Slide 1
|
|
- Cvetana Logar
- пре 5 година
- Прикази:
Транскрипт
1 Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene pojave veličina verovatnoća pojave P Statistička analiza u hidrologiji Veza između veličine i verovatnoće raspodela verovatnoće raspodela verovatnoće veličina verovatnoća pojave P
2 Statistička analiza u hidrologiji Cilj statističke analize: pronaći raspodelu verovatnoće ( model ) koja dovoljno dobro opisuje vezu -P u osmotrenom nizu podataka uz pomoć odabrane raspodele, odrediti: verovatnoću pojave zadatog ekstrema, P() veličinu ekstrema zadate verovatnoće pojave, (P) raspodela verovatnoće veličina ekstrema verovatnoća pojave P Statistička analiza u hidrologiji Rezultati statističke analize koriste se za: projektovanje objekata i sistema za zaštitu od poplava analiza maksimalnih protoka, kiša (analiza velikih voda) analizu raspoloživih količina vode za potrebe svih vidova korišćenja voda (vososnabdevanje, hidroenergetika, navodnjavanje) analiza srednjih godišnjih protoka (analiza srednjih voda) analizu dugotrajnih sušnih perioda za potrebe vodosnabdevanja ili poljoprivrede analiza minimalnih protoka, maksimalnih beskišnih perioda (analiza malih voda) analize kvaliteta voda i garantovanih ekoloških protoka analiza minimalnih protoka (analiza malih voda)
3 Osnovni pojmovi iz verovatnoće Slučajna promenljiva veličina koja se ponaša po nekom zakonu verovatnoće, tj. uzima određene vrednosti sa nekom verovatnoćom Ishodi ili realizacije vrednosti koje uzima slučajna promenljiva Skup svih mogućih ishoda oblast definisanosti slučajne promenljive Slučajni događaj podskup skupa svih mogućih ishoda Osnovni pojmovi Primer: Visina kiše kao slučajna promenljiva Skup svih mogućih ishoda: < Skup svih mogućih ishoda 4 5 6
4 Osnovni pojmovi Primer: Visina kiše kao slučajna promenljiva Skup svih mogućih ishoda: < Ishodi ili realizacije (osmatranja): 5 mm Jedan ishod Osnovni pojmovi Primer: Visina kiše kao slučajna promenljiva Skup svih mogućih ishoda: < Ishodi ili realizacije (osmatranja): 5 mm Slučajni događaj: > mm Doga đaj > 4 5 6
5 Osnovni pojmovi Primer: Visina kiše kao slučajna promenljiva Skup svih mogućih ishoda: < Ishodi ili realizacije (osmatranja): 5 mm Slučajni događaj: > mm, mm Doga đaj < Osnovni pojmovi Primer: Visina kiše kao slučajna promenljiva Skup svih mogućih ishoda: < Ishodi ili realizacije (osmatranja): 5 mm Slučajni događaj: > mm, mm, 6 mm Događaj < <
6 Osnovni pojmovi Slučajne promenljive: prekidne ili diskretne: skup svih mogućih ishoda skup celih brojeva broj dana u godini sa kišom većom od mm broj dana u godini sa temperaturom ispod o C broj talasa velikih voda u godini sa maksimalnim protokom većim od neke vrednosti neprekidne ili kontinualne: skup svih mogućih ishoda skup realnih brojeva protok visina kiše nivo vode zapremine talasa velikih voda nivo podzemnih voda Zakon raspodele verovatnoće Ishodi ili realizacije i događaji se dešavaju sa određenom verovatnoćom, prema RASPODELI VEROVATOĆE
7 diskretna slučajna promenljiva } { : i i i i p p p p P p p p p K K diskretna slučajna promenljiva Primer: bacanje novčića bacanje kocke ocena na ispitu.5.5 : G P 6 / 6 6 / 5 6 / 4 6 / 6 / 6 / : :
8 diskretna slučajna promenljiva Grafički prikaz ocena na ispitu verovatnoća ocena na ispitu diskretna slučajna promenljiva Primeri događaja ocena na ispitu verovatnoća da se padne ispit: 5}. verovatnoća da se položi ispit: >5} 6} 6 ili 7 ili 8 ili 9 ili } 6} + 7} + 8} + 9} + } ili 5} 5}..7 verovatnoća za odličnu ocenu:.5 9} 9} + } verovatnoća ocena na ispitu
9 kontinualna slučajna promenljiva Raspodela verovatnoće za kontinualnu slučajnu promenljivu funkcija gustine verovatnoće f() f() F() } f ( u) du funkcija raspodele verovatnoće F() F ( ) } f ( u) du F () F () kontinualna slučajna promenljiva Verovatnoće događaja } F() f() } F() F () F ()
