Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode]

Величина: px
Почињати приказ од странице:

Download "Microsoft PowerPoint - 07 PEK EMT Optimizacija 2 od 4-Tolerancije (2012).ppt [Compatibility Mode]"

Транскрипт

1 Oseg u kome se alazi vredost odziva aziva se toleracia odziva F < F < F i 2... m i i i F i Fi Doa toleracia odziva Gora toleracia odziva Izračuavae toleracia i Fi Fi < 0 za Fi > 0 Doi rirašta odziva Δ F F - F > 0 za F 0 Gori rirašta odziva i i i i > Oseg u kome se alazi vredost elemeta kola aziva se toleracia arametra < 2... < Oseg u kome se alazi vredost elemeta kola aziva se toleracia arametra Doa toleracia arametra Gora toleracia arametra < 0 za 0 Doi rirašta arametra > - > 0 za > 0 Gori rirašta arametra a a

2 Prostor arametara (za sluča kola sa dva arametra) Odziv rihvatlivosti (za sluča č kola sa slike odzivi i su v iz i P iz ) R 2max Prostor odziva oblast rihvatlivosti ti R 2mi R mi R max za sluča kola sa edim odzivom za sluča kola sa dva odziva Odziv rihvatlivosti (za sluča č kola sa slike odzivi i su v iz i P iz ) Odziv rihvatlivosti (za sluča č kola sa slike odzivi i su v iz i P iz ) R 2max R 2mi R 2max R 2mi R mi R max R mi R max

3 Preslikavae toleracia arametara u toleracie odziva zavisi od:. Načia secifikacie odziva (r. Za amlitudsku karakteristiku: maksimalo rava Čebiševleva i sl.) 2. Strukture kola (r. Ista reosa karakteristika može da se realizue reko lestvičaste mreže i kaskade sa ovratom sregom i sl.) 3. Tehološkog ostuka izrade (r. ista fukcia može da se realizue sa MOS trazistorima ili u biolaro tehologii i sl.) Aaliza toleracia: U koem osegu će se aći odziv za ozate vredosti toleracia arametara Siteza toleracia: Koe toleracie treba da imau arametri da bi se dobio odziv sa želeim toleraciama. Razlikue se izračuavae č toleracia ri malim i velikim riraštaima arametara Izračuavae toleracia ri malim riraštaima arametara zasovao e a ozavau koeficieata osetlivosti. Asoluta arciala toleracia odziva F Asoluta toleracia odziva Prirašta odziva usled romee -tog arametra

4 Izračuavae toleracia ri malim riraštaima arametara zasovao e a ozavau koeficieata osetlivosti. Koi rirašta izabrati? Doi rirašta arametra Relativa arciala toleracia odziva F S F Relativa toleracia odziva S F F F - Gori rirašta arametra Metod aeovolieg slučaa (korer aaliza) Worst Case aalysis Corer aalysis Cil: odrediti aeovolii mogućiodziv; odziv; ako e o u rihvatlivom osegu kolo će dobro da radi i za ostale vredosti arametara Metod aeovolieg slučaa Da bi se dobio aveći gori odziv svi elemeti sume treba da budu ozitivi. > 0... Naveći doi odziv dobiće se ako su svi elemeti sume egativi. <

5 Metod aeovolieg slučaa Da bi se dobio aveći GORNJI odziv uzimau se gori riraštai arametara ako e koeficiet osetlivosti odziva ozitiva i doi riraštai arametara ako e koeficiet osetlivosti odziva egativa Metod aeovolieg slučaa Ako e (δf/δ ) > 0 - Gori rirašta arametra Ako e (δf/δ )<0 0 Doi rirašta arametra F Metod aeovolieg slučaa Metod aeovolieg slučaa Da bi se dobio aveći DONJI odziv uzimau se gori riraštai arametara ako e koeficiet osetlivosti odziva egativa i doi riraštai arametara ako e koeficiet osetlivosti odziva ozitiva Ako e (δf/δ ) < 0 - Gori rirašta arametra Ako e (δf/δ ) > 0 Doi rirašta arametra

