Postojanost boja
|
|
- Nevenka Tadić
- пре 5 година
- Прикази:
Транскрипт
1 Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014.
2 Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih osvjetljenja Korištenje distribucije najčešćih osvjetljenja Zaključak 2
3 Osvjetljenje 3
4 Model formiranja slike f c (x) vrijednost na poziciji x za kanal c {R, G, B} 4
5 Model formiranja slike f c (x) vrijednost na poziciji x za kanal c {R, G, B} ω vidljivi spektar R(x, λ) odsjaj površine na poziciji x za valnu duljinu λ 5
6 Model formiranja slike f c (x) vrijednost na poziciji x za kanal c {R, G, B} ω vidljivi spektar R(x, λ) odsjaj površine na poziciji x za valnu duljinu λ ρ c (λ) osjetljivost senzora kamere na valnu duljinu λ za kanal c 6
7 Model formiranja slike f c (x) vrijednost na poziciji x za kanal c {R, G, B} ω vidljivi spektar R(x, λ) odsjaj površine na poziciji x za valnu duljinu λ ρ c (λ) osjetljivost senzora kamere na valnu duljinu λ za kanal c I(λ) spektralna razdioba izvora svjetlosti pretpostavlja se uniformno osvjetljenje 7
8 Model formiranja slike e promatrani izvor svjetlosti to nas zanima idealni slučaj bijelo svjetlo: e R = e G = e B matematički loše postavljen problem potrebne su dodatne pretpostavke 8
9 Model formiranja slike Za uspješnu kromatsku adaptaciju dovoljan je samo smjer od e Redukcija jedne dimenzije Može se koristiti kromatičnost r = R R+G+B, g = G R+G+B, b = R R+G+B Budući da je r + g + b = 1, dovoljne su samo dvije komponente 9
10 Računalna postojanost boja Postojanost boja (engl. color constancy, njem. Farbkonstanz) postiže se uravnotežavanjem bijele boje (engl. white balancing, njem. Weißabgleich) Koraci u ostvarivanju su: 1. Procjena osvjetljenja procjenjuje se vektor e važan je samo smjer, ne i iznos svaki algoritam za procjenu osvjetljenja uvodi svoje dodatne pretpostavke najvažniji i najteži korak 2. Kromatska adaptacija korištenje procijenjenog osvjetljenja za popravljanje izgleda slike ako je procjena e=[e R, e G, e B ] T i ako su kanali slike R, G i B, onda se kanali popravljene slike dobivaju kao αr, βg i γb pri čemu vrijedi αe R = βe G = γe B npr. α = e G / e R, β = 1, γ = e G / e B 10
11 Automatska procjena osvjetljenja 1. Statističke metode brže i jednostavnije za implementaciju koriste statistiku u pikselima 2. Metode zasnovane na učenju koriste se različiti algoritmi za učenje različitih svojstava na temelju različitih značajki slike Otvoreno područje istraživanja 11
12 Retinex Provodi se za zadani kanal I Računa se svjetlina svakog piksela Kroz svaki piksel se provuku staze 12
13 Random Sprays Retinex
14 Random Sprays Retinex I( )
15 Random Sprays Retinex I( )
16 Random Sprays Retinex I( )= I( ) max I( )
17 Random Sprays Retinex I( ) I( )= 1 N ΣN i=1 max I( i )
18 Random Sprays Retinex originalna slika RSR s parametrima N=1, n=4 18
19 Random Sprays Retinex RSR s parametrima N=5, n=20 RSR s parametrima N=20, n=400 19
20 Light Random Sprays Retinex = 20
21 Light Random Sprays Retinex = 21
22 Light Random Sprays Retinex 22
23 Light Random Sprays Retinex 23
24 Light Random Sprays Retinex 24
25
26
27 27
28 28
29 Light Random Sprays Retinex Složenost: O(nM) n veličina spreja M broj piksela u slici (veličina slike) Nije prikladno za izvedbu u stvarnom vremenu Korištenjem interpolacije postiže se ubrzanje, ali pada i kvaliteta rezultata 29
