE ISSN 0469-655 (11-16) NEIZVJESNOST PARAMETARA U OSIGURANJU Ucertaity of parameters i isurace policy UDK 519.16 Prethodo priopćeje Prelimiary

Више

314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustavna upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvaren

314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustavna upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvaren 314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustava upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvare je za vrijeme drugoga svjetskog rata, pogotovo u razdoblju

Више

Title

Title . Numerički izovi i redovi Često u svakodevom govoru koristimo termie iz i red, a da pri tome i e razmišljamo o jihovom kokretom začeju. Kada kažemo iz, podrazumijevamo skupiu objekata uredeih po pricipu

Више

Microsoft Word - Trigonometrijski oblik kompleksnog broja.doc

Microsoft Word - Trigonometrijski oblik kompleksnog broja.doc Trgonometrjsk oblk kompleksnog broja Da se podsetmo: Kompleksn broj je oblka je realn deo, je magnarn deo kompleksnog broja, - je magnarna jednca, ( Dva kompleksna broja su jednaka ako je Za broj _ je

Више

MPRA Munich Personal RePEc Archive Product of nation and macroaggregates in constant prices as its real values Rajko Bukvić Geographical Institute Jov

MPRA Munich Personal RePEc Archive Product of nation and macroaggregates in constant prices as its real values Rajko Bukvić Geographical Institute Jov MPA Munch Personal epec Archve Product of naton and macroaggregates n constant prces as ts real values ajko Bukvć Geographcal Insttute Jovan Cvjć Seran Academy of Scences and Arts 2007 Onlne at https://mpra.u.un-muenchen.de/70499/

Више

Planovi prijema za numeričke karakteristike kvaliteta

Planovi prijema za numeričke karakteristike kvaliteta U N I V E Z I T E T U B E O G A D U F A K U L T E T O G A N I Z A C I O N I H N A U K A Kontrola valteta (osnovne aademse studje) Stablnost procesa numerče ontrolne arte 1. U određenm vremensm ntervalma

Више

MergedFile

MergedFile UNIVERZITET U NIŠU GRAĐEVINSKO-ARHITEKTONSKI FAKULTET Nkola M. Velmrovć PROBABILISTIČKA ANALIZA I OPTIMIZACIJA SPREGNUTIH KONSTRUKCIJA TIPA DRVO-BETON DOKTORSKA DISERTACIJA Nš, 07. UNIVERSITY OF NIŠ FACULTY

Више

broj 052_Layout 1

broj 052_Layout 1 18.05.2011. SLU@BENI GLASNIK REPUBLIKE SRPSKE - Broj 52 25 858 На осно ву чла на 18. став 1. За ко на о обра зо ва њу од ра - слих ( Службени гласник Републике Српске, број 59/09) и члана 82. став 2. Закона

Више

1 I N Ž E N J E R S K A M A T E M A T I K A 2 Onaj koji cijeni praksu bez teorijskih osnova sličan je moreplovcu koji ulazi u brod bez krme i busole n

1 I N Ž E N J E R S K A M A T E M A T I K A 2 Onaj koji cijeni praksu bez teorijskih osnova sličan je moreplovcu koji ulazi u brod bez krme i busole n I N Ž E N J E R S K A M A T E M A T I K A Oaj koji cijei praksu bez teorijskih osova sliča je moreplovcu koji ulazi u brod bez krme i busole e zajući kuda se plovi. ( LEONARDO DA VINCI ) P r e d a v a

Више

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i.

MARKOVLJEVI LANCI Prvi kolokvij 28. studenog Zadatak 1. (a) (5 bodova) Za Markovljev lanac (X n ) i njegovo stanje i S neka T (n) i u stanje i. Zadatak. (a) (5 bodova) Za Markovljev lanac (X n ) njegovo stanje S neka T (n) u stanje. Dokaºte da za svak n N vrjed P (T (n) < ) = f n, ozna ava n-to vrjeme povratka pr emu je f := P (T () < ). (Napomena:

Више

Microsoft PowerPoint - SamoorganizirajuceNN_2

Microsoft PowerPoint - SamoorganizirajuceNN_2 Neformaln uvod Samoorganzrajuće neuronske mreže Prof. dr.sc. Bojana Dalbelo-Bašć Marko Čupć, dpl. ng. FER Zagreb Kako uče neuronske mreže? Učenje s učteljem (supervsed learnng) Tpčan prmjer je FF-ANN Backpropagaton

Више

Microsoft Word - 11ms201

Microsoft Word - 11ms201 Zdtk (Sr, gimzij) + + Riješi jeddžu: = 6 4 Rješeje m + m m m =, =, = ( ), =, ( ) = f ( ) g ( ) = f = g + + = 6 = 6 4 4 4 9 9 8 = 6 = 6 = 6 4 6 4 6 4 48 8 8 8 = 6 = 6 = 6 / = 6 = 6 4 8 4 8 4 8 4 4 = 6 (

