1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

Величина: px
Почињати приказ од странице:

Download "1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan"

Транскрипт

1 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2 + 2a 13 x + 2a 23 y + a 33 = 0 (1) gde je bar jedan od brojeva a 11, a 12 ili a 22 različit od nule. Matrica a 21 a 22 a 23 a 31 a 32 a 33 se naziva velika matrica krive, gde je uzeto a ij = a ji. [ ] a11 a Matrica 12 se naziva mala matrica krive, gde je uzeto a a 21 a ij = a ji. 22 Definišu se i sledeći karakteristični brojevi: A := a 21 a 22 a 23 a 31 a 32 a 33, A 33 := a 11 a 12 a 21 a 22 S := a 11 + a 12. Iako se u odnosu na neki drugi pravougli koordinatni sistem jednačina krive menja i njeni koeficijenti su neki potencijalno drugi brojevi a ij, važiće: a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33, tj. A = A. Isto važi i za brojeve A 33 i S (preciznije: A 33 = A 33 i S = S ). Iz tog razloga se za ove brojeve kaže da su invarijante krive date jednačinom (1). U nastavku ćemo podrazumevati da su sve jednačine i koordinate date u odnosu na neki pravougli koordinatni sistem. 1 Odredjivanje tipa konusnog preseka (1) Ako je A = 0 onda kriva data jednačinom (1) uopšte nije KP (= konusni presek). (2) Ako je A 0 onda: 1. za A 33 = 0 kriva je parabola 2. za A 33 < 0 kriva je hiperbola 3. za A 33 > 0 kriva je kružnica, elipsa ili prazan skup.

2 2 (3) Ako je A 0, A 33 > 0 onda: Ako su S i A istog znaka kriva je prazan skup Ako su S i A različitog znaka kriva je kružnica ili elipsa. (4) Ako je kriva kružnica onda u odnosu na svaki pravougli koordinatni sistem važi: a 11 = a 22, a 12 = 0. Obrnuto, kakav god da je pravougli koordinatni sistem zadat, ako važi a 11 = a 22, a 12 = 0 onda je kriva ili prazan skup ili kružnica. Za konusne preseke se definišu tzv. elementi konusnih preseka: centar, ose, dijametri, asimptote, asimptotski pravci, polare i tangente kako sledi. Primer 1 Šta predstavlja K : 6xy + 8y 2 12x 26y + 1 = 0. 2 Odnos pravih i konusnih preseka Definicija 2.1 Za pravac odred en vektorom {α, β} = 0 se kaže da je asimptotski ako važi: a 11 α 2 + 2a 12 αβ + a 22 β 2 = 0, tj. ako: [ a11 a {α, β} 12 a 21 a 22 ] [ α β ] = [0]. Definicija 2.2 Svaka tačka u odnosu na koju je KP (centralno) simetričan naziva se centar KP-a. Definicija 2.3 Svaka prava u odnosu na koju je KP (osno) simetričan naziva se osa KP-a. Kružnica, elipsa i hiperbola imaju tačno jedan centar. Prava je osa kružnice AKKO prolazi kroz njen centar. Elipsa i hiperbola imaju tačno dve ose. Te dve ose se seku u tom centru i grade prav ugao. Za parabolu ne postoji centar ali postoji tačno jedna osa. Za kružnicu i elipsu ne postoje asimptotski pravci. Za hiperbolu postoje tačno dva asimptotska pravca. Za parabolu postoji tačno jedan asimptotski pravac i to je upravo pravac njene ose. Definicija 2.4 Prave kroz centar KP-a koje su asimptotskog pravca nazivaju se asimptote KP-a. Hiperbola ima tačno dve asimptote (i one odgovaraju onim tačno dva asimptotskim pravcima). Parabola nema asimptote (ali ima jedan asimptotski pravac). Kružnica i elipsa nemaju asimptote (a ni asimptotske pravce). Svaka prava sa bilo kojim KP-om može da ima 2,1 ili nijednu zajedničku tačku. Svaka prava sa bilo kojom algebarskom krivom drugog reda može da ima 2,1, nijednu zajedničku tačku ili, ako ih ima više od 2, onda cela leži na toj krivoj (i ta kriva je onda: prava, par paralelnih pravih ili par pravih koje se seku u jednoj tački).