30 Ubrzanje Kritični dio: računanje maksimuma u spreju: O(n) Pokušati kombinirati operacije Što je zajedničko obradi pojedinih piksela? Na koji način se to može iskoristiti? 30
31 Zajedničko 31
32 Zajedničko 32
33 Zajedničko 33
34 Zajedničko 34
35 Zajedničko 35
36 Zajedničko 36
37 Zajedničko 37
38 Zajedničko 38
39 Zajedničko 39
40 Zajedničko 40
41 Zajedničko 41
42 Zajedničko 42
43 Zajedničko 43
44 Zajedničko 44
45 Zajedničko 45
46 Zajedničko 46
47 Računanje maksimuma Za svaki sprej je potrebno izračunati maksimum Kod promjene spreja treba odrediti novi maksimum Dodavanje piksela nije problem jedna usporedba Uklanjanje piksela je problem n usporedbi 47
48 Računanje maksimuma Cilj je izbjeći preračunavanje maksimuma kod kojeg se pregledava cijeli sprej Ovaj problem moguće je riješiti pametnom organizacijom intenziteta piksela spreja Postoji nekoliko rješenja 48
49 Računanje maksimuma Kartezijevo stablo Struktura koja glumi red i omogućuje upit maksimuma Umetanje nove vrijednosti: amortizirano O(1) Uklanjanje najstarije vrijednosti: O(1) Određivanje maksimuma: O(1) Dva stoga Simulacija reda uz upit maksimuma Umetanje nove vrijednosti: O(1) Uklanjanje najstarije vrijednosti: amortizirano O(1) Određivanje maksimuma: O(1) 49
50 Ubrzanje Stara složenost: O(nM) Nova složenost: O(n+M) Novi algoritam: Light Random Memory Sprays Retinex 50
51 Utjecaj na rezultat 51
52 52
53 53
54 54
55 55
56 Osvjetljenje Većina osvjeteljenja se može modelirati zračenjem idealnog crnog tijela 56
57 57
58 58
59 Osvjetljenje 59
60 Osvjetljenje 60
61 Osvjetljenje 61
62 Greyball 62
63 ColorChecker 63
64 NUS baze 64
65 Osvjetljenje 65
66 GreyBall kromatičnosti svjetla
67 GreyBall kromatičnost svjetla
68 Distribucija boja Prostorne informacije ne donose ništa što ne bi donijela i raspodjela boja Sliku predstaviti histogramom boja Histogram se može dodatno sažeti (PCA) Hiperparametar: razlučivost histograma n Hiperparametar: broj glavnih komponenti k
69 Povezivanje Kako povezati distribuciju s vrijednosti x? Više je mogućnosti Odabrana mogućnost: linearna regresija Ostale testirane mogućnosti su se pokazale lošijima
70 Color Cat Rezolucija histograma: n Broj glavnih komponenti: k Histogram: h = (h 1,..., h n 3) T PCA matrica: M Koeficijenti linearne regresije: c Parametri linije: a 1, a 0 Granice crvene komponente: r 0, r 1 70
71 Color Cat
72 Rezultati 72
73 Rezultati 73
74 Rezultati
75 Drugi pristup 75
76 Drugi pristup 76
77 Drugi pristup Svaki centar predstavlja jedno osvjetljenje Odrediti najprikladniji centar za danu sliku Problem procjene osvjetljenja se svodi na klasifikaciju Što je više centara, to je veća maksimalna moguća točnost, ali je i problem klasifikacije teži 77
78 Idealna klasifikacija 78
79 Postojeći pristup Ideja je već patentirana US A1 Illumination Estimation Using Natural Scene Statistics Nema eksperimentalne analize 79
80 Postojeći pristup U patentu se kao značajke koriste histogrami kromatičnosti Ulogu klasifikatora ima multivarijatni Gaussov klasifikator 80
81 Promjena pristupa Korištenje histograma boja Ulogu klasifikatora preuzima AdaBoost (CE) Dodatan pokušaj: k-nn (CA) Mnogo manja potreba za sažimanjem histograma 81
82 Alternativni pristup Korištenje izračunatih centara za navođenje postojećih metoda Nema više potrebe za histogramima Jednostavna nadogradnja na gotovo bilo koju metodu Color Dog (CD) 82
83 Alternativni pristup 83