10 kontinualna slučajna promenljiva Verovatnoće događaja > } } F() f() > } F() F () - F ( ) F () kontinualna slučajna promenljiva Verovatnoće događaja < < } < } > } > } < } < } < } F( ) F( ) f() < < } F( ) F( ) F () F ( ) F ( ) - F ( ) F ( )
11 kontinualna slučajna promenljiva Primeri događaja: eksponencijalna raspodela:. f ( ) e F( ) } } F() e, > } F() + e u u e du e < < } F() F() e < < } F() F() e e + e.5 e } + < < } + < < } + > } F ( ) f ( ) Populacija i uzorak uzorak je deo populacije raspodela populacije može biti poznata ili nepoznata (u hidrologiji: nepoznata) na osnovu osobina uzorka zaključujemo o populaciji
12 Populacija i uzorak Populacija verovatnoća Uzorak učestalost (frekvencija), empirijska verovatnoća apsolutna frekvencija: broj podataka u klasi f a < b} F(b) F(a) funkcija raspodele: } F() relativna frekvencija: broj podataka u klasi u odnosu na ukupan broj podataka f* f/ kumulativna relativna frekvencija: broj podataka u odnosu na ukupan broj podataka F* Σ f* empirijska funkcija raspodele (a) Relativne frekvencije f* ( i ) Uzorak Populacija (c) Funkcija gustine raspodele f () D Δ i (b) Kumulativne relativne frekvencije F* ( i ) (d) Funkcija raspodele F () F* ( i ) F* ( i-) f* ( i ) F ( i ) i- i i
13 Empirijska raspodela verovatnoće, F e () Pandan funkciji raspodele F() tj. verovatnoći } koji se određuje na osnovu uzorka kao kumulativna relativna frekvencija: F ( e k ) } k k broj podataka k broj podataka u nizu k k-ti podatak u nizu uređenom u rastući redosled primer ( 5): 5 ) } 6} 5 F e ( k k Empirijska raspodela Kumulativna relativna frekvencija kao empirijska raspodela 4 k k k / min /4 /4 ma } / /4 5/ / /4 4 4 ma 4/4 > ma } ma} sigurno će biti manje od ma tj. nemoguće da bude veće od? ma
14 Empirijska raspodela Korekcija kumulativne relativne frekvencije kao empirijska raspodela 4 k k (k )/ min /4 /4 min } / /4 4/ / /4 4 4 ma 9/4 > min } min} nemoguće je da bude manje od min tj. sigurno će biti veće od? min Empirijska raspodela Kumulativna relativna frekvencija kao empirijska raspodela. F ().9.8 k } k k k } nešto nešto između kompromisna verovatnoća
15 Empirijska raspodela Kompromisna verovatnoća po Hejzenu kao empirijska raspodela 4 k k (k.5) / min.5/4 k.5 k }.5/4.5/ /4 4.5/ / /4 4 4 ma 9.5/4.5.5 min }.5 4 > ma ma 9.5 } } }.5 ma Empirijska raspodela Kompromisna verovatnoća po Vejbulu kao empirijska raspodela 4 k k k / ( + ) min /4 k k } + /4 / /4 5/ / /4 4 4 ma 4/4 min } > ma ma 4 } } }.44 ma
16 Osobine raspodela verovatnoće Momenti raspodele momenti oko koordinatnog početka ' r r f ( ) d momenti oko sredine r r ( ) f ( ) d Osobine raspodela verovatnoće Mere centralne tendencije srednja vrednost težište gustine raspodele: ' f ( ) d f () iz uzorka: i medijana: Me i F( Me) f ( ) d f ( ) d.5 Me f ().5.5 Me
17 Osobine raspodela verovatnoće Mere odstupanja od srednje vrednosti disperzija (varijansa): σ ( ) f ( ) d iz uzorka: S ( i ) i standardna devijacija: S ( i ) i koeficijent varijacije: σ C v S c v f () malo σ veliko σ Osobine raspodela verovatnoće Asimetrija raspodele treći momenat: ( ) f ( ) d koeficijent asimetrije: C s σ f () pozitivna asimetrija C s > negativna asimetrija C s < iz uzorka: cs ( )( ) S i ( ) i
Osnovni pojmovi teorije verovatnoce
Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
ВишеПроцена максималних вредности годишње температуре ваздуха у Бањалуци
Процена екстремних годишњих температура у Бањалуци, Сарајеву и Мостару Највиша дневна температура ваздуха у Бањалуци, Мостару и Сарајеву за период 1960-2011 је приказана у сљедећој табели 1: Табела бр.
