Programski paketi u nastavi matematike, Jelena Milošević Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata

Величина: px
Почињати приказ од странице:

Download "Programski paketi u nastavi matematike, Jelena Milošević Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata"

Транскрипт

1 Kreiranje dinamičkih konstrukcija Konstrukcije u GeoGebri se sastoje od matematičkih objekata različitih tipova koji mogu biti kreirani korišćenjem alata ili komandi. Objekti Imamo dva tipa objekata u GeoGebri: slobodni i zavisni objekti. definisani kao pomoćni objekti (auxiliary objects). Neki od njih mogu biti Slobodni objekti su objekti čija pozicija ili vrednost ne zavisi od nekog drugog objekta. Njih pravimo direktnim unosom ili npr. pomoću alata New Point Tool. Mogu da se pomeraju, iako su fiksirani. Zavisni objekti su objekti koji zavise od nekog drugog objekta. Oni su kreirani korišćenjem alata ili komandi. Pomoćni objekti su objekti koje korisnik definiše kao pomoćne ili objekti koji su napravljeni pomoću specifičnih alata npr. Regular Polygon Tool. Geometrijski objekti Tačke i vektori Prave i koordinatne ose Konusni preseci Funkcije Krive Nejednakosti Intervali Tačke i vektori Tačke i vektori mogu biti unešeni pomoću Input Bara u Dekartovim ili polarnim koordinatama. Tačke takodje mogu biti kreairane korišćenjem alata Point Tools, Vector from Point Tool, Vector between Two Points Tool i mnogim drugim komandama. Napomena: Velikim slovima se označavaju tačke, a malim slovima vektori. Ovo pravilo nije obavezno. Primer: Tačku P i vektor v možemo zadati Dekartovim koordinatama P = (1, 0) i v = (0, 5). Ako ovu tačku i vektor želimo da zadamo u polarnim koordinatama ukucali bismo P = (1; 0 0 ) ili v = (5; 90 0 ). Napomena: Primetimo da kod označavanja polarnih koordinata koristimo tačku-zarez. Ako ne zadamo ugao u stepenima i tako i označimo, GeoGebra će tretirati ugao kao da je u radijanima. GG3-1

2 U Geogebri takodje možemo da vršimo neka izračunavanja sa tačkama i vektorima. Primer: Možemo odrediti središte duži AB (označimo ga sa M) ukucavanjem izraza M = (A + B)/2 u Input Bar. Takodje, možemo izračunati dužinu vektora v na sledeći način duzina = sqrt(v v). Ako je tačka A = (a, b) onda je A + 1 = (a + 1, b + 1). Prave i koordinatne ose Prave se mogu uneti kao linearne jednačine od x i y ili u parametarskom obliku u Input Bar. Primer: Ukucaj g : 3x + 4y = 2 da bi uneo pravu g kao linearnu jednačinu. Možemo da unesemo pravu i u parametarskom obliku g : X = ( 5, 5)+t(4, 3). Treći načine je da definišemo parametre m = 2 i b = 1, a onda da pravu h zadamo na sledeći način y = m x + b. Obe koordinatne ose imaju već rezervisana imena u GeoGebri - xaxis i yaxis. Primer: Komanda zadatoj tački A. PerpendicularLine(A,xAxis) konstruiše pravu normalnu na x-osu u Konusni preseci Konusne preseke možemo uneti kao kvadratnu jednačinu od x i y. Ime konusnih preseka treba uneti na početku unosa, odvojeno dvema tačkama. Primer: Konusni preseci Unos Elipsa e : 9x y 2 = 144 Hiperbola h : 9x 2 16y 2 = 144 Parabola p : y 2 = 4x Kružnica c1 : (x 5) 2 + (y + 2) 2 = 25. Funkcije Da bismo uneli funkciju koristimo predhodno definisane promenljive (brojeve, tačke, vektore) kao i druge funkcije. Takodje, možemo koristiti integral ili izvod funkcije. Primer: funkcija f : f(x) = 3x 3 x 2 ; funkcija g: g(x) = sin(f(x)); h(x) = cos(f (x + 2)). GG3-2