Више

Paper Title (use style: paper title)

Paper Title (use style: paper title) Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

Microsoft Word Q19-078

Microsoft Word Q19-078 . Naučno-stručn skup sa međunarodnm učešćem QUALIY 209, Neum, B&H, 4-6 jun 209. SEPENI MODEL REGRESIJE: ODREĐIVANJE KOEFICIJENAA MODELA POWER REGRESSION MODEL: PARAMEERS DEERMINAION Alma Žga, Dr. Sc. Anel

Више

Microsoft PowerPoint - jkoren10.ppt

Microsoft PowerPoint - jkoren10.ppt Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni

Више

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka

Popoviciujeva nejednakost IZ NASTAVNE PRAKSE Popoviciujeva nejednakost Radomir Lončarević 1 Rumunjski matematičar Tiberie Popoviciu ( ) doka IZ NASTAVNE PRAKSE Radomir Ločarević Rumujski matematičar Tiberie Popoviciu (906. 975.) dokaao je 965. poatu ejedakost i područja kovekse aalie (vidi [.]), koja ima primjee, medu ostalim, u brojim adatcima

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR

DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, ožujka razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DR DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 8. 30. ožujka 019. 5. razred - rješeja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vežbe 6. Jedadžbe diferecia Koriste se u opisu diskretog sustava modelom s ulazo-izlazim variablama. Određivae odziva sustava svodi se a problem rešavaa edadžbi diferecia. Načie

Више

Microsoft Word - ETF Journal - Maja

Microsoft Word - ETF Journal - Maja PERFORMANSE DUAL-DIVERSITY SISTEMA U USLOVIMA KORELISANIH I NEIDENTIČNIH FEDINGA U GRANAMA Maja Ilć-Delbašć, Mlca Pejanovć-Đuršć Ključne rječ: korelacja,ber, dversty Sažetak: U radu su analzrane BER (Bt

Више

З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шт

З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шт З А К О Н О ПРИВРЕДНИМ ДРУШТВИМА 1 ДЕО ПРВИ 1 ОСНОВНЕ ОДРЕДБЕ ПРЕДМЕТ ЗАКОНА Члан 1. Овим за ко ном уре ђу је се прав ни по ло жај при вред них дру шта ва, а на ро чи то њи хо во осни ва ње, упра вља ње,

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . C. Prva ejedakost ije istiita. Dijeljejem očite ejedakosti 5 > 7 strogo pozitivim 5 7 brojem 7 dobivamo ejedakost > =. 7 7 Druga ejedakost ije istiita. Razlomci i imaju jedake brojike (oi izose 5 7 ),

Више

ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в

ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те в ПРИ ЛОГ 1 1. ЗАХ ТЕ ВИ Прет ход но упа ко ва ни про из во ди из чла на 3. овог пра вил ника про из во де се та ко да ис пу ња ва ју сле де ће зах те ве: 1.1. Сред ња вред ност ствар не ко ли чи не ни је

Више

Slide 1

Slide 1 Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti

Више

Prelom broja indd

Prelom broja indd ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 8 СМЕДЕРЕВО, 4. ЈУН 2009. ГОДИНЕ 88. СКУПШТИНА ГРАДА СМЕДЕРЕВА На осно ву чла на 32. став 1. тач ка 6, а у ве зи са чла ном 66. став 3. За ко на о ло кал ној са мо у пра ви

Више

Microsoft Word LA-Matr-deter-03-sed

Microsoft Word LA-Matr-deter-03-sed III -23- MATRICE Defiicije:. Neka je N k = {,2,.,., k} N, k N, tada svako preslikavaje A: N m xn K, (, m N), () gdje je K običo eko polje, azivamo matricom A formata (ili tipa) (m, ) iz polja K. Tu čijeicu

Више

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања

Више

ELEKTROTEHNIČKI FAKULTET OSIJEK Osnove električnih strojeva

ELEKTROTEHNIČKI FAKULTET OSIJEK Osnove električnih strojeva ELEKTOTEHNIČKI FAKULTET OSIJEK Osove električih strojeva Vježba br 4 ASINKONI MOTO Studet: Grupa: KONSTUKCIJA I NATISNA LOČICA 1 UVOD 1 1 Osovi dijelovi asikroog motora Mehaički: kućište, osovia, ležaji

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број

по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број по пла ве, ко ја је Од лу ком Вла де о уки да њу ван ред не си ту а ци је на де лу те ри то ри је Ре пу бли ке Ср би је ( Слу жбе ни гла сник РС, број 63/14) оста ла на сна зи, осим за оп шти не Ма ли