ВишеEdicija osnovni udžbenik Osnivač i izdavač edicije Univerzitet u Novom Sadu Poljoprivredni fakultet Trg Dositeja Obradovića br.8, Novi Sad Godina osnivanja 1954. Glavni i odgovorni urednik edicije Dr Nedeljko
ВишеSlide 1
Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti
ВишеZadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):
Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5
ВишеPaper Title (use style: paper title)
Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:
ВишеРЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр
РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања
ВишеUkoliko Vam za bilo koji zadatak treba pomoć, slobodno pozovite. Postoji mogućnost kompletnog kursa, kao i individualnih časova. Zadatke prikupio i ot
Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje. Pokazati da je to preslikavanje linearni operator, naći matricu, sopstvene vrednosti i sopstvene vektore tog operatora. 2. Odrediti vrednost parametra
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
ВишеMere slicnosti
Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti
ВишеRaspodjela i prikaz podataka
Kolegij: ROLP Statistička terminologija I. - raspodjela i prikaz podataka 017. Neki temeljni statistički postupci u znanstvenom istraživanju odabir uzorka prikupljanje podataka određivanje mjerne ljestvice
ВишеТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
ВишеSadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor
Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca
ВишеPowerPoint Presentation
Metode i tehnike utvrđivanja korišćenja proizvodnih kapaciteta Metode i tehnike utvrđivanja korišćenja proizvodnih kapaciteta Sa stanovišta pristupa problemu korišćenja kapaciteta, razlikuju se metode
ВишеПрва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ март године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских
Прва економска школа Београд РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ СТАТИСТИКЕ 9-30. март 019. године ОПШТЕ ИНФОРМАЦИЈЕ И УПУТСТВО ЗА РАД Укупан број такмичарских задатака је 10. Број поена за сваки задатак означен је
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
ВишеMicrosoft PowerPoint - DS-1-16 [Compatibility Mode]
Ekonometrija 1-D Analiza vremenskih serija Predavač: Zorica Mladenović, zorima@eunet.rs, http://avs.ekof.bg.ac.rs kabinet: 414 1 Struktura predmeta Izučavaju se dve oblasti: Analiza vremenskih serija Analiza
ВишеUniverzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljan
Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku PORTFOLIO TEORIJA MASTER RAD Student: Bojana Živković Mentor: Prof. dr Miljana Jovanović Niš, 2019. "Fundamentalni koncept portfolio
ВишеMicrosoft PowerPoint - Hidrologija 4 cas
HIDROMETRIJA Definicija Nauka o metodama i tehnici merenja različitih karakteristika vezanih za vodu u svim njenim vidovima pojavljivanja na zemlji Etimologija starogrčke reči Hidro voda Metria merenje
ВишеВИСОКА ПОЉОПРИВРЕДНО - ПРЕХРАМБЕНА ШКОЛА ВИСОКА ПОЉОПРИВРЕДНО-ПРЕХРАМБЕНА ШКОЛА СТРУКОВНИХ СТУДИЈА Ћирила и Методија 1, Прокупље,
ПОЉОПРИВРЕДНО-ПРЕХРАМБЕНА ШКОЛА ПРОГРАМ НAСТАВЕ ( ЕСПБ) Одсек: Прехрамбена технологија, Сточарство; Година студија: III; Семестар: V; Фонд часова: 2+1; Школска година: 201/201 Недеља 1. 04.1 1 18.1 Редни
Вишеknjiga.dvi
1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............