84 Rezultati 84
85 Rezultati 85
86 Rezultati 86
87 Zaključak Postojanost boja je zahtjevan i loše postavljem problem Korištenje distribucije može uvelike povećati točnost procjene osvjetljenja Vrijedi proučiti na koje se još načine distribucija osvjetljenja može iskoristiti za bolju procjenu osvjetljenja 87
88 88
Metode za automatsko podešavanje boje i svjetline slike
Metode za automatsko podešavanje boje i svjetline slike Mentor: prof. dr. sc. Sven Lončarić Student: Nikola Banić Zagreb, 9. srpnja 2013. Sadržaj Uvod Boje Postojanost boja Algoritmi za podešavanje boja
ВишеRaspoznavanje prometnih znakova
1.7.2013. RASPOZNAVANJE PROMETNIH ZNAKOVA Ivan Filković Mentor: Prof. dr. sc. Zoran Kalafatić 1.7.2013. 2 Sadržaj Motivacija, uvod Sustav za raspoznavanje prometnih znakova Skupovi podataka Rezultati testiranja
ВишеNapredno estimiranje strukture i gibanja kalibriranim parom kamera
Napredno estimiranje strukture i gibanja kalibriranim parom kamera Ivan Krešo Mentor: Siniša Šegvić 3. srpnja 2013. Motivacija Stereo vid dvije kamere omogućavaju mjerenje dubine korespondentnih točaka
ВишеImpress
Mogu li se sudari super-ljuski vidjeti pomoću teleskopa LOFAR? Marta Čolaković-Bencerić1, Vibor Jelić2 Fizički odsjek, PMF, Sveučilište u Zagrebu, Bijenička cesta 32, 10000 Zagreb, Hrvatska 1 Institut
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
ВишеKlasifikacija slika kucnih brojeva dubokim konvolucijskim modelima
Klasifikacija slika kućnih brojeva dubokim konvolucijskim modelima Ivan Šego 4. srpnja 2018. Sadržaj 1 Uvod 2 Konvolucijske neuronske mreže Konvolucijski sloj Sloj sažimanja Potpuno povezani sloj 3 Ispitni
Више4.1 The Concepts of Force and Mass
Interferencija i valna priroda svjetlosti FIZIKA PSS-GRAD 23. siječnja 2019. 27.1 Načelo linearne superpozicije Kad dva svjetlosna vala, ili više njih, prolaze kroz istu točku, njihova se električna polja
ВишеMicrosoft Word - AIDA2kolokvijumRsmerResenja.doc
Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa
ВишеProstorna kalibracija LYSO detektora osetljivog na poziciju
Prostorna kalibracija LYSO detektora osetljivog na poziciju Brankica Anđelić df.brankica.andjelic@student.pmf.uns.ac.rs Departman za fiziku, Univerzitet u Novom Sadu 3. oktobar 215. Brankica Anđelić Prostorna
ВишеFAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot
FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
ВишеAM_Ple_NonLegReport
9.2.2017 A8-0005/9 Amandman 9 Stavak 1.a (novi) 1 a. poziva Komisiju da predloži sljedeće zajedničke europske definicije: umjetna inteligencija je automatizirani sustav s mogućnošću simulacije nekih ljudskih
ВишеMicrosoft Word - III godina - EA - Metodi vjestacke inteligencije
Школска година 2018/2019. Предмет Методи вјештачке интелигенције Шифра предмета 2284 Студијски програм Електроенергетика и аутоматика Циклус студија Година студија Семестар Број студената Број група за
ВишеSVEUČILIŠTE U ZAGREBU FAKULTET ORGANIZACIJE I INFORMATIKE V A R A Ž D I N Mario Habrun USPOREDBA MODELA BOJA I PRIMJENA U RAČUNALNOJ GRAFICI ZAVRŠNI R
SVEUČILIŠTE U ZAGREBU FAKULTET ORGANIZACIJE I INFORMATIKE V A R A Ž D I N Mario Habrun USPOREDBA MODELA BOJA I PRIMJENA U RAČUNALNOJ GRAFICI ZAVRŠNI RAD Varaždin, 2018. SVEUČILIŠTE U ZAGREBU FAKULTET ORGANIZACIJE
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеMože li učenje tablice množenja biti zabavno?