6 Metod aeovolieg slučaa Metod aeovolieg slučaa (Primer) _ R o kω R 950Ω R 0Ω _ R 2o kω R 2 920Ω R 2 060Ω _ E o 0V E9.9V E0.5V ΔR -50Ω ΔR 0Ω δuiz/δr -R 2 E/(R +R 2 ) A ΔR -80Ω 60Ω R +R ΔR 2 δuiz/δr 2 E/(R 2 ) 0 A ΔE-0.V ΔE0.5V δuiz/δer 2 /(R +R 2 ) Metod aeovolieg slučaa (Primer) δviz/δr -R E/(R +R ) A < 0 δviz/δr 2 R E/(R +R 2 ) A > 0 δviz/δer 2 /(R +R 2 )0.5 > 0 V Δ iz V ΔR iz V V ΔR iz iz ΔE 035V R R2 E V Δ iz V ΔR iz V V ΔR iz iz ΔE 0 525V. R R2 E V V iz iz V V iz iz + ΔV + ΔV iz iz 535V 4 475V Metod aeovolieg slučaa (Primer) E0V R 2 \R > <

7 Metod aeovolieg slučaa (Primer) E99 V R 2 \R Metod aeovolieg slučaa (Primer) E0.5V E05V R 2 \R > < < < Metod momeata Primeue se kada su statističke vredosti toleracie arametara ozate (sreda vredost stadarda deviacia fukcia rasodele h k ) Metod momeata Sreda vredost μ N i N i Variasa Mera sredeg rastoaa između svakog odatka i ihove srede vredosti edaka e sumi kvadrata odstuaa od srede vredosti σ 2 N 2 ( i μ ) N i

8 Metod momeata Stadarda deviacia σ N N k ( i μ ) 2 Metod momeata Ukoliko vredosti dva arametra ( A i B ) koa određuu odziv eke fukcie isu ezavise već zavise eda od druge kaže se da su međusobo ovezae (korelisae). Meru ihove ovezaosti dae koeficiet korelacie: N ( Ai μ A)( Bi μb ) N i ρ AB σ σ A B Metod momeata Metod momeata Za arametara defiiše se matrica korelacie Bez dokaza avodimo a može da se dokaže da ρ... 2 ρ... 2 R M M M ρ ρ... 2 ρ ρ 2 M ukoliko e x defiisao kao suma t x t a ozate su variase od t i matrica korelacie tada variasa x može da se izračua kao: σ 2 x T σ t Rσ t

9 Metod momeata Kada se ovo rimei a izračuavae riraštaa odziva dobia se Δ F Δ S Δ Δ q σ Δ S σ σ q [ S σ S σ... S σ ] F 2 2 R Sσ S 2σ 2 M Sσ Za razliku od metoda aeovolieg slučaa u kome se retostavla da su averovatie ekstreme vredosti arametara kod metoda momeata retostavla se da e mala verovatoća da arametri imau ekstreme vredosti. (Primeliv i za velike riraštae arametara ako se roširi sabircima koi sadrže izvode višeg reda) Izračuavae toleracia ri velikim riraštaima arametara Metod Mote Carlo Metod Mote Carlo (rimeiv i za male riraštae arametara) Primer: Karakteristike veliki bro aaliza uzimau se slučae vredosti arametara rezultati se sistematizuu (histogram grafički i sl.) abole rikazuu očekivai odziv ri masovo roizvodi

10 Metod Mote Carlo (rimeliv i za male riraštae arametara) Primer: Metod Mote Carlo (rimeliv i za male riraštae arametara) Primer: Metod Mote Carlo (rimeliv i za male riraštae arametara) Primer: Metod Mote Carlo (ako korista za roceu riosa) Primer: Prostor arametara Prostor odziva Prios (bro rihvatlivih odziva)/(ukua bro aaliza)

