Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Величина: px
Почињати приказ од странице:

Download "Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani"

Транскрипт

1 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno značajno razlikovati, jer primjerice dolaze iz različitih domena Prisjetimo se primjera s početka gdje smo studente prikazivali prosjekom ocjena (koji dolaze iz segmenta [2, 5]), te brojem ECTS bodova (dolaze iz segmenta [45, 60]) Prirodno je očekivati da obilježja nisu ravnopravna te je općenito prije primjene neke metode za klasteriranja, podatke potrebno standaradizirati U nastavku navodimo nekoliko različitih načina standardizacije podataka koji se navode u literaturi, a pri tome pratimo ([1]) U tu svrhu skupu podataka A = {a i R n : i = 1,, m} pridružimo matricu a T α 11 α 12 α 1n A = 1 α 21 α 22 α 2n = am T α m1 α m2 α mn U literaturi postoji različiti načini standardizacije podataka i odabir standardizacije ovisi o prirodi podataka U nastavku navodimo jedan od načina Pretpostavimo u tu svrhu da su zadani brojevi L j R te M j > 0, j = 1,, n Brojeve L j zovemo lokacijska mjera, a brojeve M j mjera skaliranja Matrici A pridružimo stadardiziranu matricu C A oblika c T γ 11 γ 12 γ 1n C A = 1 γ 21 γ 22 γ 2n = c T, m γ m1 γ m2 γ mn pri čemu su γ ij = α ij L j M j, i = 1,, m, j = 1,, n Različiti izbori lokacijske mjere L j te mjera sklairanja M j generiraju različite metode standardizacije podataka Za j = 1,, n označimo s stadardizacija 1 (z-score) ([2]) ᾱ j = 1 m α ij R j = max α ij min α ij,,m,,m ( ) σ j = (α ij ᾱ j ) 2 m 1 L j = ᾱ j, M j = σ j Uočimo da standardizacijom slučajne varijabla X na ovaj način onna ima očekivanje 0 te varijancu 1 Primijetimo da se pri tome izgubila informacija o skaliranju i lokaciji originalnih podataka

2 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ standardizacija 2 (USDT standardizacija) ([1]) L j = 0, M j = σ j Slučajna varijabla X standardizirana na ovaj način ima varijancu 1 Kod ove standardizacije izgubila se informacija o skaliranju originalnih podataka standardizacija 3 (maksimum standardizacija) ([3]) L j = 0, M j = max,,m α ij Slučajna varijabla X standardizirana na ovaj način ima očekivanje σ X max(x), pri čemu je σ X standardna devijacija originalne slučajne varijable X standardizacija 4 ([3]) X max(x) te standardnu devijaciju L j = 0, M j = R j Slučajna varijabla X standardizirana na ovaj način ima očekivanje devijaciju σ X max(x) min(x) standardizacija 5 ([3]) X max(x) min(x) te standardnu L j = min,,m α ij, M j = R j Slučajna varijabla X standardizirana na ovaj način ima očekivanje devijaciju σ X max(x) min(x) X min(x) max(x) min(x) te standardnu standardizacija 6 ([3]) L j = 0, M j = α ij standardizacija 7 (medijan standradizacija) ([3]) L j = med (α ij), M j = 1,,m Primjer 1 Neka su c 1 = [5, 4] T, c 2 = [4, 6] T, c 3 = [3, 2] T, c 4 = [6, 6] T te u okolini svake od njih generirajte m slučajnih točaka iz normalne distribuciji s varijancom σ 2 Neka je skup podataka A unija svih tako dobivenih točaka Za različite brojeve m te σ napravite sve navedne transformacije te grafički prikažite transformirane podatke Primjer 2 Za podatke IRIS - http: // archive ics uci edu/ ml/ datasets ) napravite sve prethodne standardizacije