Mogu li besplatne igre na tabletima potaknuti učenike na učenje tablice množenja i dijeljenja? Sanja Loparić, prof. matematike i informatike Tehnička škola Čakovec Rovinj, 11.11.2016. Kad djeca nisu u
Више06 Poverljivost simetricnih algoritama1
ЗАШТИТА ПОДАТАКА Симетрични алгоритми заштите поверљивост симетричних алгоритама Преглед биће објашњено: коришћење симетричних алгоритама заштите како би се заштитила поверљивост потреба за добрим системом
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеSadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor
Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca
ВишеPrikaz slike na monitoru i pisaču
CRT monitori s katodnom cijevi i LCD monitori na bazi tekućih kristala koji su gotovo istisnuli iz upotrebe prethodno navedene. LED monitori- Light Emitting Diode, zasniva se na elektrodama i diodama koje
ВишеStručno usavršavanje
TOPLINSKI MOSTOVI IZRAČUN PO HRN EN ISO 14683 U organizaciji: TEHNIČKI PROPIS O RACIONALNOJ UPORABI ENERGIJE I TOPLINSKOJ ZAŠTITI U ZGRADAMA (NN 128/15, 70/18, 73/18, 86/18) dalje skraćeno TP Čl. 4. 39.
ВишеDUBINSKA ANALIZA PODATAKA
DUBINSKA ANALIZA PODATAKA () ASOCIJACIJSKA PRAVILA (ENGL. ASSOCIATION RULE) Studeni 2018. Mario Somek SADRŽAJ Asocijacijska pravila? Oblici učenja pravila Podaci za analizu Algoritam Primjer Izvođenje
Више07jeli.DVI
Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine
ВишеMicrosoft PowerPoint - jkoren10.ppt
Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni
ВишеUvod u statistiku
Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеZadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):
Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5
ВишеPowerPoint Presentation
Факултет организационих наука Центар за пословно одлучивање Системи за препоруку П8: Системи за препоруку Закључивање на основу случајева Системи за препоруку 2 Закључивање на основу случајева ПРОНАЂЕНО
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеPRIKAZIVAČ BRZINE I BROJILO PROMETA ZA STATISTIČKU OBRADU PODATAKA
PRIKAZIVAČ BRZINE I BROJILO PROMETA ZA STATISTIČKU OBRADU PODATAKA PRIKAZIVAČ BRZINE SA TEKSTUALNIM PORUKAMA Prikazivač brzine prikazuje tekstualnu poruku ili znak opasnosti u skladu sa detektiranom brzinom.
ВишеSVEUČILUŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PROCJENA BRZINE V
SVEUČILUŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij PROCJENA BRZINE VOZILA NA TEMELJU SNIMKE KAMERE KOJA ZAMJENJUJE RETROVIZOR
ВишеSVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Seminarski rad u okviru predmeta Računalna forenzika BETTER PORTABLE GRAPHICS FORMAT Matej Crnac Zagreb, siječanj 2018 Sadržaj Uvod 2 BPG format
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o
Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
ВишеPOVIJEST I GRAĐA RAČUNALA
1.6. Pohrana podataka 1 bajt (B) =8 bita (b) 1 kilobajt (KB) (KiB)= 1024 B 1 megabajt (MB) (MiB) =1024 KB 1 gigabajt (GB) (GiB) = 1024 MB 1 terabajt (TB) (TiB) = 1024 GB Prema mjestu: unutarnja(glavna)
ВишеXIII. Hrvatski simpozij o nastavi fizike Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erja
Istraživački usmjerena nastava fizike na Bungee jumping primjeru temeljena na analizi video snimke Berti Erjavec Institut za fiziku, Zagreb Sažetak. Istraživački usmjerena nastava fizike ima veću učinkovitost
ВишеJAVNA USTANOVA NACIONALNI PARK KRKA Š I B E N I K Trg Ivana Pavla II, br ŠIBENIK, p.p. 154 Tel: 022/ , fax: 022/ KLASA: /1
JAVNA USTANOVA NACIONALNI PARK KRKA Š I B E N I K Trg Ivana Pavla II, br. 5 22000 ŠIBENIK, p.p. 154 Tel: 022/201-777, fax: 022/336-836 KLASA: 480-05/13-03/31 POZIV ZA PRIKUPLJANJE PONUDA ZA NABAVA DIGITALNE
ВишеРачунарска интелигенција
Рачунарска интелигенција Генетско програмирање Александар Картељ kartelj@matf.bg.ac.rs Ови слајдови представљају прилагођење слајдова: A.E. Eiben, J.E. Smith, Introduction to Evolutionary computing: Genetic
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеПА-4 Машинско учење-алгоритми машинског учења
ПА-4 Машинско учење-алгоритми машинског учења Машинско учење увод и основни појмови Деф: the desgn and development of algorthms that allow computers to mprove ther performance over tme based on data sensor
ВишеnZEB in Croatia
EN-EFF New concept training for energy efficiency Termografsko snimanje Varaždin, 22.05.2018 Uvod IC termografija Infracrvena (IC) termografija je beskontaktna metoda mjerenja temperature i njezine raspodjele
ВишеPoravnanje različitih vrsta meduzvjezdane materije u širem području 3C 196 polja Ana Erceg 19. siječnja SAŽETAK Promatranje polja centriranog na
Poravnanje različitih vrsta meduzvjezdane materije u širem području 3C 196 polja Ana Erceg 19. siječnja 2019. SAŽETAK Promatranje polja centriranog na jakom radioizvoru 3C 196 na niskim radiofrekvencijama
ВишеProspekt
Videti četiri puta bolje Nova Synea serija sa LED+ Optimalno osvetljenje Manja glava Veći indeks reprodukcije boja + + + Savršena LED-pozicija Ready for imitation. Jedno svetlo - četiri prednosti: Jednostavno
ВишеMicrosoft Word - Svrha projekta.doc
S V E U Č I L I Š T E U Z A G R E B U FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA Zavod za elektroničke sustave i obradbu informacija FER 2 program, 1. godina diplomskog studija Kolegij: Sustavi za praćenje
ВишеSlide 1
Merni sistemi u računarstvu, http://automatika.etf.rs/sr/13e053msr Merna nesigurnost tipa A doc. dr Nadica Miljković, kabinet 68, nadica.miljkovic@etf.rs Prezentacija za ovo predavanje je skoro u potpunosti
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеToplinska i električna vodljivost metala
Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom
ВишеNumerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p
Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka
ВишеMicrosoft Word - Akreditacija 2008
ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2008) Модул: СВИ Година I Од II до IV Семестар I II IV-VII 18.09.2017 Алгоритми и 19.09.2017 Математика I 20.09.2017 Математика II 21.09.2017 Увод у рачунарство
ВишеMere slicnosti
Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti
ВишеТехничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји
Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Велибор
Вишеatka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati
NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,
ВишеMicrosoft PowerPoint - MR_3_Navigacija_nepoznate_prepreke_s.ppt [Compatibility Mode]
JU Univerzitet u Tuzli Fakultet elektrotehnike Postdiplomski studij, 2013. Modul: Automatika i Robotika Predmet: Robotika, Mehatronika i Automatizacija, ti ij 2013. Navigacija prema cilju Vanr.prof.dr.
