ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA
|
|
- Ruža Novaković
- пре 5 година
- Прикази:
Транскрипт
1 ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK BODOVATI I OCIJENITI NA ODGOVARAJUĆI NAČIN. 1. Na prvom je stajalištu izišlo 30 putnika, a ušlo 6 te ih je, nakon toga, bilo 48 u tramvaju. Na drugom je stajalištu izišlo 0 putnika, a ušlo 8 pa ih je, nakon toga, bilo 36 u tramvaju. Na trećem stajalištu izišlo je 15 putnika, a ušlo 10 te je vožnju nastavio 31 putnik... UKUPNO 6 BODOVA. Postoje 3 mogućnosti: a) b) c) Napomena: Za svako napisano netočno premještanje umanjiti broj bodova za 1, ali najviše do 0 bodova. 3. Veliki kvadrat podijeljen na 4 manja jednaka kvadrata ima te kvadrate u reda i stupca te je broj točaka ( + 1 ) ( + 1 ) = 9. Veliki kvadrat podijeljen na 9 manjih jednakih kvadrata ima te kvadrate u 3 reda i 3 stupca te je broj točaka ( ) ( ) = 16. Tada veliki kvadrat podijeljen na 3600 manjih kvadrata ima te kvadrate u 60 redova i 60 stupaca pa je broj točaka ( ) ( ) = 371. Napomena: Točan odgovor bez obrazloženja vrijedi boda. 4. Prvi način: D C F E A B
2 Neka je P površina trokuta ECF. Točka F je polovište dužine ED pa vrijedi DF FE što znači da je površina trokuta DFC jednaka površini trokuta ECF jer imaju osnovicu jednake duljine i zajedničku visinu iz vrha C. Dakle, površina trokuta DEC jednaka je P. Točka E je polovište dužine BD pa vrijedi DE EB što znači da je površina trokuta EBC jednaka površini trokuta DEC jer imaju osnovicu jednake duljine i zajedničku visinu iz vrha C. Dakle, površina trokuta EBC jednaka je P pa je površina trokuta CDB jednaka 4P. poučku S-K-S o sukladnosti slijedi ABD CDB. Prema tome je površina trokuta ABD jednaka 4P, a površina četverokuta ABCD jednaka je 8P. Količnik površine trokuta P 1 ECF i površine četverokuta ABCD iznosi 8P Drugi način: D C F E A B Točka F je polovište dužine ED pa vrijedi DF FE što znači da je površina trokuta DFC jednaka površini trokuta ECF jer imaju osnovicu jednake duljine i zajedničku visinu iz vrha C. Dakle, površina trokuta ECF jednaka je 1 površine trokuta DEC. Točka E je polovište dužine BD pa vrijedi DE EB što znači da je površina trokuta EBC jednaka površini trokuta DEC jer imaju osnovicu jednake duljine i zajedničku visinu iz vrha C. Dakle, površina trokuta DEC jednaka je 1 površine trokuta CDB odnosno površina trokuta ECF jednaka je 1 4 površine trokuta CDB. poučku S-K-S o sukladnosti slijedi ABD CDB. Prema tome je površina trokuta CDB jednaka 1 površine četverokuta ABCD odnosno površina trokuta ECF jednaka je 1 8 površine četverokuta ABCD. Količnik površine trokuta ECF i površine četverokuta ABCD iznosi
3 Treći način: Označimo s d duljinu dijagonale BD pravokutnika ABCD. Neka je v visina pravokutnog trokuta ΔBCD iz vrha C na hipotenuzu BD Vrijedi EF ED BD d. 4 v je također i visina trokuta ΔECF. 1 EF v d v Dakle, 4 dv P ECF. 8 poučku S-K-S o sukladnosti slijedi ABD CDB. BD v Tada je PABCD P CDB dv. dv 1 Količnik površine trokuta ECF i površine četverokuta ABCD iznosi dv UKUPNO 6 BODOVA 5. a b U trokutu uz pravac a kut kojemu krakovi pripadaju pravcu a i presječnici je sukladan kutu β jer su to šiljasti kutovi s usporednim kracima. Dalje se u tom trokutu izračuna veličina trećeg kuta δ: δ =180 (43 65 ) Kut γ je sukut tog kuta δ pa vrijedi γ = Napomena: Točan odgovor bez obrazloženja vrijedi 3 boda.