11 Siteza toleracia Siteza toleracia (za male vredosti toleracia) ; Podedaki utica svih arametara a odziv Odrediti kvadrat (ravougaoik) sa avećom ovršiom uutar rostora odziva F Δ F Aaliza liearih kola u DC domeu Šta treba da zamo? Elemetaro (za otis) Cilevi aalize i siteze toleracia? Osova (za 6) I. Uvod: Šta smo aučili?. Metod aeovolieg slučaa? 2. Mote Karlo aaliza? LEDA - Laboratory for Electroic Desig Automatio htt://leda.elfak.i.ac.yu/ 43 Aaliza liearih kola u DC domeu Šta treba da zamo? Isita itaa a) Toleracia odziva. b) Toleracia arametara. c) Nabroati metode za aalizu toleracia ri malim riraštaima arametara. d) Nabroati metode za aalizu toleracia ri velikim riraštaima arametara. e) Metod momeata. f) Siteza toleracia. LEDA - Laboratory for Electroic Desig Automatio htt://leda.elfak.i.ac.yu/ 44 44

12 Šta treba da zamo? Isita itaa Aaliza liearih kola u DC domeu d) Pridružeo kolo i izraz za koeficiet osetlivosti odziva a romeu g m NGKS (v 2 gg m I )rimeom Telegeove teoreme. e) Pridružeo kolo i izraz za koeficiet osetlivosti odziva a romeu iverze strue zasićea diode rimeom Telegeove teoreme. f) Primea Telegeove teoreme za izračuavae koeficieta osetlivosti odziva a romeu frekvecie. Sledeće edele Algoritmi za otimizaciu LEDA - Laboratory for Electroic Desig Automatio htt://leda.elfak.i.ac.yu/

13 Page: /

Microsoft PowerPoint - 09 PEK EMT Optimizacija 4 od 4-Algoritam (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 09 PEK EMT Optimizacija 4 od 4-Algoritam (2012).ppt [Compatibility Mode] Da s odstimo i i i: Odrditi vrdosti aramtara oa [,... ] o ć garatovati da odziv (x, ima žu vrdost * (x. Mtod: raž miimuma fuci grš E(x,; (orma za vatitativu rocu odstuaa dobiog od žog odziva. E(x, (x,

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vežbe 6. Jedadžbe diferecia Koriste se u opisu diskretog sustava modelom s ulazo-izlazim variablama. Određivae odziva sustava svodi se a problem rešavaa edadžbi diferecia. Načie

Више

DODATAK-A

DODATAK-A Dodatak - ačuae sa približim broevima. Osovi pomovi Približi bro, e bro koi se ezato razlikue od tače vredosti i koi zameue u račuau. ezultati merea su uvek približi broevi. Međurezultati i rezultati proračua

Више

Microsoft Word - MATRICE ZADACI III deo.doc

Microsoft Word - MATRICE ZADACI III deo.doc MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z

Osječki matematički list 13 (2013), 1-13 O nultočkama polinoma oblika x n x 1 Luka Marohnić Bojan Kovačić Bojan Radišić Sažetak U članku se najprije z Osječki matematički list 3 03), -3 Luka Marohić Boja Kovačić Boja Radišić Sažetak U člaku se ajprije za svaki priroda broj pokazuje da poliom π x) = x x ima jedistveu pozitivu realu ultočku ϕ. Zatim se

Више

Matematiqki fakultet Univerzitet u Beogradu Neki zadaci sa vebi iz Analize 1 Zlatko Lazovi 21. april verzija 2.1 (zadaci sa oznakom * nisu raeni

Matematiqki fakultet Univerzitet u Beogradu Neki zadaci sa vebi iz Analize 1 Zlatko Lazovi 21. april verzija 2.1 (zadaci sa oznakom * nisu raeni Matematiqki fakultet Uiverzitet u Beogradu Neki zadaci sa vebi iz Aalize Zlatko Lazovi april 06 verzija zadaci sa ozakom * isu raei a vebama Sadraj MATEMATIQKA INDUKCIJA NIZOVI 4 Limes iza Svojstva 4 Diferece