ВишеMP_Ocena hleba bodovanjem
Izveštaj o rezultatima međulaboratorijskog poređenja Određivanje kvaliteta ocena osnovne vrste pšeničnog hleba sistemom bodovanja Avgust 2013. godine 1 Organizator međulaboratorijskog poređenja: NAUČNI
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеMicrosoft PowerPoint - gaf nis kartiranje rizika od poplava.ppt
Дипломски рад + рад на пракси у ЈВП Србијаводе Ниш = основа за Мастер рад Тема: Картирање ризика од поплава Студент : Јелица Ђурђановић МРГ 28/2009 Скуп студената хидротехнике Београд, 16. 12. 2011.год.
ВишеИнформатика у здравству ПЛАН И ПРОГРАМ ПРЕДМЕТА УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МЕДИЦИНСКИ ФАКУЛТЕТ UNIVERSITY OF KRAGUJEVAC MEDICAL FACULTY ПЛАН И ПРОГРАМ З
УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МЕДИЦИНСКИ ФАКУЛТЕТ UNIVERSITY OF KRAGUJEVAC MEDICAL FACULTY ПЛАН И ПРОГРАМ ЗА ПРЕДМЕТ ИНФОРМАТИКА У ЗДРАВСТВУ ЕСПБ: 3 Предавања: Др Небојша Здравковић, доцент, nzdravkovic@medf.kg.ac.rs
ВишеSTABILNOST SISTEMA
STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja
ВишеРАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр
РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита
ВишеSlide 1
Str. 9 UVOD Predavač: Dr Mirko Savić savicmirko@ef.uns.ac.rs www.ef.uns.ac.rs Dokazano je... Da li vama treba statistika? Top ten najboljih zanimanja (Blic, 6.3.2010.): 1. Aktuari 2. Softverski inženjeri
Више(Microsoft Word - 1. doma\346a zada\346a)
z1 1 Izračunajte z 1 + z, z 1 z, z z 1, z 1 z, z, z z, z z1 1, z, z 1 + z, z 1 z, z 1 z, z z z 1 ako je zadano: 1 i a) z 1 = 1 + i, z = i b) z 1 = 1 i, z = i c) z 1 = i, z = 1 + i d) z 1 = i, z = 1 i e)
ВишеРачунарска интелигенција
Рачунарска интелигенција Генетско програмирање Александар Картељ kartelj@matf.bg.ac.rs Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA KONAČAN RASPORED ISPITA ZA OKTOBARSKI ISPITNI ROK (po datumu) Predmet Odsek P/U Datum Sala Upravljanje kvalitetom dokumentacije UK P 22/09/2007----09:00 RC Informacioni sistemi
ВишеUDK: ELIMINACIJA MALIH I ZAVISNIH EPIZODA PRI IDENTIFIKACIJI DEFICITA DNEVNIH PROTOKA PO METODI KORAKA Vladislava Mihailović 1 Borislava Blag
UDK:551.515.9 ELIMINACIJA MALIH I ZAVISNIH EPIZODA PRI IDENTIFIKACIJI DEFICITA DNEVNIH PROTOKA PO METODI KORAKA Vladislava Mihailović 1 Borislava Blagojević 2 Vesna Đukić 3 Rezime U ovom radu je demonstrirana
ВишеЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br Reg.br šif.del PIB ž.račun tel/faks
ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеMicrosoft Word - Multidisciplinarne obuke _ Satnica
MAŠINSKI FAKULTET BANJA LUKA Multidisciplinarna obuka za nastavnike srednjih škola PRVA GRUPA Mehatronika Pneumatsko upravljanje Rеd. Nаziv Prеdаvаnjе Vјеžbе Čаsоvа Vriјеmе Čаsоvа Vriјеmе dаn, 20.04.2016.,
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA PRELIMINARNI RASPORED ISPITA ZA JANUARSKI ISPITNI ROK 2008. GODINE Predmet Od. P/U Datum Sala Napomena Akcionarstvo i berzansko poslovanje ME U 03.02.2008----10:00 201 Arhitektura
ВишеЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br Reg.br šif.del PIB ž.račun tel/faks
ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs
ВишеЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br Reg.br šif.del PIB ž.račun tel/faks
ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs
ВишеFAKULTET ORGANIZACIONIH NAUKA
FAKULTET ORGANIZACIONIH NAUKA PRELIMINARNI RASPORED ISPITA ZA SEPTEMBARSKI ISPITNI ROK 2008. GODINE Predmet Od. P/U Datum Sal. Napomena Akcionarstvo i berzansko poslovanje ME U 29.08.2008----09:00 Institut
ВишеMicrosoft Word - Raspored ispita Jun.doc
FAKULTET ORGANIZACIONIH NAUKA KONAČAN RASPORED ISPITA ZA JUNSKI ISPITNI ROK 8. GODINE Predmet Od. P/U Datum Sale Napomena Akcionarstvo i berzansko poslovanje ME U 21/06/8---- Arhitektura računara i oper.