3 3 Definicija 2.5 Prava koja sa KP-om ima tačno jednu zajedničku tačku a nije asimptotskog pravca naziva se tangenta KP-a. U svakoj tački KP-a može da se postavi tačno jedna tangenta. Ako tačka nije na KP-u onda kroz nju prolazi ili nijedna tangenta tog KP-a (u tom slučaju se kaže da je ta tačka unutar KP-a) ili tačno dve tangente (u tom slučaju se kaže da je ta tačka van KP-a). Prave neasimptotskog pravca a koje nisu tangente KP-a ili nemaju zajedničkih tačaka sa KP-om ili imaju tačno dve zajedničke tačke sa KP-om. Asimptote i KP (preciznije: hiperbola) nemaju zajedničkih tačaka. Prave asimptotskog pravca a koje nisu asimptote imaju tačno jednu zajedničku tačku sa KPom. 3 Utvrd ivanje odnosa prave i KP-a Neka je data prava (p) : { x=x0 + at y=y 0 + bt (t R) kroz tačku {x 0, y 0 } u pravcu vektora {a, b} = 0. Zamenom u jednačinu (1) dobija se jednačina oblika: rt 2 + qt + s = 0 za neke brojeve r, q, s R. Neka je diskriminanta gornjeg polinoma. Prava je tangenta AKKO r 0 i = 0. Prava je asimptotskog pravca AKKO je r = 0. Prava je asimptota AKKO r = 0, q = 0, s 0. Prava seče KP u dve (različite) tačke AKKO r 0, > 0. Ukoliko se parametarske jednačine prave p zapišu koristeći neku drugu njenu tačku i/ili neki drugi njen vektor pravca, i/ili ukoliko se jednačine prave i KP-a posmatraju u odnosu na neki drugi pravougli koordinatni sistem, dobiće se neka jednačina r t 2 + q t + s = 0 i odgovarajuća diskriminanta, gde (r, q, s ) ne mora biti jednako sa (r, q, s), a ni ne mora biti isti broj kao i. Med utim, uvek će važiti jedan te isti slučaj od četiri gore navedenih (tako da se ne može desiti npr. da je prava tangenta gledano iz prve perspektive, a da gledano iz druge ona to nije). 4 Dijametri konusnog preseka Neka je dat neasimptotski pravac vektorom v 0. Ako je l proizvoljna prava paralelna sa v koja seče KP u 2 (različite) tačke A l i B l označimo sa M l središte duži A l B l. Postoji (jedinstvena) prava koja sadrži sva takva središta M l za sve onakve prave l v. Ta prava se naziva dijametar spregnut (konjugovan) sa pravcem odred enim vektorom v.