Више

BTE14_Bruno_KI

BTE14_Bruno_KI s više procesih jediica F = 100 kg/mi w KClF = 0,2 w vodef = 0,8 =? w KCl =? w vode =? 1 2 1 V =? w vodev =1,0 C =? w KClC = 0,33 w vodec = 0,67 3 B =? w KClB = 0,5 w vodeb = 0,5 P =? w KClP = 0,95 w vodep

Више

UNIVERZITET U ZENICI

UNIVERZITET U ZENICI 8 GRUPA A UNIVERZITET U ZENICI MAŠINSKI FAKULTET PISMENI ISPIT IZ MATEMATIKE Riješiti matriču jedačiu: ( A+ B) AX = A, gdje matrice A i B zadovoljavaju: A =, B = y + z Naći tačku simetriču tački M(,-,)

Више

Auditorne vjezbe 6. - Jednadzbe diferencija

Auditorne vjezbe 6. - Jednadzbe diferencija Sigali i sustavi Auditore vježbe 6. Jedadžbe diferecija Koriste se u opisu diskretog sustava modelom s ulazo-izlazim varijablama. Određivaje odziva sustava svodi se a problem rješavaja jedadžbi diferecija.

Више

Microsoft Word - Rakočević prelom 9.doc

Microsoft Word - Rakočević prelom 9.doc UDK 624.73:624.42/.46 Primleo. 5. 2. Proraču sastavleih sloevitih ploča Maria Rakočević Kluče rieči sastavlea sloevita ploča, proraču, aprezae, deformacia, dvostruki trigoometriski red, teoria sloeva M.

Више

Microsoft Word PRCE.doc

Microsoft Word PRCE.doc Iva Prce * Domiika Crjac ** Martia Crjac *** POMORSKO OSIGURANJE ISSN 0469-655 (11-16) NEIZVJESNOST PARAMETARA U OSIGURANJU Ucertaity of parameters i isurace policy UDK 519.16 Prethodo priopćeje Prelimiary

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

XXXVI Simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju PosTel 2018, Beograd, 4. i 5. decembar PROGNOZIRANJE PRIHODA

XXXVI Simpozijum o novim tehnologijama u poštanskom i telekomunikacionom saobraćaju PosTel 2018, Beograd, 4. i 5. decembar PROGNOZIRANJE PRIHODA XXXVI Simozium o ovim ehologiama u ošaskom i elekomuikacioom saobraćau PosTel 218, Beograd, 4. i 5. decembar 218. PROGNOZIRANJE PRIHODA OD POŠTANSKIH USLUGA KORIŠĆENJEM NEURONSKIH MREŽA ZASNOVANIH NA METAHEURISTIKAMA

Више

Microsoft Word - Vjezbe_AEESI_Idio_09_10.doc

Microsoft Word - Vjezbe_AEESI_Idio_09_10.doc 3. sistemu ade 3 gue eletaa: I gua: Temoeletae (TE) oje oivaju 5 % otošje, a ade sa oloviom svoje ue (omiale) sage. Evivaleta stmia aateistie egulatoa (evivaleti oeicijet samoegulacije) je 0. II gua: Hidoeletae

Више

1 I N Ž E N J E R S K A M A T E M A T I K A 2 Onaj koji cijeni praksu bez teorijskih osnova sličan je moreplovcu koji ulazi u brod bez krme i busole n

1 I N Ž E N J E R S K A M A T E M A T I K A 2 Onaj koji cijeni praksu bez teorijskih osnova sličan je moreplovcu koji ulazi u brod bez krme i busole n I N Ž E N J E R S K A M A T E M A T I K A Oaj koji cijei praksu bez teorijskih osova sliča je moreplovcu koji ulazi u brod bez krme i busole e zajući kuda se plovi. ( LEONARDO DA VINCI ) P r e d a v a