ВишеNo Slide Title
Statistika je skup metoda za uređivanje, analiziranje i grafičko prikazivanje podataka. statistika???? Podatak je kvantitativna ili kvalitativna vrijednost kojom je opisano određeno obilježje (svojstvo)
ВишеРЕПУБЛИКА СРПСКА ЈАНУАРА 2019
Опсег нормале јануарске количине падавина 1981-2010 (горе); средња количина 1981-2010* лијево доље, Јан-2019 десно доље *Попуна недостајућих података 1991-1995/1996 референтног периода 1981-2010 извршена
ВишеIzveštaj o rezultatima međulaboratorijskog poređenja Odabranih pokazatelja kvaliteta šećerne repe i šećera 1 Novembar-decambar godine
Izveštaj o rezultatima međulaboratorijskog poređenja Odabranih pokazatelja kvaliteta šećerne repe i šećera 1 Novembar-decambar 2015. godine Organizator međulaboratorijskog poređenja: NAUČNI INSTITUT ZA
ВишеОДРЖИВО КОРИШЋЕЊЕ ПРИРОДНИХ РЕСУРСА: ОБНОВЉИВИ РЕСУРСИ
Индекс експлоатације воде - Water Exploitation Index (WEI) Индекс експлоатације воде - Water Exploitation Index (WEI) је индикатор који представља однос укупне годишње количине обновљивих и захваћених
ВишеMicrosoft Word - VII Ocokoljic M..doc
ГЛАСНИК СРПСКОГ ГЕОГРАФСKОГ ДРУШТВА BULLETIN OF THE SERBIAN GEOGRAPHICAL SOCIETY ГОДИНА 2007. СВЕСКА LXXXVII - Бр. 1 YEAR 2007 TOME LXXXVII - N о 1 Оригиналан научни рад UDC911.2:551.58 (497.111) МИРОСЛАВ
ВишеSlide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 1: Увод и историјски развој теорије система UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES Катедра за управљање системима Наставници:
ВишеMicrosoft Word - os_preko_susa_2011
SUŠA 2011.g. UČENICE: Ema Sorić, Doris Blaslov, Mare Vidaković ŠKOLA: OŠ Valentin Klarin Preko MENTOR : Jasminka Dubravica jdubravi@gmail.com 023/492-498 OŠ VALENTIN KLARIN PREKO Istraživačko pitanje/hipoteza:
ВишеI
DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja
ВишеI
DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja
ВишеIRL201_STAR_sylab_ 2018_19
Detaljni izvedbeni nastavni plan za kolegij: Statistika i analiza znanstvenih podataka Akademska godina: 2018/2019 Studij: Diplomski sveučilišni studiji: Biotehnologija u medicini, Istraživanje i razvoj
ВишеIgre na sreću i patološko kockanje
Igre na sreću i patološko kockanje Osnovni nalazi 2016. godina U izveštaju su prikazani osnovni rezultati istraživanja prisustva patološkog kockanja kod učenika III i IV razreda srednje škole na opštini
ВишеЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br Reg.br šif.del PIB ž.račun tel/faks
ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs
ВишеPowerPoint Presentation
Univerzitet u Beogradu Građevinski fakultet Institut za hidrotehniku i vodno ekološko inženjerstvo URBANA HIDROLOGIJA SWMM - Uvod dr Željko Vasilić, mast.inž.građ. zvasilic@grf.bg.ac.rs Beograd, 15.03.2019.