3 Da bismo ograničili funkciju na intervalu koristimo komandu Function ili If. Primer: Obe naredbe If(x 3 x 5, x 2 ) i Function(x 2, 3, 5) crtaju funkciju x 2 na intervalu (3, 5).. Krive U GeoGebri imamo dva tipa krivih: implicitno i parametarski zadane krive. Implicitno zadane krive Implicitno zadane krive su polinomi promenljivih x i y. Mogu biti unete direktno u Input Bar. Primer: x 4 + y 3 = 2x y (x 2 + y 2 1) 3 x 2 y 3 = 0 - srce. Parametarski zadane krive Parametarski zadane krive su oblika a(t) = (f(t), g(t)), gde je t realni parametar koji pripada odredjenom intervalu. Interval vrednosti za parametar t možemo kreirati pomoću komande Curve. Parametarski zadane krive mogu biti korišćene u komandama Tangent i Point. Primer: jedinična kružnica sa centrom u koordinatnom početku u polarnim koordinatama je zadata sa x = cos t, y = sin t, 0 t 2π tj. u GeoGebri (cos(t), sin(t)); elipsa je u uopštenim polarnim koordinatama zadata sa x = 2 cos t, y = 3 sin t, 0 t 2π; srce - x(t) = 16 sin 3 (t), y(t) = 13 cos(t) 5 cos(2t) 2 cos(3t) cos(4t).. Ako unesemo c(3) kobićemo tačku na krivoj c za vrednost parametar t = 3. Nije moguće napraviti parametarsku krivu koja prolazi kroz zadate tačke. Nejendnakosti GeoGebra podržava nejednakosti od jedne ili dve promenljive. Nema ograničenja za pojavljivanje nejednakosti u Algebarskom prikazu, ali samo odredjene nejednakosti mogu biti nacrtane u Grafičkom prikazu: nejednakosti sa polinomima jedne promenljive - npr. x 3 > x + 1 ili y 2 > y; kvadratne nejednakosti od dve promenljive - npr. x 2 + y 2 + x y 4; nejednakosti linearne po jednoj promenljivoj -npr. 2x > sin(y) ili y < sqrt(x) Za znak nejednakosti možemo koristiti simbole >, <,,, kao i <=,>=. Više nejednakosti možemo povezati konjukcijom ili disjunkcijom. Na primer, (x > y) && (x + y < 3). Možemo testirati da li neka tačka (x, y) zadovoljava nejednakost a ukucavanjem izraza a(x, y) u Input Bar. Ako je tačka označena sa A, korektna sintaksa u tom slučaju je a(a). Takodje, možemo usloviti neku tačku da mora da pripada oblasti koja je odredjena nekim nejednakostima pomoću komande PointIn. GG3-3

4 Intervali Da bismo kreirali interval ukucajmo 2 < x < 3 u InputBar. Interval u predhodnom primeru je otvoren. Takodje možemo definisati i sve ostale tipove intervala: zatvoreni(segment) i polu zatvoreni (2 x 3 ili 2 x < 3). Da bismo odrediti da li neki broj c pripada intervalu r unosino izraz r(c) u Input Bar. Zapravo, nejednakosti su generalizacija intervala. Komande za intervale Min, Max, Midpoint komande za interval sa donjom granicom a, a gornjom b daju sledeće rezultate: a, b i a+b redom. Rezultat ovih komandi ne zavisi od toga da li je interval otvoren, 2 zatvoren ili polu zatvoren; Naredba Point nam daje tačku koja se kreće i njena x-koordinata pripada intervalu a y- koordinata je 0. A naredba PointIn nam daje tačku koja se kreće i njena x-koordinata pripada intervalu, a y-koordinata je proizvoljna. Opšti objekti Brojevi i uglovi Kompleksni brojevi Logičke vrednosti Liste Matrice Tekst Brojevi i uglovi Možemo kreirati brojeve koristeći InputBar. Ako samo ukucamo broj, GeoGebra dodeljuje malo slovo kao ime tog broja. Ako želimo da damo broju neko specifično ime, možemo ukucati ime, pa znak jednakosti i broj (npr. r = 5.32). Napomenimo da se u GeoGebri za označavanje decimalnih brojeva koristi tačka. Takodje u GeoGebri postoje neke unapred definisane konstante kao što su π ili Ojlerova konstanta e. Uglovi se unose ili u stepenima ili u radijanima. Konstanta π je korisna za vrednosti u radijanima i možemo je uneti i ukucavanjem teksta pi. Interesentano je spomenuti da GeoGebra svoja interna izračunavanja vrši u radijanima. Kompleksni brojevi GeoGebra ne podržava kompleksne brojeve direktno, ali možemo koristiti tačke da simuliramo operacije sa kompleksnim brojevima. Primer: Unošenjem kompleksnog broja 3+4i u Input Bar, dobijamo tačku (3, 4) u Grafičkom prikazu. GG3-4