Више

Title

Title . Numerički izovi i redovi Često u svakodevom govoru koristimo termie iz i red, a da pri tome i e razmišljamo o jihovom kokretom začeju. Kada kažemo iz, podrazumijevamo skupiu objekata uredeih po pricipu

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . C. Prva ejedakost ije istiita. Dijeljejem očite ejedakosti 5 > 7 strogo pozitivim 5 7 brojem 7 dobivamo ejedakost > =. 7 7 Druga ejedakost ije istiita. Razlomci i imaju jedake brojike (oi izose 5 7 ),

Више

Projektovanje analognih integrisanih kola Projektovanje analognih integrisanih kola Prof. Dr Predrag Petković, Dejan Mirković Katedra za elektroniku E

Projektovanje analognih integrisanih kola Projektovanje analognih integrisanih kola Prof. Dr Predrag Petković, Dejan Mirković Katedra za elektroniku E Projektovanje analognih integrisanih kola Projektovanje analognih integrisanih kola Prof Dr Prerag Petković, Dejan Mirković Katera za elektroniku Elektronski fakultet Niš Saržaj: Uvo Lejaut analognih oula

Више

Kein Folientitel

Kein Folientitel Sigali slie D i jioi parameri Forma slia u boji Sigali idea 3D D sisemi D oolucija Noi Sad 9 sraa Digiala slia je D sigal sa I mogući redosi s S S... SI : jeda ača ili pisel rsa d rasojaje susedi s s s

Више

Microsoft Word - oae-09-dom.doc

Microsoft Word - oae-09-dom.doc ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić Osnovi analogne elektronike domaći zadaci - 2009 Osnovi analogne elektronike 3 1. Domaći zadatak 1.1. a) [5] Nacrtati direktno spregnut

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

Microsoft Word LA-Matr-deter-03-sed

Microsoft Word LA-Matr-deter-03-sed III -23- MATRICE Defiicije:. Neka je N k = {,2,.,., k} N, k N, tada svako preslikavaje A: N m xn K, (, m N), () gdje je K običo eko polje, azivamo matricom A formata (ili tipa) (m, ) iz polja K. Tu čijeicu

Више

DM

DM CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je

Више

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt - Compatibility Mode

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt  -  Compatibility Mode KOROZIJA I ZAŠTITA METALA dr Aleksandar Lj. Bojić Elektrohemijska korozija Kinetika korozionog procesa 1 Korozioni sistem izvan stanja ravnoteže polarizacija Korozija metala: istovremeno odvijanje dve

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustavna upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvaren

314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustavna upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvaren 314 STATISTIČKA KONTROLA KVALITETE - STATISTIKA sustava upotreba tih metoda započela poslije prvoga svjetskog rata. Nagli razvoj tih metoda ostvare je za vrijeme drugoga svjetskog rata, pogotovo u razdoblju

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА

Више

Slide 1

Slide 1 Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene

Више

PowerPoint Presentation

PowerPoint Presentation REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skup R relih brojev zovemo relom fukcijom. Ako je, pritom, oblst defiisosti D eki podskup skup R uređeih -torki relih brojev, kžemo d je f rel

Више

oae_10_dom

oae_10_dom ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić domaći zadaci - 2010 1. Domaći zadatak 1.1. a) [4] Nacrtati direktno spregnut pojačavač (bez upotrebe sprežnih kondenzatora) sa NPN tranzistorima

Више

(Microsoft Word Transport plina sije\350anj I 2019.doc)

(Microsoft Word Transport plina sije\350anj I 2019.doc) 5368-014/19 10.01.2019. Kromatografska analiza PČ Datum uzorkovanja: 03.01.2019. Datum dostave uzorka: 04.01.2019. Datum ispitivanja: 04.01.2019. p=28 bar, t=09:30 h Primjedba: Ev. broj 19 N2 1,606 CO2