3 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ Klasteriranje skupa podataka s jednim obilježjem Najprije se podsjetimo definicije klastera Definicija 1 Neka je A skup s m 2 elemenata i 1 k m Rastav skupa A na k podskupova π 1,, π k, tako da vrijedi k (i) π i = A, (ii) π i πj =, i j, (iii) m j := π j 1, j = 1,, k zovemo particija skupa A, a skupove π 1,, π k klasteri (grupe) Particiju zapisujemo na sljedeći način Π = π,, π k Skup svih particija skupa A sastavljenih od k klastera koje zadovoljavaju (i)-(iii) označit ćemo s P(A, k) Neka je A = {a 1,, a m } skup jednodimenzionalnih podataka, odnosno podataka koji su zadani samo s jednim obilježjem Promatramo problem grupiranja takvih podatka u k klastera, koji zadovoljavaju Definiciju 1 Ako je zadana neka kvazimetrička funkcija d: R R R +, onda svakom klasteru π j Π možemo pridružiti njegov centar-reprezentant c j na sljedeći način c j = c(π j ) := argmin x R d(x, a i ) (1) Nadalje, ako na skupu svih particija P(A, k) skupa A sastavljenih od k klastera definiramo kriterijsku funkciju cilja F : P(A, k) R +, F(Π) = k a i π j d(c j, a i ), (2) onda d-optimalnu particiju Π tražimo rješavanjem sljedećeg optimizacijskog problema F(Π ) = min F(Π) (3) Π P(A,k) Primijetite da na taj način optimalna particija Π ima svojstvo da je suma "rasipanja" (suma odstupanja) elemenata klastera oko svog centra minimalna Na taj način nastojimo postići što bolju unutrašnju kompaktnost i separiranost klastera Obrnuto, za dani skup centara c 1,, c k R, uz primjenu principa minimalnih udaljenosti možemo definirati particiju Π = {π 1,, π k } skupa A na sljedeći način: π j = π(c j ) = {a A : d(c j, a) d(c s, a), s = 1,, k}, j = 1,, k, (4)

4 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ pri čemu treba voditi računa o tome da svaki element skupa A pripadne samo jednom klasteru Zato se problem traženja optimalne particije skupa A može svesti na sljedeći optimizacijski problem min F (c 1,, c k ), F (c 1,, c k ) = c 1,,c k R min d(c j, a i ), (5),,k gdje je F : R k R + Zaista, ako su zadani centri-reprezentatni c 1,, c k R, onda principom minimalnih udaljenosti možemo odrediti klastere π 1,, π k tako da je π j = π(c j ) = {a i : d(c j, a i ) d(c s, a i ), s = 1,, k}, j = 1,, k, odakle dobivamo da za a i π j vrijedi min{d(c 1, a i ),, d(c k, a i )} = d(c j, a i ), odnosno gdje je Π = {π 1,, π k } Uočimo još da je F (c 1,, c k ) := = min{d(c 1, a i ),, d(c k, a i )} k d(c j, a i ) =: F(Π), π j = π(c j ) = {a i A: j = argmin d(c s, a i )} s=1,,k Općenito, funkcija F nije konveksna ni diferencijabilna, a može imati više lokalnih minimuma [1] 61 Kriterij najmanjih kvadrata Ako je d: R R R +, d(a, b) = (a b) 2 LS-kvazimetrička funkcija, centri c 1,, c k klastera π 1,, π k određeni su s c j = argmin u R a funkcija cilja (2), odnosno (5), s (a i u) 2 = 1 π a j i π j F(Π) = k a i, j = 1,, k, (6) (c j a i ) 2 (7) Primjer 3 Zadan je skup A = {0, 3, 6, 9} Treba pronaći sve njegove dvočlane particije koje zadovoljavaju Definiciju 1, odrediti pripadne centre i vrijednosti kriterijske funkcije cilja F u smislu najmanjih kvadrata Broj svih dvočlanih particija ovog skupa je 2 m 1 1 = 7, a kao što se vidi iz Tablice 1 LS-optimalna particija u ovom slučaju je {{0, 3}, {6, 9}} jer na njoj kriterijska funkcija cilja F zadana s (7) postiže globalni minimum