5 Sabiranje i oduzimanje kompleksnih brojeva: (2 + 1i) + (1 2i) daje nam broj 3 1i; (2 + 1i) (1 2i) daje nam kompleksan broj 1 + 3i. Množenje i deljenje komleksnih brojeva: (2 + 1i) (1 2i) daje nam kompleksan broj 4 3i; (2 + 1i)/(1 2i) daje nam kompleksan broj 0 + 1i. Napomena: Uobičajeno množenje (2, 1) (1, 2) daje nam skalarni proizvod ova dva vektora. Takodje, GeoGebra razlikuje izraze sa realnim i kompleksnim brojevima. Logičke vrednosti U GeoGebri možemo koristiti logičke vrednosti tačno (true) ili netačno (false). Na primer samo ukucaj u Input Bar a = true ili b = false. Slobodne logičke vrednosti mogu biti prikazane kao checkbox (polje za označavanje) u Grafičkom prikazu (vidi alat Check Box). Korišćenjem strelica sa tastature možemo menjati logičke vrednosti u Algebarskom prikazu (vidi odeljak Manual Animation). Možemo koristiti sledeće operacije sa logičkim vrednostima i uslovima u GeoGebri ili birajući ih sa liste do Input Bara ili unošenjem koristeći tastaturu (vidi sliku 1). Slika 1: Operacije sa logičkim vrednostima Liste Korišćenjem vitičastih zagrada {} možemo kreirati listu različitih objekata (npr. tačaka, segmenata, krugova). GG3-5

6 Primer: Izraz L = {A, B, C} kreira listu koja se sastoji od tri unapred definisane tačke A, B i C. Izraz L = {(0, 0), (1, 1), (2, 2)} kreira listu koja se sastoji od unešenih tačaka. Podrazumeva se da elementi liste nisu prikazani u Grafičkom prikazu. odredjenom elementu iz liste koristimo komandu Element. Da bismo pristupili Uporedjivanje dve liste: Lista1==Lista2: proverava da li su dve liste jednake i daje odgovor tačno ili netačno kao rezultat. Lista1! =Lista2: proverava da li dve liste nisu jednake i daje odgovor tačno ili netačno kao rezultat. Operacije sa listama: < Objekat > < Lista > < Lista > < Lista > < Lista > < Lista > < Lista > \ < Lista >. Sabiranje i oduzimanje: Lista1+Lista2 (sabiraju se odgovarajući elementi dve liste; dve liste moraju biti iste dužine) Lista + Broj (dodaje se broj svakom elementu liste) Lista1- Lista2 (oduzimaju se elementi druge liste od odgovorajućih elemenata prve liste; dve liste moraju biti iste dužine) Lista - Broj (oduzima se broj od svakog elementa liste) Množenje i deljenje: Lista1 Lista2 (množenje odgovarajućih elemenata dve liste; liste moraju biti iste dužine) Lista Broj (množi se brojem svaki element liste) Lista1/ Lista2 (deli elemente prve liste odgovarajućim elementima druge liste; dve liste moraju biti iste dužine) Lista/Broj (svaki element liste se deli brojem) Broj/Lista (Broj se deli svakim elementom liste) Ostali primeri: Lista 2 (kvadrira sve elemente liste) 2 Lista (kreira listu od stepena broja dva, čiji su eksponenti elementi iz liste) GG3-6