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

Microsoft Word - ELEMENTARNE FUNKCIJE.doc

Microsoft Word - ELEMENTARNE FUNKCIJE.doc ELEMENTARNE FUNKCIJE GRAFICI Osov lmtar fukcij su : - Kostat fukcij - Stp fukcij - Ekspocijal fukcij - Logaritamsk fukcij - Trigoomtrijsk fukcij - Ivrz trigoomtrijsk fukcij - Hiprboličk fukcij Elmtarim

Више

25. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoqno Sarajevo, 14. april ZADACI PRVI RAZRED 1. Na xahovskom tur

25. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoqno Sarajevo, 14. april ZADACI PRVI RAZRED 1. Na xahovskom tur 5. REPUBLIQKO TAKMIQE E IZ MATEMATIKE UQENIKA SRED IH XKOLA REPUBLIKE SRPSKE Istoo Sarajevo 14. aril 018. ZADACI PRVI RAZRED 1. Na xahovsom turiru odigrao je uuo 100 artija. Dva igraa su austila turir.

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode]

Microsoft PowerPoint - X i XI termin - odredjivanje redosleda poslova [Compatibility Mode] ODREĐIVANJE REDOSLEDA POSLOVA DŽONSONOV METOD P očetak k k k m in t i1 m a x t i2 ili m in t i3 m a x t i2 R e š e n je tre b a tra žiti n a d ru g i n ač in S vođenje p ro b le m a n x3 n a fik tiv a

Више

(Microsoft Word Transport plina sije\350anj I 2019.doc)

(Microsoft Word Transport plina sije\350anj I 2019.doc) 5368-014/19 10.01.2019. Kromatografska analiza CPS Datum uzorkovanja: 03.01.2019. Datum dostave uzorka: 04.01.2019. Datum ispitivanja: 08.01.2019. p=11 bar, t=08:50 h Primjedba: Ev. broj 28 N2 0,397 CO2

Више

(Microsoft Word Transport plina sije\350anj I 2019.doc)

(Microsoft Word Transport plina sije\350anj I 2019.doc) 5368-014/19 10.01.2019. Kromatografska analiza MRČ Datum uzorkovanja: 04.01.2019. Datum dostave uzorka: 04.01.2019. Datum ispitivanja: 07.01.2019. p=30,50 bar, t=09: h Primjedba: Ev. broj 37 N2 3,767 CO2

Више

JDZZ-Dimovic

JDZZ-Dimovic Upravljaje radioaktivim otpadom u istitucijama zdravstvee zaštite Dr Slavko Dimović Dr Mihajlo Jović Dr Marija Šljivić-Ivaović Dr Vojislav Staić Dr Ivaa Smičiklas Uiverzitet u Beogradu, Istitut za ukleare

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

(Microsoft Word Transport plina sije\350anj I.doc)

(Microsoft Word Transport plina sije\350anj I.doc) 5368-2/17 08.01.2018. Kromatografska analiza MRS Datum uzorkovanja: 03.01.2018. Datum dostave uzorka: 03.01.2018. Datum ispitivanja: 05.01.2018. p=27 bar, t=12:30 h Primjedba: Ev. broj 51 N2 1,044 CO2

Више

Microsoft Word - Metoda neodredjenih koeficijenata

Microsoft Word - Metoda neodredjenih koeficijenata Metoda eodredjei oeficijeata Pisali ste am da vam ova metoda ije baš ajjasija, u smislu ao izabrati fuciju za artiularo rešeje. Poušaćemo u ovom fajlu da vam a eolio rimera objasimo to. Da se odsetimo:

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

(Microsoft Word Transport plina sije\350anj I 2019.doc)

(Microsoft Word Transport plina sije\350anj I 2019.doc) 5368-014/19 10.01.2019. Kromatografska analiza UMS Terminal Datum uzorkovanja: 07.01.2019. Datum dostave uzorka: 07.01.2019. Datum ispitivanja: 08.01.2019. p=45,61 bar, t=08:12 h Primjedba: Ev. broj 44

