MAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S
|
|
- Ивица Манојловић
- пре 5 година
- Прикази:
Транскрипт
1 MAT B MATEMATIKA osnovna razina MAT45.HR.R.K.
2 Prazna stranica 99
3 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik. Nalijepite identifikacijske naljepnice na sve ispitne materijale koje ste dobili u sigurnosnoj vrećici. Ispit traje 5 minuta. Ispred svake skupine zadataka uputa je za rješavanje. Pozorno je pročitajte. Pri računanju možete upotrebljavati list za koncept koji se neće ovati. Upotrebljavajte isključivo kemijsku olovku kojom se piše plavom ili crnom bojom. Možete upotrebljavati priloženu knjižicu formula. Pišite čitko. Nečitki odgovori ovat će se s nula () ova. Ako pogriješite u pisanju, pogreške stavite u zagrade, precrtajte ih i stavite skraćeni potpis. Zabranjeno je potpisati se punim imenom i prezimenom. Kada riješite zadatke, provjerite odgovore. Želimo Vam mnogo uspjeha! Ova ispitna knjižica ima stranica, od toga 5 praznih. Ako ste pogriješili u pisanju odgovora, ispravite ovako: a) zadatak zatvorenoga tipa Ispravno Ispravak pogrešnoga unosa Neispravno Prepisan točan odgovor Skraćeni potpis b) zadatak otvorenoga tipa (Marko Marulić) Petar Preradović Precrtan netočan odgovor u zagradama Točan odgovor Skraćeni potpis 99 3
4 I. Zadatci višestrukoga izbora U sljedećim zadatcima od više ponuđenih odgovora samo je jedan točan. Pri računanju možete pisati i po stranicama ispitne knjižice. Točne odgovore morate označiti znakom X na listu za odgovore. U zadatcima od. do 6. točan odgovor donosi jedan.. Koji od navedenih brojeva nije ispravno zaokružen broj 4.576? Koji od navedenih intervala sadrži točno tri cijela broja? [ 36, ] 47, ] 59, 69, ( ) 3. Zadani su brojevi K = 3, L= 3, M = 3, N = 3. Što je od navedenoga točno? K = L K < M L> N M N 4
5 4. Koja od navedenih tvrdnja vrijedi za rješenje jednadžbe x 3 ( x )=? 3 x < x 5 5< x x > ( ) 5. Koja je od navedenih točaka od točke T, 8 udaljena za 5? ( ) ( ) (, 5) (, 7) 7, 8 58, 6. Ako je QvB m v =, čemu je jednako R? R R v = mqb R = mv QB R= m QB v R = QB mv 5
6 7. Koliki je volumen (obujam) kvadra čiji su bridovi duljina 5 m, dm i 4 mm?.4 cm 3.4 cm 3 4 cm 3 4 cm 3 8. Koliko bridova ima trostrana piramida? Dvije kružnice diraju se iznutra tako da manja kružnica prolazi središtem veće kružnice. Ako je opseg kruga omeđenoga većom kružnicom p cm, koliki je opseg kruga omeđenoga manjom kružnicom? p cm 5p cm 5p cm 75p cm. Masa vozila bez tereta je 3 kilograma. Nakon utovara teret čini 6 % ukupne mase. Koliko posto ukupne mase čini teret nakon što je istovarena trećina tereta? % 45 % 5 % 75 % 6
7 . Elektroinstalater Marko naplaćuje dolazak u zgradu 35 kuna, a montiranje svakoga rasvjetnog tijela po 47 kuna. Elektroinstalater Ivan naplaćuje dolazak u zgradu kuna, a montiranje svakoga rasvjetnog tijela po 5 kune. Za koliko će rasvjetnih tijela cijene usluga obaju majstora biti jednake? za 5 za 8 za za 4. Koje koordinate ima nultočka funkcije f ( x)= x + 4? 3 ( ) 6, (, 6) ( ) ( ) 4, 4, 3. Graf kvadratne funkcije f prolazi točkama 8,,,,,. Koliko je f 3 8 ( ) ( ) ( ) ()? 7
8 4. U drvoredu je 38 stabala. Između prvoga i drugoga stabla posađena su grma, između drugoga i trećega stabla posađen je grm i dalje su naizmjenično redom posađena po grma ili grm. Koliko je ukupno grmova posađeno između prvoga i zadnjega stabla? Pod pravokutnoga oblika dimenzija 6.4 m 9. m popločan je kvadratnim pločama dimenzija 34 cm 34 cm. Ploče su lijepljene jedna do druge bez razmaka. Od svake ploče koju je trebalo rezati zalijepljen je samo jedan odrezani dio, a ostatak nije korišten. Koliko je komada ploča potrošeno za popločavanje? U nekome skupu brojeva 5 % ih je negativnih ili jednakih, a 65 % manjih ili jednakih. Čemu je u tome skupu jednak omjer broja pozitivnih brojeva manjih ili jednakih i broja onih brojeva većih od? 5 : 7 5 : 3 8 : 7 3 : 7 8