7 Lista1 Lista2 (kreira listu čiji su elementi oblika a b, gde a i b pripadaju listama Lista1 i Lista2 redom) sin(lista) (primenjuje sinusnu funkciju na svaki element liste) Matrice GeoGebra takodje podržava matrice, koje su predstavljene kao lista od listi koja sadrži vrste matrice. Primer: U GeoGebri izraz {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} predstavlja matricu tipa 3 3. Da bi matrica bila prikazana u Grafičkom prikazu koristimo komandu FormulaText na sledeći način: FormulaText({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} ). Sabiranje i oduzimanje matrica Matrica1+Matrica2 (sabiraju se odgovarajući elementi dve kompatibilne matrice) Matrica1 Matrica2 (oduzimaju se odgovarajući elementi dve kompatibilne matrice) Množenje matrica Matrica1 Matrica2 (množenje matrica) Matrica Broj (množi se brojem svaki element matrice) Ostali primeri Determinant(<Matrix>) Invert(<Matrix>) Transpose(<Matrix>) Tekst Tekst se može kreirati pomoću komande Text ili pomoću alata Insert Text Tool ili prevlačenjem nekog objekta iz Algebarskog prikaza u Grafički prikaz. Imamo tri vrste teksta: statički, dinamički i mešoviti. Statički tekst ne zavisi ni od jednog matematičkog objekta i obično nije pod uticajem promene konstrukcije. Dinamički tekst sadrži vrednosti objekata koji se automatski prilagodjavaju promenama tog objekta. Mešoviti tekst je kombinacija statičkog i dinamičkog teksta. GG3-7

8 Action Objects Check Boxes Input Boxes Buttons Comboboxes Check Boxes Check Boxes je grafička reprezentacija logičkih vrednosti. Input Boxes Input Boxes radi kao unos teksta za skriptove. Skript je aktiviran promenom teksta u Input Boxu ili pritiskom na dugme Enter ili napuštanjem Input Boxa. Unetoj vrednosti se može pristupiti korišćenjem promenjljive %0. Input Box može biti kreiran korišćenjem alata Insert Input Box ili komande InputBox. Primer: Input Box sa a = a + %0 menja vrednost broja a za unetu vrednost. Buttons Button ili dugme je namenjeno da aktivira skriptove tako što kliknemo na njega. Buttons može biti kreiran korišćenjem alata Insert Buttons ili komande Button. Comboboxes Comboboxes su dostupni samo u Spreadsheet pikazu. Napredne funkcije Pozicija objekta Uslovljena vidljivost Dynamic colors Scripting Pozicija objekta Pozicija objekta može biti odredjena u polju Position u Properties Dialogu. Podrazumevano je da je npr. pozicija vektora odredjena početnom tačkom, a pozicija slike odredjena sa jednim, dva ili tri ugla. Pozicija slika i slajdera može biti fiksirana u odnosu na ekran. Ovo svojstvo može biti podrazumevano u zavisnosti da li se radi o slajderima ili slikama. Ukoliko to želimo da GG3-8