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о о-телеко у к о о ет " те ет" д е е лект о о

о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о о-телеко у к о о ет  те ет д е е лект о о о о т о ке дел. О е о е о е о т о к, е те о де т о к, е е е о от, о е е теле о, д е е о л о о т т о к о о отелеко у к о о ет " те ет" д е е лект о о по т, л, о е, от е т е е л еет л, пол е о у к ед ол

Више

Попуњава правно лице - предузетник атични број Шифра делатности ПИБ азив ПОТИСЈЕ-ПРЕЦИЗНИ ЛИВ АД едиште АДА,

Попуњава правно лице - предузетник атични број Шифра делатности ПИБ азив ПОТИСЈЕ-ПРЕЦИЗНИ ЛИВ АД едиште АДА, Попуњава правно лице - предузетник атични 0 8 2 0 8 4 0 9 Шифра делатности 2 4 5 2 ПИБ 1 0 1 0 9 2 2 5 1 азив ПОТИСЈЕ-ПРЕЦИЗНИ ЛИВ АД едиште АДА, Молски пут 4 ИЗВЕШТАЈ О ПРОМЕНАМА НА КАПИТАЛУ за период

Више

Microsoft Word - Zagreb-Iblerov trg doc

Microsoft Word - Zagreb-Iblerov trg doc Merno izvešće bro: EMP 107-ZG/2016 Merena u svrhu utvrđivana izloženosti elektromagnetskim polima na područu povećane osetlivosti u Zagrebu, Iblerov trg 7 Dana 15. lipna 2016. u vremenu od 13:50 do 16:00

Више

Matematika kroz igru domino

Matematika kroz igru domino 29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

FIZIČKA ELEKTRONIKA

FIZIČKA ELEKTRONIKA Univerzitet u Nišu Elektronski fakultet PRAKTIKUM ZA VEŽBE NA RAČUNARU IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar smer EKM) Aneta Prijić Miloš Marjanović SPISAK VEŽBI 1. Strujno-naponske karakteristike

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Električna potencijalna energija i potencijal FIZIKA PSS-GRAD 20. prosinca 2017. 19.1 Potencijalna energija W AB = m g h B m g h A = m g Δ h W AB = E p B E p A = Δ E p (a na lo p gi ja onav l s gr janj

Више

DJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk

DJEČJI VRTIĆ TROGIR TROGIR Trogir, Klasa: UP/I /19-01/1 Urbroj Na temelju članka 1a, 20. i 35. stavka 1. podstavk DJEČJI VRTIĆ TROGIR TROGIR Trogir, 24. 04. 2019. Klasa: UP/I-034-01-01/19-01/1 Urbroj. 2184-17-19-1 Na temelju članka 1a, 20. i 35. stavka 1. podstavka 4. Zakona o predškolskom odgoju i obrazovanju (NN

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

Microsoft Word - Prelom Hrasnica 11.doc

Microsoft Word - Prelom Hrasnica 11.doc UDK... Primljeo. 7.. Spektri odgovora za seizmičku procjeu zgrada Mustafa Hrasica Ključe riječi zgrada, seizmička procjea, spektar odgovora, elieari proraču, spektar ubrzaja, pomak Key words buildig, seismic

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

Teorija igara

Teorija igara Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak

Више

Satnica.xlsx

Satnica.xlsx ПОНЕДЕЉАК 24.06.2019 64 46 -РИИ -РИИ -РИИ 50 35 -РИИ 17 РИИ 2 -РИИ Сервисно-оријентисане архитектуре 6 Б-ТЕЛ Оптимални линеарни системи 1 -ЕКМ Нови материјали и технологије 1 -ЕЛК РФ електроника 6 Б-ЕМТ