Више

DIGITALNA OBRADA SIGNALA

DIGITALNA OBRADA SIGNALA DIGITALNA OBRADA GOVORA U MOBILNOJ TELEFONIJI Parametr dgtalnh audo-sgnala Zvuk predstavlja brze promene vazdušnog prtska Ove promene regstrujemo ako su dovoljnog ntenzteta u odgovarajudem frekvencjskom

Више

Microsoft Word - INTEGRALI.doc

Microsoft Word - INTEGRALI.doc INTEGRALI ZADAI (I DEO) Ako je f() eprekid fukcij i F `() f() od je f ( ) d F( ) +, gde je proizvolj kostt. Morte učiti tblicu osovih itegrl:.. d +. d + jčešće se koristi... d. d l + ili d vs e zbui l

Више

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег

Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег новог или подсећања нечег што сте заборавили. Немојте

Више

Prelom broja indd

Prelom broja indd ГРАДА СМЕДЕРЕВА ГОДИНА 2 БРОЈ 12 СМЕДЕРЕВО, 7. АВГУСТ 2009. ГОДИНЕ 189. ГРАДОНАЧЕЛНИК На осно ву чла на 69. став 3. За ко на о бу џет ском си стему ( Слу жбе ни гла сник Ре пу бли ке Ср би је, број 54/2009),

Више

DODATAK-A

DODATAK-A Dodatak - ačuae sa približim broevima. Osovi pomovi Približi bro, e bro koi se ezato razlikue od tače vredosti i koi zameue u račuau. ezultati merea su uvek približi broevi. Međurezultati i rezultati proračua

Више

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil

PRIMER 1 Sračunati nastavak centrično zategnutog štapa, u svemu prema skici. Štap je pravougaonog poprečnog preseka b/h = 14/22 cm, a opterećen je sil PRIER 1 Srčuti stv cetričo ztegutog štp, u svemu prem sici. Štp je prvougoog poprečog prese b/h = 14/ cm, optereće je silom Zd = 116 N (stlo + sredjetrjo opt.). Nstv izvesti s dve drvee podvezice debljie

Више

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/07) i čla na 50. stav 1. ali neja 2. St Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju (Slu žbe ni gla snik RS br 55/04, 70/04 i 101/0 i čla na 50. stav 1. ali neja 2. Sta tu ta ADO «TA KO VO Osi gu ra nje», Kra gu je vac (u

Више

Microsoft Word - ASIMPTOTE FUNKCIJA.doc

Microsoft Word - ASIMPTOTE FUNKCIJA.doc ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Више

Microsoft Word - Metoda neodredjenih koeficijenata

Microsoft Word - Metoda neodredjenih koeficijenata Metoda eodredjei oeficijeata Pisali ste am da vam ova metoda ije baš ajjasija, u smislu ao izabrati fuciju za artiularo rešeje. Poušaćemo u ovom fajlu da vam a eolio rimera objasimo to. Da se odsetimo:

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2.

Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2. Na osno vu čla na 58. stav 2. tač ka 1. Za ko na o osi gu ra nju ( Slu žbe ni gla snik RS br. 55/04, 70/04 i 101/07) i čla na 50. stav 1. aline ja 2. Sta tu ta Ta ko vo osi gu ra nje a. d. o, Kra gu je

Више

BTE14_Bruno_KI

BTE14_Bruno_KI s više procesih jediica F = 100 kg/mi w KClF = 0,2 w vodef = 0,8 =? w KCl =? w vode =? 1 2 1 V =? w vodev =1,0 C =? w KClC = 0,33 w vodec = 0,67 3 B =? w KClB = 0,5 w vodeb = 0,5 P =? w KClP = 0,95 w vodep

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]

Microsoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode] Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa

Више

ISPIT_01_X_2015_R.cdr

ISPIT_01_X_2015_R.cdr P Z GAKE EMJE ZA UEE ZČKE EMJE Predmetni nastavnik: r M.. vanović, docent ME PEZME (BAVEZ ŠAMPAM LVMA) BJ EKA (UKLK E AE ZAAKA AZVJE, BAVEZ E PPA A VAKJ A) APMEE: (0) (+1) (0) (+1) - ZA PAJE ELEMEA U EPJEĆM

Више

Microsoft Word - PLANIMETRIJA.doc

Microsoft Word - PLANIMETRIJA.doc PLANIMETRIJA Mguglvi Za pravile mguglve sa straica važi: - O ima sa simetrije - Ak je brj straica para je ujed cetral simetriča - Ok svakg pravilg mgugla se mže pisati kružica čiji se cetri pklapaju -

Више

Sveučilište u Zagrebu

Sveučilište u Zagrebu SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA SEMINAR Osnovna svojstva kompleksnh mreža njhova prmjena Đan Glavnć 1.02 Vodtelj: Mr.sc. Mle Škć Zagreb, 05, 2007. Sadržaj 1. Uvod...1 2. Uvod

Више

SREDNJA ŠKOLA MATEMATIKA

SREDNJA ŠKOLA MATEMATIKA SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....