5 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ π 1 π 2 c 1 c 2 F({π 1, π 2 }) G({π 1, π 2 }) {0} {3,6,9} =18 81/4+27/4 = 27 {3} {0,6,9} =42 9/4+3/4 = 3 {6} {0,3,9} =42 9/4+3/4 = 3 {9} {0,3,6} =18 81/4+27/4 = 27 {0,3} {6,9} 3/2 15/2 9/2+9/2 = = 36 {0,6} {3,9} =36 9/2+9/2 = 9 {0,9} {3,6} 9/2 9/2 81/2+9/2 = = 0 Tablica 1: Particije, centri i vrijednosti funkcije cilja F i G 62 Dualni problem Sljedeća lema pokazuje da je "rasipanje" skupa A oko njegovog centra c jednako zbroju "rasipanja" klastera π j, j = 1,, k, oko njihovih centara c j, j = 1,, k, i težinskoj sumi kvadrata odstupanja centra c od centara c j, pri čemu su težine određene veličinom skupova π j Lema 1 Neka je A = {a 1,, a m } skup podataka, a Π = {π 1,, π k } neka particija s klasterima π 1,, π k duljine m 1,, m k Neka je nadalje c = 1 m gdje je m j = π j Tada vrijedi a i, c j = 1 m j a i, j = 1,, k, (8) gdje su (a i c) 2 = F(Π) + G(Π), (9) F(Π) = G(Π) = k (c j a i ) 2, (10) k m j (c j c) 2 (11) Dokaz Primijetimo najprije da za svaki x R vrijedi (a i x) 2 = (a i c j ) 2 + m j (c j x) 2, j = 1,, k (12) Naime, kako je (a i c j )(c j x) = (c j x) (a i c j ) = 0, vrijedi a i π j a i π j Ako u (12) umjesto x stavimo c = 1 m (a i x) 2 = ((a i c j ) + (c j x)) 2 a i π j a i π j = (a i c j ) 2 + m j (c j x) 2 a i π j a i i zbrojimo sve jednakosti, dobivamo (9)

6 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ Iz Leme 1 neposredno slijedi tvrdnja sljedećeg teorema [4] Teorem 1 Uz oznake kao u Lemi 1 vrijedi: argmin F(Π) = argmax G(Π), Π P(A,k) Π P(A,k) To znači da u cilju pronalaženja LS-optimalne particije, umjesto minimizacije funkcije F zadane s (7), odnosno (10), možemo maksimizirati funkciju G Primjer 4 Skup A = {0, 3, 6, 9} iz Primjera 3 ima 7 različitih particija i za sve njih u Tablici 1 prikazana je vrijednost kriterijske funkcije cilja G Kao što se vidi iz Tablice 1 funkcija G prima maksimalnu vrijednost na optimalnoj particiji {{0, 3}, {6, 9}}, što je u skladu s Teoremom 1 U nastavku navodimo k-means algoritam za određivanje lokalno optimalne particije Algoritam se sastoji od dva koraka, koji se izmjenjuju: korak pridruživanja i korak korekcije U koraku pridruživanja se na osnovi zadanih centara-reprezentanata principom minimalnih udaljenosti određuju klasteri, dok se u koraku korekcije za svaki klaster odredđuje centar-reprezentant Standardni k-means algoritam 1 Učitati m, k, elemente skupa A Izabrati: min a i c 1 < < c k max a i ; 2 Priduživanje (assignment step) π j = {a i A : d(c j, a i ) d(c s, a i ), s = 1,, k}, j = 1,, k; 3 Korekcija (update step) c j = argmin d(x, a i ), j = 1,, k; x R 4 Koraci 2 i 3 se izmjenjuju tako dugo dok se ili centri ne poklope ili dok se particije ne poklope ili dok vrijednost funkcije cilja ne prestane opadati Pobrojimo nekoliko važnih svojstava k-means algoritma Iz konstrukcije je jasno da algoritam snižava vrijednost minimizacijske funkcije F te F Budući da je domena od F diskretan skup P(A, k) algoritam završava u konačno mnogo koraka Algoritam nažalost ne daje globalno optimalnu particiju te je algoritam potrebno pokretati više puta s različitim slučajnim početnim aproksimacijama Particiju koja među tim pokretanjima daje

7 Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/ najmanju vrijednost funkcije cilja možemo smatrati dobrom aproksimacijom globalno optimalne particije Može se dogoditi da u nekom koraku algoritma neki od klastera postane prazan ili se podudare dva centra Na taj način umjesto k klastera dobivamo l, l < k klastera Može se pokazati da se u tom slučaju uvijek može naći bolja lokalno optimalna particija Primjer 5 Zadani su podaci A = {1, 2, 6, 7, 9} te neka je k = 2 Primjenom prethodnog algoritma dobivamo Rbr c 1 c 2 π 1 π 2 Funkcija cilja F {1, 2, 6} {7, 9} {1, 2} {6, 7, 9} {1, 2} {6, 7, 9} Literatura [1] G Gan, C Ma, J Wu, Data clustering : theory, algorithms, and applications, SIAM, Philadelphia, 2007 [2] A Jain, R Dubes, Algorithms for Clustering Data, Englewood Cliffs, NJ: Prentice-Hall, 1988 [3] G Milligan, M Cooper, A study of standardization of variables in cluster analysis, Journal of Classification, 5(1988), [4] H Späth, Cluster-Formation und Analyse, R Oldenburg Verlag, München, 1983