ВишеMicrosoft PowerPoint - Jaroslav Cerni ppt
Институт за водопривреду Јарослав Черни АД Институт за водопривреду Јарослав Черни, основан 1947. године, водећа је научноистраживачка организација у Србији у области вода. ДЕЛАТНОСТИ Теоријска и примењена
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
ВишеПреовлађујући тип времена: екстремно топло Тср за РС у просеку, 17 што је за 2,7 топлије у односу на средњу вредност Тмакс 22.3 (Чемерно, 3
Преовлађујући тип времена: екстремно топло Тср за РС у просеку, 17 што је за 2,7 топлије у односу на средњу вредност 1951-. Т 22.3 (Чемерно, 31 мај) до 33.2 (Вишеград, 30 мај) Т 1.2 (Калиновик,18 мај )
ВишеTabelarno i grafičko prikazivanje podataka Zadatak 1. Na osnovu podataka o taksi službama u MS Excel-u uraditi sledede zadatke: a) Tabelarno i grafičk
Tabelarno i grafičko prikazivanje podataka Zadatak 1. Na osnovu podataka o taksi službama u MS Excel-u uraditi sledede zadatke: a) Tabelarno i grafički prikazati raspored vožnji prema taksi službi. b)
ВишеI година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 20.06.2019. 9:00 04.07.2019. 9:00 све Основи електротехнике 1 2226 17.06.2019. 9:00 01.07.2019. 13:00 све Програмирање 1 2227 21.06.2019. 9:00 05.07.2019. 9:00 све Основи рачунарске
ВишеI година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 05.09.2019. 9:00 19.09.2019. 9:00 све Основи електротехнике 1 2226 02.09.2019. 9:00 16.09.2019. 9:00 све Програмирање 1 2227 06.09.2019. 9:00 20.09.2019. 9:00 све Основи рачунарске
ВишеI година Назив предмета I термин Вријеме II термин Вријеме Сала Математика : :00 све Основи електротехнике
I година Математика 1 2225 07.02.2019. 9:00 21.02.2019. 9:00 све Основи електротехнике 1 2226 04.02.2019. 9:00 18.02.2019. 9:00 све Програмирање 1 2227 08.02.2019. 9:00 22.02.2019. 9:00 све Основи рачунарске
ВишеI година Назив предмета I термин Вријеме Сала Математика :00 све Основи електротехнике :00 све Програмирање
I година Математика 1 2225 03.10.2019. 15:00 све Основи електротехнике 1 2226 30.09.2019. 15:00 све Програмирање 1 2227 04.10.2019. 15:00 све Основи рачунарске технике 2228 01.10.2019. 15:00 све Социологија
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
ВишеSos.indd
STRUČNI RADOVI IZVAN TEME Krešimir Šoš Vlatko Vučetić Romeo Jozak PRIMJENA SUSTAVA ZA PRAĆENJE SRČANE FREKVENCIJE U NOGOMETU 1. UVOD Nogometna igra za igrača predstavlja svojevrsno opterećenje u fiziološkom
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеMicrosoft Word - Master rad VERZIJA ZA STAMPU
УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ Радослав Божић Примене стратификованог узорка - мастер рад - Нови Сад, 2012 Садржај Предговор...3 1. Увод...4
ВишеUNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš,
UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš, 2015. Sadržaj Uvod... 4 Glava 1 Uvodni pojmovi...