4 4 Napomena Dijametri se definišu isključivo kao spegnuti sa nekim neasimptotskim pravcem (jer da je onaj v asimptotskog pravca onda ona prava l ili ne bi uopšte imala zajedničkih tačaka sa KP-om ako je asimptota, ili bi imala tačno jednu zajedničku tačku sa KP-om ako nije asimptota, pa u svakom slučaju ni za jednu takvu pravu ne bi bilo moguće posmatrti ono središte M l ). Npomenimo takod e da se dijametar ne poklapa sa skupom svih onih središta M l, već se taj skup sastoji od samo nekih tačaka tog dijametra. (1) Za kružnicu i elipsu važi: prava je dijametar AKKO prolazi kroz centar. Za hiperbolu važi: prava je dijametar AKKO nije asimptotskog pravca i prolazi kroz centar. Za parabolu važi: prava je dijametar AKKO je paralelna sa osom parabole. Dakle svi dijametri parabole su paralelni med usobno i onog jedinstvenog su asimptotskog pravca (ali spregnuti su sa neasimptotskim pravcima ne mešati te dve stvari!). (2) Ako su d 1 i d 2 dva dijametra onda se kaže da je d 1 spregnut (ili konjugovan) sa d 2 ako je d 1 spregnut sa pravcem prave d 2. Važi: d 1 je konjugovan sa d 2 AKKO je d 2 konjugovan sa d 1 (dakle ovo je simetrična relacija). U tom slučaju se kaže da d 1 i d 2 čine par konjugovanih dijametara. Kod parabole uopšte i ne postoje dva dijametra od kojih je jedan spregnut sa onim drugim. Ako su {α 1, β 1 } i {α 2, β 2 } pravci dva konjugovana dijametra onda važi: a 11 α 1 α 2 + a 12 (α 1 β 2 + α 2 β 1 ) + a 22 β 1 β 2 = 0 (3) Kod kružnice važi: 2 dijametra su konjugovana AKKO su med usobno ortogonalni. (4) Kod elipse i hiperbole, od svih parova konjugovanih dijametara tačno je jedan par konjugovanih dijametara koji su usto još i med usobno ortogonalni. Taj par su upravo ose (simetrije). (5) Kod parabole samo je jedan dijametar ortogonalan na pravac sa kojim je spregnut. Taj dijametar je upravo osa parabole. 5 Polare konusnih preseka Definicija 5.1 Za par tačaka (A, B) se kaže da je (harmonijski) konjugovan sa parom tačaka (M, N) ako su A, B, M, N četiri različite kolinearne tačke i ako postoji broj λ( 0) tako da važi AM = λ MB, AN = λ NB. Ovaj poslednji uslov se označava i sa: AM MB = AN NB (ovo ovde nije! deljenje vektora). Kaže se i da je tačka M konjugovana sa tačkom N u odnosu na par (A, B). Ako su M, A, B tri različite kolinearne tačke onda: na pravoj MAB postoji tačka koja je konjugovana sa M u odnosu na (A, B) (i tada je ta tačka jedinstvena) AKKO M nije središte duži AB. Neka je data tačka P koja nije na KP-u. Ako je l proizvoljna prava koja prolazi kroz P koja KP seče u 2 (različite) tačke A l i B l tako da P nije središte duži A l B l, označimo sa Q l onu tačku prave l koja je konjugovana sa P u odnosu na par (A l, B l ). Za Q l se kaže da je (harmonijski) konjugovana sa P u odnosu na dati KP.

5 5 Postoji (jedinstvena) prava koja sadrži sve takve tačke Q l konjugovane sa P u odnosu na dati KP, za sve onakve prave l. Ta prava se naziva polara za pol (ili: sa polom) P. Tačka P je (a šta bi drugo bila nego) pol te polare. Napomenimo da polara samo sadrži (kao svoj podskup) skup svih onih tačaka Q l a ne poklapa se s njim (slična stvar kao i kod dijametara). 6 Nalaženje elemenata konusnih preseka Ako je jednačina KP-a K data koeficijentima: a 21 a 22 a 23, onda : a 31 a 32 a 33 (1) Jednačina tangente u tački {x 0, y 0 } sa tog KP-a je: (a 11 x 0 + a 12 y 0 + a 13 )x + (a 21 x 0 + a 22 y 0 + a 23 )y + (a 31 x 0 + a 32 y 0 + a 33 ) = 0 (2) Jednačina polare sa polom P = {x 0, y 0 } je: (a 11 x 0 + a 12 y 0 + a 13 )x + (a 21 x 0 + a 22 y 0 + a 23 )y + (a 31 x 0 + a 32 y 0 + a 33 ) = 0 (3) Jednačina dijametra konjugovanog sa (neasimptotskim) pravcem odred enim vektorom {α, β} je: (a 11 x + a 12 y + a 13 )α + (a 21 x + a 22 y + a 23 )β = 0 (4) Jednačina asimptote u (asimptotskom) pravcu odred enom vektorom {α, β} je: (a 11 x + a 12 y + a 13 )α + (a 21 x + a 22 y + a 23 )β = 0 (5) Tačka {x 0, y 0 } je centar (simetrije) KP-a AKKO zadovoljava: { a11 x 0 + a 12 y 0 + a 13 = 0 a 21 x 0 + a 22 y 0 + a 23 = 0 (6) Kod elipse i hiperbole pravac {α, β} bilo koje od osa zadovoljava: a 12 β 2 + (a 11 a 22 )αβ a 12 α 2 = 0 (2) Iz ove jednačine se dobiju pravci osa (kao njena nenula rešenja) a ose su upravo dijametri konjugovani s tim pravcima pa im se jednačine nalaze kao u (3). Kod parabole rešenja {α, β} = 0 jednačine (2) daju pravac ose i pravac ortogonalan na nju! Pravac ose parabole (tj. njen asimptotski pravac) je pravac odred en onim od vektora {a 22, a 12 } ili { a 12, a 11 } koji nije {0, 0}. Zato se osa kod parabole nalazi kao onaj dijametar koji je konjugovan sa pravcem odred enim onim vektorom {a 12, a 22 } ili {a 11, a 12 } koji nije {0, 0} (bar jedan od njih nije {0, 0} jer bi u suprotnom bilo a 11 = a 12 = a 22 = 0).