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

2015_k2_z12.dvi

2015_k2_z12.dvi OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski

Више

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l): Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5

Више

Diskretna matematika Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017./2018.godina DISKRETNA MATEMATIKA Studij: Pre

Diskretna matematika Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017./2018.godina DISKRETNA MATEMATIKA Studij: Pre Sveučilište u Rijeci ODJEL ZA INFORMATIKU Radmile Matejčić 2, Rijeka Akademska 2017./2018.godina DISKRETNA MATEMATIKA Studij: Preddiplomski studij informatike (jednopredmetni) Godina i semestar: 2. godina,

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir

3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papir 3. Neprekinute funkcije U ovoj to ki deniramo neprekinute funkcije. Slikovito, graf neprekinute funkcije moºemo nacrtati a da ne diºemo olovku s papira. Neprekinute funkcije vaºne su u teoriji i primjenama.

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

(Microsoft Word - 1. doma\346a zada\346a)

(Microsoft Word - 1. doma\346a zada\346a) z1 1 Izračunajte z 1 + z, z 1 z, z z 1, z 1 z, z, z z, z z1 1, z, z 1 + z, z 1 z, z 1 z, z z z 1 ako je zadano: 1 i a) z 1 = 1 + i, z = i b) z 1 = 1 i, z = i c) z 1 = i, z = 1 + i d) z 1 = i, z = 1 i e)

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupo 6 bodova) MJERA I INTEGRAL 1. kolokvij 5. svibja 2017. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!) (a) (2 boda) Defiirajte općeitu vajsku mjeru i izmjerivi skup obzirom a dau

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

Slide 1

Slide 1 1 MATEMATIČKI MODELI EFIKASNOSTI 3/21/2019 Gordana Savić, Milan Martić, Milena Popović 2 Informacije o predmetu Nastavnici Pravila polaganja Sadržaj predmeta Literatura Podsećanje Linearno programiranje

Више

Konacne grupe, dizajni i kodovi

Konacne grupe, dizajni i kodovi Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,

Више

35-Kolic.indd

35-Kolic.indd Sandra Kolić Zlatko Šafarić Davorin Babić ANALIZA OPTEREĆENJA VJEŽBANJA TIJEKOM PROVEDBE RAZLIČITIH SADRŽAJA U ZAVRŠNOM DIJELU SATA 1. UVOD I PROBLEM Nastava tjelesne i zdravstvene kulture važan je čimbenik

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

Državna matura iz informatike

Državna matura iz informatike DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja

Више

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1 Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj

Programiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite

Више

Matematika kroz igru domino

Matematika kroz igru domino 29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 2 Status predmeta Web stranica predmeta Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način izvođenja

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp

Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp Maksimalni protok kroz mrežu - Ford-Fulkerson, Edmonds-Karp PMF-MO Seminar iz kolegija Oblikovanje i analiza algoritama 22.1.2019. mrežu - Ford-Fulkerson, Edmonds-Karp 22.1.2019. 1 / 35 Uvod - definicije

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

DUBINSKA ANALIZA PODATAKA

DUBINSKA ANALIZA PODATAKA DUBINSKA ANALIZA PODATAKA () ASOCIJACIJSKA PRAVILA (ENGL. ASSOCIATION RULE) Studeni 2018. Mario Somek SADRŽAJ Asocijacijska pravila? Oblici učenja pravila Podaci za analizu Algoritam Primjer Izvođenje

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 28. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJER I ITEGRL 2. kolokvij 28. lipja 29. (Kjige, bilježice, dodati papiri i kalkulatori isu dozvoljei!). (ukupo 6 bodova) eka je (, F, µ) prostor mjere. (a) ( bod) Što to zači da je izmjeriva fukcija f

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN

MAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e)

(Kvantitativne metode odlu\350ivanja \226 problem optimalne zamjene opreme | math.e) 1 math.e Hrvatski matematički elektronički časopis Kvantitativne metode odlučivanja problem optimalne zamjene opreme optimizacija teorija grafova mr. sc. Bojan Kovačić, dipl. ing. matematike, RRiF Visoka

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8 2 A) (f () M) ; ome dena odozdol ako postoji m 2 R takav da je

Више

ALIP1_udzb_2019.indb

ALIP1_udzb_2019.indb Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E

VELEUČILIŠTE VELIKA GORICA REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod E REZULTATI STUDENTSKE ANKETE PROVEDENE NA VELEUČILIŠTU VELIKA GORICA ZA ZIMSKI SEMESTAR AKADEMSKE 2013/2014 GODINE 1. Uvod Evaluacijska anketa nastavnika i nastavnih predmeta provedena je putem interneta.