ВишеC E N O V N I K OSNOVNE AKADEMSKE STUDIJE: PRVA GODINA Ekonomija Engleski jezik 1 - Organize Your English Francuski jezik 1 i 2 Lexique Des Affairs pr
C E N O V N I K OSNOVNE AKADEMSKE STUDIJE: PRVA GODINA Ekonomija Engleski jezik 1 - Organize Your English Francuski jezik 1 i 2 Lexique Des Affairs praktikum Matematika 1 Matematika 2 Matematika 2 zbirka
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеGod_Rasp_2015_ xls
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА, НОВИ САД Датум: 14.09.2016, Страна: 1 I I I 1 13 Грађевински материјали и конструкције I 28.01.2016 09.02.2016 31.03.2016 16.06.2016 04.07.2016 01.09.2016 15.09.2016 26.09.2016
ВишеTutoring System for Distance Learning of Java Programming Language
Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеMicrosoft PowerPoint - avs12-17 [Compatibility Mode]
Osobenosti ekonomskih vremenskih serija Zorica Mladenović 1 Ključna svojstva ekonomskih vremenskih serija Postojanje trenda Postojanje sezonskih varijacija Postojanje nestandardnih opservacija: strukturni
ВишеMicrosoft Word - VEROVATNOCA II deo.doc
VEROVATNOĆA - ZADAI (II DEO) Klasična definicija verovatnoće Verovatnoća dogañaja A jednaka je količniku broja povoljnih slučajeva za dogañaj A i broja svih mogućih slučajeva. = m n n je broj svih mogućih
Вишеχ2 test
χ es uporebljava se kada želimo uvrdii odsupaju li dobivene - opažene rekvencije ( o ) od eoreskih ili očekivanih rekvencija uz određene hipoeze ( ). χ es o spada u neparamerijsku saisiku, primjenjiv i
Вишеuntitled
С А Д Р Ж А Ј Предговор...1 I II ОСНОВНИ ПОЈМОВИ И ДЕФИНИЦИЈЕ...3 1. Предмет и метод термодинамике... 3 2. Термодинамички систем... 4 3. Величине (параметри) стања... 6 3.1. Специфична запремина и густина...
ВишеPojačavači
Programiranje u fizici Prirodno-matematički fakultet u Nišu Departman za fiziku dr Dejan S. Aleksić Programiranje u fizici dr Dejan S. Aleksić, vanredni profesor Kabinet 307 (treći sprat), lab. za elektroniku
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеПА-4 Машинско учење-алгоритми машинског учења
ПА-4 Машинско учење-алгоритми машинског учења Машинско учење увод и основни појмови Деф: the desgn and development of algorthms that allow computers to mprove ther performance over tme based on data sensor
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
Вишеmfb_april_2018_res.dvi
Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеРЕПУБЛИКА СРПСКА АПРИЛА 2019
Према расподјели перцентила количине падавина, просјечни тип времена за РС је нормално (мало влажније) 0.69P, просечни индекс падавина 0.64; Просјечна количина падавина 2019.г је 11мм/април, вишегодишњи
ВишеClassroom Expectations
АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеAAA
IZVEŠTAJ BONITETNE IZVRSNOSTI Izdavač: Bisnode d.o.o. Član grupe BISNODE, Stockholm, Švedska PAN-SEED EKSPORT-IMPORT,DRUŠTVO SA OGRANIČENOM ODGOVORNOŠĆU NOVI SAD Izdato dana 27.7.2015 BONITETNI IZVEŠTAJ,
ВишеProgramiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan
Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan realan broj od 0 i 1. Na standardni izlaz ispisati
ВишеМатрична анализа конструкција
. 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на
ВишеZ-16-32
САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПР ИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 3282-736, телефакс:
ВишеЈАНУАР 2019.
Време у мају је било променљиво уз честе и обилне падавине које су изазвале поплаве на северу и западу у периоду од 12. до 15. маја, а у другом делу месеца понегде су се јављале бујичне поплаве на мањим
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеPredavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt
1 BETONSKE KONSTRUKCIJE TEMELJI OBJEKATA Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Temelji objekata 2 1.1. Podela 1.2. Temelji samci 1.3. Temeljne trake 1.4. Temeljne grede
Вишеmfb_jun_2018_res.dvi
Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Смена:... Напомене: Испит траjе 80 минута. Коришћење литературе
ВишеPASCAL UVOD 2 II razred gimnazije
PASCAL UVOD 2 II razred gimnazije Upis-ispis 1. Upis Read(a,b); --u jednom redu Readln(a,b); -- nakon upisa prelazi se u novi red 2. Ispis Write(a,b); -- u jednom redu Writeln(a,b); --nakon ispisa prelazi
Више