6 6 Zadatak 1 Nad imo ose (ili osu, ukoliko je reč o paraboli) krive (K) : x 2 4xy + 3y 2 + (2/7)y + 2 = 0 Rešenje: Velika matrica ove krive je /7 0 1/7 2. Zato je A = 99/49 0 i A 33 = 1 < 0 pa je K hiperbola i ima 2 ose. Jednačina (2) se svodi na β 2 αβ α 2 = 0. Potražimo njena nenula rešenja. Slučaj α = 0: ovde mora biti β = 0, pa se ne radi o nenula rešenju. Slučaj α 0: Deljenjem sa α 2 se dobija ( β α )2 ( β α ) 1 = 0 tj., β α = ili β α = Dakle za pravce osa možemo uzeti pravce vektora v 1 := {2, 1 + 5} i v 2 := {2, 1 5}. Osa o 1 u pravcu vektora v 1 je (kao dijametar) spregnuta sa pravcem preostale ose o 2, tj. sa pravcem vektora v2 setimo se da su ose med usobno konjugovani dijametri (koji se još seku i pod pravim uglom): (o 1 ) : (x + 2y) 2 + (2x + 3y + 1/7) (1 5) = 0. Analogno se dolazi i do jednačine druge ose: (o 2 ) : (x + 2y) 2 + (2x + 3y + 1/7) (1 + 5) = 0. Zadatak 2 Kriva (K) : y 2 + 5x 2y 9 = 0 je parabola (što se preporučuje da sami utvrdite). Pronad imo jednačinu njene ose. Rešenje: Imamo {a 12, a 22 } = {0, 1} i {a 11, a 12 } = {0, 0} pa je osa parabole K isto što i dijametar spregnut sa {0, 1}. Otuda je njena jednačina: tj. reč je o pravoj datom sa y = 1. 7 Jedna korisna činjenica (0 x + 0 y + 5/2) 0 + (0 x + 1 y 1) 1 = 0 (Korisna) činjenica: Ako su jednačine asimptota hiperbole: onda je jednačina te hiperbole: (l 1 ) : Ax + By + C = 0 i (l 2 ) : ax + by + c = 0 (Ax + By + C)(ax + by + c) = R za neki broj R R. Ovo važi u bilo kom pravouglom koordinatnom sistemu.