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Psihologija Ured za

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Psihologija Ured za Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Psihologija Ured za upravljanje kvalitetom Sveučilište u Zagrebu Zagreb,

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Grafički fakultet Grafička tehnnologi

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Grafički fakultet Grafička tehnnologi Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Grafički fakultet Grafička tehnnologija Ured za upravljanje kvalitetom Sveučilište u Zagrebu

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Kroatologija Ured za

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Kroatologija Ured za Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Hrvatski studiji Kroatologija Ured za upravljanje kvalitetom Sveučilište u Zagrebu Zagreb,

Више

VEŽBE IZ OPERACIONIH ISTRAŽIVANJA

VEŽBE IZ OPERACIONIH ISTRAŽIVANJA VEŽBE IZ OPERACIONIH ISTRAŽIVANJA Glava 4 1. Metoda grananja i odsecanja 2. Metoda grananja i ograničavanja 3. Metoda implicitnog prebrojavanja MARIJA IVANOVIĆ marijai@math.rs Metoda grananja i odsecanja

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010. MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je

Више

Tutoring System for Distance Learning of Java Programming Language

Tutoring System for Distance Learning of Java Programming Language Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (

2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f ( 2. Globalna svojstva realnih funkcija Denicija 2.1 Za funkciju f : A kaemo da je:! R; A R ome dena odozgor ako postoji M 2 R takav da je (8x 2 A) (f (x) M) ; ome dena odozdol ako postoji m 2 R takav da

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike O

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike O Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike Organizacija poslovnih sustava Ured za upravljanje kvalitetom

Више

48-Blazevic.indd

48-Blazevic.indd znanstveni radovi izvan teme Iva Blažević Damir Božić Jelena Dragičević Originalni znanstveni rad RELACIJE IZMEĐU ANTROPOLOŠKIH OBILJEŽJA I AKTIVNOSTI PREDŠKOLSKOG DJETETA U SLOBODNO VRIJEME 1. UVOD Tjelesno

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike I

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike I Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet organizacije i informatike Informacijsko i programsko inženjerstvo Ured za upravljanje

Више

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet kemijskog inženjerstva i teh

Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet kemijskog inženjerstva i teh Vrjednovanje diplomskih studija od strane studenata koji su tijekom akademske godine 2015./2016. završili studij Fakultet kemijskog inženjerstva i tehnologije Primijenjena kemija Ured za upravljanje kvalitetom

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

knjiga.dvi

knjiga.dvi 1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............

Више

I

I DETALJNI IZVEDBENI NASTAVNI PLAN PREDMETA Naziv predmeta Studijski program Godina 3 Status predmeta Web stranica predmeta/mudri Mogućnost izvođenja nastave na engleskom jeziku Bodovna vrijednost i način

Више

8 2 upiti_izvjesca.indd

8 2 upiti_izvjesca.indd 1 2. Baze podataka Upiti i izvješća baze podataka Na početku cjeline o bazama podataka napravili ste plošnu bazu podataka o natjecanjima učenika. Sada ćete izraditi relacijsku bazu u Accessu o učenicima

Више

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013 Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

Linearna algebra Mirko Primc

Linearna algebra Mirko Primc Linearna algebra Mirko Primc Sadržaj Poglavlje 1. Polje realnih brojeva 5 1. Prirodni i cijeli brojevi 5 2. Polje racionalnih brojeva 6 3. Polje realnih brojeva R 9 4. Polje kompleksnih brojeva C 13 5.

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

Teorija igara

Teorija igara Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak

Више

Algoritmi SŠ P1

Algoritmi SŠ P1 Županijsko natjecanje iz informatike Srednja škola 9. veljače 2018. RJEŠENJA ZADATAKA Napomena: kodovi za većinu opisanih algoritama dani su u Pythonu radi jednostavnosti i lakše čitljivosti. Zbog prirode

Више