9 promenimo, uključimo Absolut Position On Sreen. Action Objects uvek imaju apsolutnu poziciju na ekranu. Uslovljena vidljivost Pored toga što možemo da prikazujemo ili skrivamo neke objekte, takodje njihova vidljivost može da zavisi od nekog uslova. Na primer, želimo da se neki objekat pojavi na ekranu kada čekiramo Check Box ili kada slajder uzme odredjene vrednosti. Uslovljena vidljivost već postojećih objekata se postiže korišćenjem Check Boxa, kako je već opisano. Promena vidljivosti kod novo kreiranih objekata - U Properties dialogu se može uneti uslov za vidljivost objekta u polje Advanced. Primer: Ako je a slajder, tada uslov a < 2 znači da se odgovarajući objekat prikazuje samo kada slajder uzima vrednosti manje od 2. Ako je b logička vrednost, možemo iskoristiti b kao uslov. Odgovarajući objekat se pojavljuje kad god je b =true, a nestaje kada je b =false. Ako su g i h dve prave i ako mi želi da se odredjeni tekst pojavi samo pod uslovom kada su ove prave paralelne, tada možemo iskorisiti izraz g h kao uslov za pojavljivanje teksta. Dynamic colors U GeoGebri možemo menjati boju objekata koristiće polje Color u Properties Dialogu. Medjutim, možemo podesiti da se boja objekta menja dinamički. Otvorimo Properites Dialog objekta čiju boju želimo da menjamo, konkretno polje Advanced. Tu ćemo naći odeljak pod imenom Dynamic Colors sa tri polja za tekst za komponente boja - crvena, zelena i plava. U svako od ovih polja može se uneti funkcija koja uzima vrednosti u skupu [0, 1]. Primer: Kreirajmo tri slajdera a, b i c sa vrednostima od 0 do 1. Kreiraj mnogougao, čija će boja biti odredjena slajderima a, b, c. U polju Advanced-Dynamic Colors unesi imena tri kreirana slajdera. Menjaj vrednosti slajderima i uoči kao te promene utiču na boju mnogougla. Možemo animirati slajdere tako da se svaki kreće drugačijom brzinom, da bi se boja mnogougla menjala automatski. Scripting Skript je niz komandi, koje se izvršavaju jedna posle druge.geogebra podržava dva jezika za scripting - GGBScript i Javascript. Izvršavanje može biti aktivirano: kliktanjem na neki objekat ažuriranjem nekog objekta (kada je vrednost ili svojstvo objekta promenjano) GGBScript Možemo kreirati skriptove korišćenjem GeoGebra komandi. Nakon aktiviranja skripta, svaka komanda se izvršava jedna za drugom. Primer: Kreirajmo slajder a koji uzima vrednosti 1, 2 i 3. Zatim kreirajmo listu list1 = { red, green, blue }. Kao svojstvo slajdera a, u polje On Update ukucajmo komandu SetColor(a,Element(list1,a)). Pomeranjem slajdera menjamo njegovu boju. GG3-9

10 Alati Movement tools Point tools Line Tools Special Line Tools Polygon Tools Circle and Arc Tools Conic Section Tools Measurement Tools Transformation Tools Special Object Tools Action Object Tools Generale Tools Custome Tools Komande Geometry Commands Algebra Commands Text Commands Logic Commands Functions & Calculus Commands Conic Commands List Commands Vector & Matrix Commands Transformation Commands Statistics Commands Probability Commands Spreadsheet Commands Scripting Commands Discrete Math Commands Optimization Commands GG3-10

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

Microsoft Word - Lekcija 11.doc

Microsoft Word - Lekcija 11.doc Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

PROMENLJIVE, TIPOVI PROMENLJIVIH

PROMENLJIVE, TIPOVI PROMENLJIVIH PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l

PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Laboratorija za termičku obradu Inženjerstvo površina Kratko uputstvo za obradu i analizu profila u programskom paketu SPIP Programski paket SPIP preu

Laboratorija za termičku obradu Inženjerstvo površina Kratko uputstvo za obradu i analizu profila u programskom paketu SPIP Programski paket SPIP preu Kratko uputstvo za obradu i analizu profila u programskom paketu SPIP Programski paket SPIP preuzmite sa sledećeg linka https://www.imagemet.com/products/spip/download/downloadspip/. Instalirajte softver,

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }

Математика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } 1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак

Више

Grananje u programu predavač: Nadežda Jakšić

Grananje u programu predavač: Nadežda Jakšić Grananje u programu predavač: Nadežda Jakšić u okviru linijske strukture izvršavaju se sve naredbe u okviru razgranate strukture uvek se ispituje neki uslov; u zavisnosti od toga da li je uslov ispunjen

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Deklaracija promenljivih Inicijalizacija promenljivih Deklaracija promenljive obuhvata: dodelu simboličkog imena promenljivoj i određivanje tipa promenljive (tip određuje koja će vrsta memorijskog registra

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,

Више

М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој

М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57

Више

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa

Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa Trougao Bilo koje tri nekolinearne tačke određuju tacno jednu zatvorenu izlomljenu liniju. Trougaona linija je zatvorena izlomljena linija određena sa tri nekolinearne tačke. Trougao je geometrijski objekat

Више

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije

PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije PROGRAMIRANJE Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Algoritam je postupak raščlanjivanja problema na jednostavnije korake. Uz dobro razrađen algoritam neku radnju ćemo

Више

Mathcad - MCADMod MCD

Mathcad - MCADMod MCD Mathcad Modul # 2 Operatori i funkcije Relacioni i logicki operatori - (funkcija if) Korisnicki definisane funkcije Globalne promenljive 1) Operatori i funkcije: U Mathcadu se razlikuju operatori i funkcije,

Више

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 {

Rokovi iz Matematike 1 za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi 1. Rexiti jednaqinu z 4 + i 1 i+1 = 0. MATEMATIKA 1 { Rokovi iz Matematike za studente Fakulteta za fiziqku hemiju Ivan Dimitrijevi, Tijana Xukilovi Rexiti jednaqinu z 4 + i i+ = MATEMATIKA { septembar 5godine x Odrediti prodor prave p : = y = z kroz ravan

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

Microsoft Word - CAD sistemi

Microsoft Word - CAD sistemi U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau

SKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog

Више

Funkcije predavač: Nadežda Jakšić

Funkcije predavač: Nadežda Jakšić Funkcije predavač: Nadežda Jakšić funkcije delovi programa koji izvršavaju neki zadatak, celinu; dele na ugrađene, korisničke i main funkciju ugrađene funkcije printf,scanf... da bi se one izvršile potrebno

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

(Microsoft Word - 1. doma\346a zada\346a)

(Microsoft Word - 1. doma\346a zada\346a) z1 1 Izračunajte z 1 + z, z 1 z, z z 1, z 1 z, z, z z, z z1 1, z, z 1 + z, z 1 z, z 1 z, z z z 1 ako je zadano: 1 i a) z 1 = 1 + i, z = i b) z 1 = 1 i, z = i c) z 1 = i, z = 1 + i d) z 1 = i, z = 1 i e)

Више

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla

PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o

Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o Matematika SKRIPTE EKOF 2018/19 Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje;

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Primenjeno programiranje - vezbe GUI i baze podataka

Primenjeno programiranje - vezbe GUI i baze podataka Primenjeno programiranje - Vežbe Java i NetBeans IDE 6.5 Kreiranje korisničkog interfejsa Primer jednostavne aplikacije: 1. Odabrati opciju File > New Project 2. Meñu kategorijama odabrati Java i podkategoriju

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Microsoft Word - 1. REALNI BROJEVI- formulice

Microsoft Word - 1. REALNI BROJEVI- formulice REALNI BROJEVI Skup prirodnih brojeva je N={1,2,3,4,,6,7, } Ako skupu prirodnih brojeva dodamo i nulu onda imamo skup N 0 ={0,1,2,3, } Skup celih brojeva je Z = {,-3,-2,-1,0,1,2,3, } Skup racionalnih brojeva

Више

Microsoft Word - 02 Elementi programskog jezika Pascal

Microsoft Word - 02 Elementi programskog jezika Pascal Elementi programskog jezika Pascal Osnovni elementi jezika Osnovni simboli U programskom jeziku Pascal sve konstrukcije se grade od skupa osnovnih simbola jezika koji čine slova, cifre i specijalni znaci.