4 6. Prvi način: Ako proširimo razlomke tako da im brojnici budu 8, onda vrijedi p 19 Dalje slijedi 19 < 8p < 46. To znači da je 8 p { 4, 3, 40 } odnosno p { 3, 4, 5 }. S obzirom da je p prost broj, onda je p { 3, 5 }... UKUPNO 10 BODOVA Drugi način: 4 1 Iz 3 p slijedi 3 p. 4 Iz 1 8 slijedi 19 p 19 8 p Dakle, p 8 4 odnosno p { 3, 4, 5 }. S obzirom da je p prost broj, onda je p { 3, 5 }..... UKUPNO 10 BODOVA 7. Neka su m i n traženi prirodni brojevi te m < n. Tada je m n = i V(m,n) = Kako vrijedi m n = D(m,n) V(m,n), slijedi D(m,n) = : 3780 = 18. Uzimajući u obzir da je 18 = 3 3 i 3780 = , postoje sljedeće mogućnosti: Traženi brojevi su m n m n UKUPNO 10 BODOVA
5 Napomena: Ako nisu nabrojane sve mogućnosti, onda bodovati na sljedeći način: BROJ NAPISANIH MOGUĆNOSTI BROJ BODOVA 7,6 8 5,4 6 3, 4 1
ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
ВишеSKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)
SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?
Вишеos07zup-rjes.dvi
RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеMicrosoft Word - z4Ž2018a
4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,
ВишеDRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 31.oţujka-2.travnja razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA. UKOLIKO UĈENIK IM
DRŢAVNO NATJECANJE IZ MATEMATIKE Opatija, 1oţujka-travnja 011 5 razred-rješenja OVDJE JE DAN JEDAN NAĈIN RJEŠAVANJA ZADATAKA UKOLIKO UĈENIK IMA DRUGAĈIJI POSTUPAK RJEŠAVANJA, ĈLAN POVJERENSTVA DUŢAN JE
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
ВишеEkipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR
Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
Вишеgt1b.dvi
r t.h en el em 6 SUKLDNOST I SLI NOST Pripremi se za gradivo koje slijedi, rijes i pripremne zadatke koji se nalaze u elektronic kom dijelu udz benika. el em en t.h r Sukladnost je rijec koju c esto susrec
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеElementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr
Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira
ВишеMathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje
MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 28. veljače AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJER
ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 8. veljače 011. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI NA
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI
Више(Microsoft Word - Rje\232enja zadataka)
p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
. B. Podsjetimo da oznaka uz točku na brojevnom pravcu pridruženu realnom broju a znači da broj a ne pripada istaknutom podskupu skupa realnih brojeva, a da oznaka [ uz istu točku znači da broj a pripada
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
ВишеMicrosoft Word - 24ms241
Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 29. ožujka Zadatak A-1.1. Ana i Vanja stoje zajedno kraj željezničke
DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 9. ožujka 019. Zadatak A-1.1. Ana i Vanja stoje zajedno kraj željezničke pruge i čekaju da prođe vlak koji vozi stalnom brzinom.
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
. B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
Више(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
ВишеMinistarstvo znanosti i obrazovanja Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1
Ministarstvo znanosti i obrazovanja Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta Poreč, 9. ožujka
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеMinistarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 9. siječnja
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
Више5. razred
Jesensko kolo 01./01. ŠKOLA BROJ EKIPE KATEGORIJA POVJERENIK NATJECANJA D1 1.... IME I PREZIME UČENIKA RAZRED IME I PREZIME MENTORA ODGOVORI:. razred. razred.1..11..1..11....1....1....1....1....1....1..5..15..5..15....1....1....1....1....1....1....1....1....0....0.