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

kolokvijum_resenja.dvi

kolokvijum_resenja.dvi Геометриjа 2 колоквиjум 2019. Димитриjе Шпадиjер 25. jануар 2019. 1. Важи H(,;K,L) ако постоjи права p коjа не садржи тачку и сече праве,,k,l у неким тачкама X,Y,M,N таквим да важи H(X,Y;M,N). Права сече

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

RG_V_05_Transformacije 3D

RG_V_05_Transformacije 3D Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n 4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

Microsoft Word - IZVOD FUNKCIJE.doc

Microsoft Word - IZVOD FUNKCIJE.doc IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p

{ Rexe a Tipovi zadataka za drugi kratki test { 1. Odrediti normalizovanu jednaqinu prave p koja sadri taqku P (2, 1) i qiji je normalni vektor # «n p { Ree a Tipovi adataka a drugi kratki test { Odrediti normaliovanu jednaqinu prave p koja sadri taqku P, i qiji je normalni vektor # «n p =, 4 + 4 + = Odrediti jediniqni vektor pravca prave = i taqku te

Више

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 {

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 { Rokovi iz Matematike za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi Rexiti jednaqinu z 4 + i i+ = MATEMATIKA { septembar 5godine x Odrediti prodor prave p : = y = z kroz ravan

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz

Више

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Geometrija I–smer - deo 4: Krive u ravni

Geometrija I–smer - deo 4: Krive u ravni UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Geometrija I{smer deo 4: Krive u ravni Tijana Xukilovi 3. decembar 2018 Konus Neka su i i s dve prave u prostoru koje se seku u taqki T. Kruni konus sa temenom

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apol

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apol ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 67 91 Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apolonijev problem glasi: Konstruiraj kružnicu koja dodiruje

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 10. mart Pr Prvi razred A kategorija 1. Za prirodan broj n oznaqimo sa x n broj koji se dobije uzastopnim zapisivanjem svih prirodnih brojeva od 1 do n jedan iza drugog (npr. x 14 = 1234567891011121314). Neka je funkcija

Више

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?

Више

PowerPoint Presentation

PowerPoint Presentation Nedjelja 6 - Lekcija Projiciranje Postupci projiciranja Projiciranje je postupak prikazivanja oblika nekog, u opštem slučaju trodimenzionalnog, predmeta dvodimenzionalnim crtežom. Postupci projiciranja

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

СТЕПЕН појам и особине

СТЕПЕН појам и особине СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s

MAT-KOL (Banja Luka) XXIV (2)(2018), DOI: /МК S ISSN (o) ISSN (o) Klasa s MAT-KOL (Banja Luka) XXIV (2)(2018), 141-146 http://www.imvibl.org/dmbl/dmbl.htm DOI: 10.7251/МК1803141S ISSN 0354-6969 (o) ISSN 1986-5828 (o) Klasa subtangentnih funkcija i klasa subnormalnih krivulja

Више

Geometrija molekula

Geometrija molekula Geometrija molekula Oblik molekula predstavlja trodimenzionalni raspored atoma u okviru molekula. Geometrija molekula je veoma važan faktor koji određuje fizička i hemijska svojstva nekog jedinjenja, kao

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл

Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и

Више

homotetija_ddj.dvi

homotetija_ddj.dvi Homotetija verzija.0: 16.10.016. uxan uki efinicija. Homotetija H O,k sa centrom O i koeficijentom k je preslikavanje ravni koje slika svaku taqku X u taqku X takvu da je OX = k OX. Homotetiju zovemo pozitivnom

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

Programski paketi u nastavi matematike, Jelena Milošević Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata

Programski paketi u nastavi matematike, Jelena Milošević Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata različitih tipova koji mogu biti kreirani korišćenjem alata ili komandi. Objekti Imamo dva tipa objekata u

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1 kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.

Више

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III

Министарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III 25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je 1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na jednu od preostale dvije stranice i njezino nožište na

Више

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak

Више

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2 T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019.

Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019. Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019. Sadržaj 1 Euklidske konstrukcije 2 1.1 Povijest..................................... 2 1.2 Aksiomi

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh

Nermin Hodzic, Septembar, Slicnost trouglova 1 Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a, b, c su stranice trougla suprotne vrh Slicnost trouglova Notacija: - A, B, C su uglovi kod vrhova A, B, C redom. -a,, c su stranice trougla suprotne vrhovima A, B, C redom. -m a, m, m c su tezisnice iz vrhova A, B, C redom. -h a, h, h c su

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

Konacne grupe, dizajni i kodovi

Konacne grupe, dizajni i kodovi Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више