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode]

Microsoft PowerPoint - 03-Slozenost [Compatibility Mode] Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба

Више

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши

Више

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2 T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od

Више

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka) . D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,

Више

Microsoft Word - KVADRATNA FUNKCIJA.doc

Microsoft Word - KVADRATNA FUNKCIJA.doc KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

No Slide Title

No Slide Title Statistika je skup metoda za uređivanje, analiziranje i grafičko prikazivanje podataka. statistika???? Podatak je kvantitativna ili kvalitativna vrijednost kojom je opisano određeno obilježje (svojstvo)

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0802.doc Matematika szerb nyelven középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA SZERB NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Важне

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто

СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Br

Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Br Univerzitet u Novom Sadu Tehnički fakultet Mihajlo Pupin Zrenjanin Seminarski rad Predmet: Konkuretno programiranje doc. dr Dejan Lacmanovic Zorica Brkić SI 29/15 Zrenjanin 2018. Softversko inženjerstvo

Више

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode]

Microsoft PowerPoint - Programski_Jezik_C_Organizacija_Izvornog_Programa_I_Greske [Compatibility Mode] Programski jezik C organizacija izvornog programa Prevođenje Pisanje programa izvorni program Prevođenje programa izvršni program Izvršavanje programa rezultat Faze prevođenja Pretprocesiranje Kompilacija

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

Kombinatorno testiranje

Kombinatorno testiranje Kombinatorno testiranje Uvod Na ponašanje aplikacije utiče puno faktora, npr. ulazne vrednosti, konfiguracije okruženja. Tehnike kao što je podela na klase ekvivalencije ili analiza graničnih vrednosti

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

-svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, ap

-svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, ap -svaki studen za sebe da napravi i prilagodi sučelje -ponoviti manipulaciju sa UCS-om VJEŽBA: nacrtati točku (100,100,100): apsolutnim pravokutnim, apsolutnim polarnim-cilindričnim i apsolutnim polarnim-sferičnim

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979

Више

СТАРТ - СТОП ПАРКИНГ СИСТЕМ КОРИСНИЧКО УПУТСТВО страна 1 од 12

СТАРТ - СТОП ПАРКИНГ СИСТЕМ КОРИСНИЧКО УПУТСТВО страна 1 од 12 СТАРТ - СТОП ПАРКИНГ СИСТЕМ КОРИСНИЧКО УПУТСТВО страна 1 од 12 РЕГИСТРАЦИЈА НА СТАРТ-СТОП ПАРКИНГ СИСТЕМ За коришћење СТАРТ-СТОП ПАРКИНГ система, корисник (физичко или правно лице) попуњава упитник у просторијама

Више

СТЕПЕН појам и особине

СТЕПЕН појам и особине СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

RG_V_05_Transformacije 3D

RG_V_05_Transformacije 3D Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne

Више

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x

Више

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E

VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!

Више

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.

Matematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017. Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Funkcije predavač: Nadežda Jakšić

Funkcije predavač: Nadežda Jakšić Funkcije predavač: Nadežda Jakšić do sada su korišćene "gotove" funkcije iz standardnih biblioteka (cin, cout...) one su pozivane iz main funkcije koja je glavna funkcija u programu jer izvršavanje programa

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је

Више

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz

Више

Програмирај!

Програмирај! Листе Поред појединачних вредности исказаних бројем или ниском карактера, често је потребно забележити већи скуп вредности које су на неки начин повезане, као, на пример, имена у списку путника у неком

Више

Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović

Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović Univerzitet u Beogradu Mašinski fakultet Konstrukcija i tehnologija proizvodnje letelica PODEŠAVANJE PROGRAMSKOG PAKETA CATIA V5 Miloš D. Petrašinović Beograd, 2019 Sadržaj Sadržaj i 1 Uvod u programski

Више

Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan

Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan realan broj od 0 i 1. Na standardni izlaz ispisati

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

My_P_Trigo_Zbir_Free

My_P_Trigo_Zbir_Free Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више