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

VIK-01 opis

VIK-01 opis Višenamensko interfejsno kolo VIK-01 Višenamensko interfejsno kolo VIK-01 (slika 1) služi za povezivanje različitih senzora: otpornog senzora temperature, mernih traka u mostnoj vezi, termopara i dr. Pored

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Mere slicnosti

Mere slicnosti Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

08 RSA1

08 RSA1 Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем

Више

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode]

Microsoft PowerPoint - 10 PEK EMT Logicka simulacija 1 od 2 (2012).ppt [Compatibility Mode] ij Cilj: Dobiti što više informacija o ponašanju digitalnih kola za što kraće vreme. Metod: - Detaljni talasni oblik signala prikazati samo na nivou logičkih stanja. - Simulirati ponašanje kola samo u

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

1. Odrediti: a) Y parametre kola sa dva para krajeva (označenog isprekidanom linijom) b) Ulaznu admitansu kola sa slike. v I1 2 I2 + Vul(t) V I2

1. Odrediti: a) Y parametre kola sa dva para krajeva (označenog isprekidanom linijom) b) Ulaznu admitansu kola sa slike. v I1 2 I2 + Vul(t) V I2 . Odrediti: a) Y parametre kola a dva para krajeva (označeno iprekidanom linijom) b) laznu admitanu kola a like. v + Vul(t) V 0.5 V V 4 (t) a) y y y y y y y y Ekvivalentno kolo za 0 : - V 0.5 V V=0 0 y

Више

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година

Више

prva.dvi

prva.dvi Univerzitet u Banjoj Luci Elektrotehnički fakultet Katedra za opštu elektrotehniku Laboratorijske vježbe iz predmeta: Osnovi elektrotehnike 2 Prva vježba Simulacija električnih kola Student: Broj indeksa:

Више

12-7 Use of the Regression Model for Prediction

12-7  Use of the Regression Model for Prediction P r c e Pojam Aalza treda Sezoska cklča kompoeta Ideks brojev Vremeske serje Pojam Vremeske serje predstavljaju z mjereja jede promjeljve kroz vrjeme. Aalza vremeskh serja astoj da otkrje razumje regularost

Више

PowerPoint-Präsentation

PowerPoint-Präsentation Nivo zvuka zašto? () Efekat Odnos intenzita zvuka (refernentna vrednost) ntenzitet zvuka [W/m ] Tiični izvor zvuka Dinamički oseg čujnosti uva: - W/m W/m. - - zražavanje veličina intenziteta zvuka sistemom

Више

Satnica.xlsx

Satnica.xlsx ПОНЕДЕЉАК 10.06.19 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 64 А3 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 46 Ч1 2Б Алгоритми и програмирање - КОЛОКВИЈУМ 70 Ч2 2Б Алгоритми и програмирање - КОЛОКВИЈУМ

Више

Page of Попуњава правно лице - предузетник Матични број 0 Шифра делатности ПИБ 00 Назив JAVNO PREDUZEĆE ZAVOD ZA UDŽBENIKE, BEOGRAD Седиште Београд-Стари Град, Обилићев Венац ИЗВЕШТАЈ О ПРОМЕНАМА НА КАПИТАЛУ

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

SREDNJA ŠKOLA MATEMATIKA

SREDNJA ŠKOLA MATEMATIKA SREDNJA ŠKOLA MATEMATIKA UPUTSTVO ZA TAKMIČARE Vrijeme za ra: 0 miuta. Rješeja zaataa eophoo je etaljo obrazložiti. Rješeja oja e buu aržala potreba ivo obrazložeja eće biti razmatraa. Rapojela poea: Zaata....

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM

DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 1oţujka-travnja 011 5 razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA UKOLIKO UĈENIK IMA DRUGAĈIJI POSTUPAK RJEŠAVANJA, ĈLAN POVJERENSTVA DUŢAN JE

Више

75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem

75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem 75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem glasi: Ako dva ravninska poligona imaju jednake površine,

Више