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Вишеss08drz-A-zad.dvi
Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija Primošten,
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
ВишеNaziv studija
Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
Више1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je
1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na jednu od preostale dvije stranice i njezino nožište na
Више(Microsoft Word - MATA - ljeto rje\232enja)
. A. Izračunajmo najprije prvi faktor. Dobivamo:! 0 9 8! 0 9 0 9 0 9 = = = = = 9 = 49. 4! 8! 4! 8! 4! 4 3 Stoga je zadani brojevni izraz jednak 4 8 49 0.7 0.3 = 49 0.40 0.000066 = 0.007797769 0.0078. Znamenka
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеNastavna cjelina: 6. Sukladnost i sličnost Nastavne jedinice: -SUKLADNOST DUŽIN I KUTOVA -SUKLADNOST TROKUTA -SIMETRALA DUŽINE, KUTA I SREDNJICA TROKU
TEORIJA IZ SUKLADNOST DUŽINA I KUTOVA SUKLADNOST TROKUTA SIMETRALA DUŽINE, KUTA I SREDNJICA TROKUTA ČETIRI KARAKTERISTIČNE TOČKE TROKUTA PROPORCIONALNOST DUŽINA SLIČNOST TROKUTA 6.1. SUKLADNOST DUŽINA
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 01/01. година ТЕСТ МАТЕМАТИКА
ВишеΣ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr
1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah
ВишеMatematički leksikon
OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON Radoboj, 2012. OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON PROJEKT Predmet : Matematika Mentor: Ivica Švaljek Radoboj, 2012. godina Matematički leksikon OŠ
ВишеMATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN
IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god. 2014.-15. Uvodni sat (1 sat) Ponavljanje: Rujan 14 sati Tijela u prostoru, Geometrijski likovi (1 sat) Točka, ravna
ВишеOkruzno2007ZASTAMPU.dvi
4. RAZRED 1. Koliko ima trouglova na slici? Navesti te trouglove. D E F C A 2. Na koliko naqina Voja, Rade i Zoran mogu da podele 7 jednakih klikera, tako da svaki od Φih dobije bar jedan kliker? 3. TravΦak
ВишеPEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla
PEDAGOŠKI ZAVOD TUZLA u saradnji s UDRUŽENJEM MATEMATIČARA TUZLANSKOG KANTONA Takmičenje učenika srednjih škola Tuzlanskog kantona iz MATEMATIKE Tuzla, 3. mart/ožujak 019. godine Prirodno-matematički fakultet
ВишеИнформатичка одељења Математика Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпита
Република Србија Министарство просвете, науке и технолошког развоја Завод за вредновање квалитета образовања и васпитања ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ
Више(Microsoft Word doma\346a zada\346a)
1. Napišite (u sva tri oblika: eksplicitnom, implicitnom i segmentnom) jednadžbu tangente i jednadžbu normale povučene na graf funkcije f u točki T, te izračunajte njihove duljine (s točnošću od 10 5 )
Више(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. A. Pomnožimo zadanu jednadžbu s. Dobivamo: Dijeljenjem s 5 dobivamo x 3 (4 3 x) = ( x), x 3 6 + x = 4 x, x + x + x = 4 + 3 + 6, 5 x = 3. 3 x =. 5. C. Odredimo najprije koordinate
ВишеMinistarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА О
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки
ВишеZašto se \(ne\)uči geometrija
Zašto se (ne)uči geometrija? Crikvenica, travanj 2008. Nives Jozić, prof. Pitalica 1. Ispred mene nema nikoga, iza mene su dva 2. Ispred mene je jedan, iza mene je jedan. 3. Ispred mene nema nikoga, iza
Вишеatka 25 (2016./2017.) br. 98 Nastavak iz atke broj 97. U Nacrtaj i ti! Nikol Radović, Sisak prošlim brojevima atke upoznali smo neke metode vizualizac
Nastavak iz atke broj 97. U Nacrtaj i ti! Nikol Radović, Sisak prošlim brojevima atke upoznali smo neke metode vizualizacije trodimenzijskih geometrijskih figura u dvodimenzijskome okruženju. Prije nego
Више(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)
. D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
ВишеMicrosoft Word - 1_Uputstvo-za-ocenjivanje_ZI-2018_Matematika Jun.doc
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
ВишеPRAVAC
Nives Baranović nives@ffst.hr Odsjek za učiteljski studij Filozofski fakultet u Splitu Razvoj geometrijskog mišljenja kroz tangram aktivnosti Radionica za učitelje i nastavnike matematike VII. simpozijum
ВишеMicrosoft Word - Matematika_kozep_irasbeli_1011_horvat.doc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
ВишеGLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, 1 sat tjedno) 6. razred (35 sati) I. Uvod u GeoGe
GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, sat tjedno) 6. razred (5 sati) I. Uvod u GeoGebru. Preuzimanje i instaliranje programa. II. Upoznavanje
ВишеProgramiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеAlgoritmi SŠ P1
Državno natjecanje iz informatike Srednja škola Prvi dan natjecanja 2. ožujka 219. ime zadatka BADMINTON SJEME MANIPULATOR vremensko ograničenje 1 sekunda 1 sekunda 3 sekunde memorijsko ograničenje 512
ВишеMAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
Вишеgt3b.dvi
r t. h en m le w.e w w 7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su primjerice duljina, površina, obujam, temperatura, tlak, masa, energija,
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеMatematika kroz igru domino
29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica
Вишеm3b.dvi
7 VEKTORI U svijetu oko nas lako ćemo prepoznati mnoge veličine čija se vrijednost izražava brojem. To su, na primjer, duljina, površina, obujam, temperatura, tlak, masa, energija, specifična gustoća:::
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеXV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) zna
XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) znamenke slova Za vrijeme pisanja ispita nije dopuštena
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
ВишеMAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT45.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
Више