Више

IErica_ActsUp_paged.qxd

IErica_ActsUp_paged.qxd Dnevnik šonjavka D`ef Kini Za D`u li, Vi la i Gran ta SEP TEM BAR P o n e d e l j a k Pret po sta vljam da je ma ma bi la a vol ski po no - sna na sa mu se be {to me je na te ra la da pro - {le go di ne

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13

Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I - Glava Dokumentacija III - Iz ra da koju bi lan sa kontroliše uspe ha Poreska i naj češ će inspekcija Sadržaj greš ke Sadržaj 3 Predgovor 13 Glava I 17 DOKUMENTACIJA KOJU KONTROLIŠE PORESKA INSPEKCIJA

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

broj 068_Layout 1

broj 068_Layout 1 2 SLU@BENI GLASNIK REPUBLIKE SRPSKE - Broj 68 7.07.2011. - из кредитних средстава не могу се плаћати: царине, порези и друге накнаде за радове, услуге и робу финансиране по Пројекту и - затезна камата:

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan

Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan realan broj od 0 i 1. Na standardni izlaz ispisati

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut

Studij Ime i prezime Broj bodova MATEMATIKA 2 1. dio, grupa A 1. kolokvij 12. travnja Kolokvij se sastoji od dva dijela koja se pi²u po 55 minut 1. dio, grupa A 1. kolokvij 12. travnja 2019. Kolokvij se sastoji od dva dijela koja se pi²u po 55 minuta. Od pomagala su dopu²teni ravnala, trokuti, kutomjer i ²estar. Svaki zadatak se mora pisati na

Више

Slide 1

Slide 1 Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene

Више

Microsoft Word Potkorica.doc

Microsoft Word Potkorica.doc PREGLEDNI ČLANCI REVIEW PAPERS RADIO-LOCIRANJE MOBILNE STANICE U MREŽAMA TREĆE GENERACIJE Mlan M. Šunjevarć, Insttut za ssteme zasnovane na računarma RT-RK, Nov Sad, Srbja Mladen B. Veletć, Elektrotehnčk

Више

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn

Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobn Seminar peti i ²esti U sljede a dva seminara rije²avamo integrale postavljene u prosturu trostruke integrale. Studenti vjeºbom trebaju razviti sposobnost vizualizacije dijela prostora i skiciranja dvodimenzionalnih

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

G U V E R N E R T U R I S T Ul.Maršala Tita do br.34 ; TUZLA,Bosna i Hercegovina Tel/Fax: ; ; guvernerturis

G U V E R N E R T U R I S T Ul.Maršala Tita do br.34 ; TUZLA,Bosna i Hercegovina Tel/Fax: ; ; guvernerturis HOTEL LABINECA ***GRADAC Hotel Labieca alazi se u Gradcu, popularom turističkom mjestu a jugu Makarske rivijere, pozatom po jedoj od ajdužih šljučaih plaža a Jadrau. Gradac se alazi u blizii 2 međuarode

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

GEOMETRIJSKE KARAKTERISTIKE PRESEKA POPREČNOG PRESEKA GREDE PRIMERI

GEOMETRIJSKE KARAKTERISTIKE PRESEKA POPREČNOG PRESEKA GREDE PRIMERI OM V9 V0 me reme: ndex br: 8.6. EKSCENTRČNO NPREZNJE GREDE EKSCENTRČNO NPREZNJE GREDE PRMER PRMER. Za reseke rkaane na skc, nacrtat jegro reseka. ravougaon resek kružn resek OM V9 V0 me reme: ndex br:

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

Matematiqki fakultet Univerzitet u Beogradu Neki zadaci sa vebi iz Analize 1 Zlatko Lazovi 21. april verzija 2.1 (zadaci sa oznakom * nisu raeni

Matematiqki fakultet Univerzitet u Beogradu Neki zadaci sa vebi iz Analize 1 Zlatko Lazovi 21. april verzija 2.1 (zadaci sa oznakom * nisu raeni Matematiqki fakultet Uiverzitet u Beogradu Neki zadaci sa vebi iz Aalize Zlatko Lazovi april 06 verzija zadaci sa ozakom * isu raei a vebama Sadraj MATEMATIQKA INDUKCIJA NIZOVI 4 Limes iza Svojstva 4 Diferece

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више