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
ВишеТехничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић
Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
ВишеINDIKATOR SVJETLA FUNKCIJE TIPKI 1. Prikazuje se temperatura i parametri upravljanja 2. Crveno svjetlo svijetli kad grijalica grije 3. Indikator zelen
INDIKATOR SVJETLA FUNKCIJE TIPKI 1. Prikazuje se temperatura i parametri upravljanja 2. Crveno svjetlo svijetli kad grijalica grije 3. Indikator zelenog svjetla koji prikazuje sniženu temperaturu. Uključuje
ВишеMicrosoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
ВишеP11.3 Analiza zivotnog veka, Graf smetnji
Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
ВишеMentor: Ružica Mlinarić, mag. inf. Računalstvo Usporedba programskih jezika Sabirnice Operacijski sustav Windows 10 Operacijski sustav ios Osnovna gra
Mentor: Ružica Mlinarić, mag. inf. Računalstvo Usporedba programskih jezika Sabirnice Operacijski sustav Windows 10 Operacijski sustav ios Osnovna građa računala Ulazni uređaji Informacijski sustavi Multimedijalne
ВишеSVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.5064 ALGORITMI ZA UKLANJANJE IZMAGLICE U DIGITALNIM FOTOGRAFIJAMA Iva Pavić
SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ZAVRŠNI RAD br.5064 ALGORITMI ZA UKLANJANJE IZMAGLICE U DIGITALNIM FOTOGRAFIJAMA Iva Pavić Zagreb, lipanj 2017. Sadržaj Uvod... 1 1. Izmaglica...
ВишеOD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA
UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
ВишеVELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E
REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod Evaluacijska anketa nastavnika i nastavnih predmeta provedena je putem interneta.
ВишеSatnica.xlsx
ПОНЕДЕЉАК 24.06.2019 64 46 -РИИ -РИИ -РИИ 50 35 -РИИ 17 РИИ 2 -РИИ Сервисно-оријентисане архитектуре 6 Б-ТЕЛ Оптимални линеарни системи 1 -ЕКМ Нови материјали и технологије 1 -ЕЛК РФ електроника 6 Б-ЕМТ
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеOptimizacija
Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje
ВишеUpis u srednju školu 13-14
UPIS U SREDNJU ŠKOLU 13-14 OŠ Vela Luka, siječanj, 2013. Sustav srednjih škola osnovna škola. Gimnazije Umjetničke Četverogodišnje strukovne Trogodišnje strukovne OSTALE Tehničke Industrijske, Opća, Matematička
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеMicrosoft Word - 6. RAZRED INFORMATIKA.doc
Kriteriji ocjenjivanja i vrednovanja INFORMATIKA - 6. razred Nastavne cjeline: 1. Život na mreži 2. Pletemo mreže, prenosimo, štitimo, pohranjujemo i organiziramo podatke 3. Računalno razmišljanje i programiranje
ВишеZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеProgramiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori
1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena
ВишеLAB PRAKTIKUM OR1 _ETR_
UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA
ВишеGrupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani
Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno
ВишеMicrosoft PowerPoint - Ispitivanje povezanosti Regresija redovni decembar 2007 [Compatibility Mode]
Ispitivanje povezanosti Jelena Marinkovi Institut za medicinsku statistiku i informatiku Medicinskog fakulteta Beograd, decembar 2007.g. Kakav je odnos DOZA-EFEKAT (ODGOVOR)? Log Doza vs Odgovor 150 y-osa
ВишеДинамика крутог тела
Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.
ВишеУНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. Факултет техничких наука, Нови Сад ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
Више08 RSA1
Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем
ВишеMicrosoft Word - 1.Prehrana i zdravlje ORT
This image cannot currently be displayed. DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA OPĆE INFORMACIJE Naziv predmeta Prehrana i zdravlje Studijski program Diplomski sveučilišni studij Održivi razvoj turizma
ВишеNumeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs
Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy
ВишеIRL201_STAR_sylab_ 2018_19
Detaljni izvedbeni nastavni plan za kolegij: Statistika i analiza znanstvenih podataka Akademska godina: 2018/2019 Studij: Diplomski sveučilišni studiji: Biotehnologija u medicini, Istraživanje i razvoj
ВишеPostavka 2: Osnovni graf algoritmi 1 DISTRIBUIRANI ALGORITMI I SISTEMI Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch
Postavka 2: Osnovni graf algoritmi 1 DISTRIBUIRANI ALGORITMI I SISTEMI Iz kursa CSCE 668 Proleće 2014 Autor izvorne prezentacije: Prof. Jennifer Welch A1 Slanje svima preko fiksiranog razapinjućeg stabla
ВишеMicrosoft Word - Master 2013
ИСПИТНИ РОК: ЈУН 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 17.06.2019 Статички електрицитет у технолошким процесима Електронска кола за управљање
ВишеУНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6
УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ 6. ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ИЗВЕШТАЈ О ОЦЕНИ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ -oбавезна садржина- свака рубрика мора бити попуњена (сви подаци уписују се у одговарајућу рубрику, а
ВишеMicrosoft Word - Master 2013
ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 МАСТЕР АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Студијски програм: ЕЛЕКТРОЕНЕРГЕТИКА Семестар 19.08.2019 Електромагнетна компатибилност у електроенергетици Управљање дистрибутивном
ВишеDR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ
DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ Sadrżaj Predgovor Iz predgovora prvoni izdanju knjige "Diskretne mateiuatićke
ВишеMicrosoft Word - Smerovi 1996
ИСПИТНИ РОК: СЕПТЕМБАР 2018/2019 СТАРИ НАСТАВНИ ПЛАН И ПРОГРАМ (1996) Смер: СВИ Филозофија и социологија 20.08.2019 Теорија друштвеног развоја 20.08.2019 Програмирање 20.08.2019 Математика I 21.08.2019
ВишеPowerPoint Presentation
Анализа електроенергетских система -основни прорачуни- Падови напона и губици преноса δu, попречна компонента пада напона Δ U, попречна компонента пада напона U 1 U = Z I = R + jx Icosφ jisinφ = RIcosφ
Више(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e)
1 math.e Hrvatski matematički elektronički časopis Kvantitativne metode odlučivanja problem optimalne zamjene opreme optimizacija teorija grafova mr. sc. Bojan Kovačić, dipl. ing. matematike, RRiF Visoka
ВишеGLAZBENA UČILICA Marko Beus Filozofski fakultet u Zagrebu 098/ Sažetak Glazbena učilica je projekt osmišljen kao nadopuna
GLAZBENA UČILICA Marko Beus Filozofski fakultet u Zagrebu beusmarko@gmail.com 098/938-8295 Sažetak Glazbena učilica je projekt osmišljen kao nadopuna nastavnom programu solfeggia u osnovnim glazbenim školama.
ВишеMicrosoft Word - Akreditacija 2013
07.10.2017 ОСНОВНЕ АКАДЕМСКЕ СТУДИЈЕ (АКРЕДИТАЦИЈА 2013) Модул: СВИ Година I Од II до IV Семестар I II IV-VIII Лабораторијски практикум - Увод у рачунарство Алгоритми и програмирање Математика 1 Математика
ВишеMicrosoft Word - IZMENA KONKURSNE DOKUNENTACIJE 1.doc
Republika Srbija Autonomna Pokrajina Vojvodina Grad Subotica Gradska uprava Broj: IV-02/III-404-244/2014 Broj: JN K 20/14 Dana: 27.10.2014. g Subotica, Trg slobode br. 1 U skladu sa članom 63. stav 1.
Више