9 II. Zadatci kratkoga odgovora U sljedećim zadatcima odgovorite kratkim odgovorom. Pri računanju upotrebljavajte list za koncept koji se neće ovati. Odgovore upišite samo na predviđeno mjesto u ispitnoj knjižici. Ne popunjavajte prostor za ovanje. 7. Izračunajte ( 3 ) + 5 i zapišite rezultat u decimalnome obliku. Odgovor: 8. Riješite sustav jednadžba x+ y = 3x 4x 5y = 6 y. Odgovor: x =, y = 9
10 9. Riješite zadatke. 9.. U tablici su prikazane mjesečne neto plaće jednoga djelatnika za prvih šest mjeseci 3. godine. Kolika je njegova prosječna neto plaća za prva tri mjeseca te godine? Mjesec I. II. III. IV. V. VI. Neto plaća (kn) Odgovor: kn 9.. Mirta je u prosincu 5. godine kupila bitcoina. Vrijednost jednoga bitcoina tada je bila US Nakon dvije godine vrijednost bitcoina povećala se 38.5 puta i tada je Mirta prodala svojih bitcoina. Koliko je dolara Mirta pritom zaradila? Odgovor: USD. Riješite zadatke... Čemu je jednak izraz aa ( + 4) 3( a 5 ) nakon provođenja naznačenih operacija i sređivanja? Odgovor:.. Koji je rezultat do kraja sređenoga izraza za sve x za koje je izraz definiran? x 3 x x x 9 + Odgovor:
11 . Riješite zadatke... Koliko je a b + 5. b za a = 3 i b =? Odgovor:.. Ako je 5 m i p 4, kolika je najveća moguća vrijednost izraza m p? Odgovor:. Riješite zadatke... Riješite jednadžbu kx + 5= k 4x u kojoj je k realan broj, k. Odgovor: x =.. Riješite nejednadžbu ( x 5) ( 5x+ )> 3x x( 5 7x). Odgovor:
12 3. Riješite zadatke. 3.. Za koje realne brojeve t vrijedi jednakost t( t+ 9)= 5? Odgovor: Riješite jednadžbu. x =. Odgovor: x = 4. Riješite zadatke Zadana je funkcija f ( x)= x 7 7. Za koji je x vrijednost funkcije f x ( ) za veća od f ( )? Odgovor: x = 4.. U jednome uredu sakuplja se papir za recikliranje. U razdoblju od n tjedana sakupljeno je ukupno P (n) kilograma papira gdje se P (n) može izraziti formulom P (n) =.63n. Koliko je ukupno papira sakupljeno u tome uredu tijekom petoga i šestoga tjedna? Odgovor: kg
13 5. Riješite zadatke. 5.. Na skici je prikazan pravokutnik ABCD duljina stranica AB = 7 cm i BC = 3 cm. Na stranici AB bliže točki B nalazi se točka E tako da je CED = 9. Kolika je duljina dužine AE? Odgovor: AE = cm 5.. Kružnim dijagramom prikazan je broj posjetitelja triju koncerata. Kolika je mjera kuta α na tome dijagramu? α Odgovor: 3
14 6. Riješite zadatke. 6.. Zadan je četverokut ABCD prikazan na skici. Kolika je površina četverokuta ABCD? Odgovor: P = cm 6.. Stožac i valjak imaju baze jednakih polumjera. Koliko je puta visina stošca veća od visine valjka ako su im volumeni jednaki? Odgovor: 4
15 7. Na slici su prikazani grafovi funkcija y f x točke s cjelobrojnim koordinatama. = ( ) i y = g( x) i istaknute su njihove 7.. Napišite koordinate tjemena grafa kvadratne funkcije f. Odgovor: 7.. Napišite koeficijent smjera grafa linearne funkcije g. Odgovor: 7.3. Za koje vrijednosti od x vrijedi f ( x)= g( x)? Odgovor: 5
16 8. Količina goriva u spremniku automobila mijenja se linearno ovisno o broju prijeđenih kilometara. U tablici su navedeni podatci o količini goriva tijekom jednoga putovanja. Prijeđeni put u kilometrima (km) Količina goriva u spremniku u litrama (L) Ako je na početku toga putovanja spremnik goriva bio 8 % napunjen, koliki je ukupni kapacitet spremnika? Odgovor: L 8.. Koliko je goriva potrošio taj automobil za prijeđenih km na tome putovanju? Odgovor: L () kao funkciju od s gdje je s prijeđeni put u kilometrima, a G() s 8.3. Zapišite G s količina goriva u spremniku tijekom toga putovanja. Odgovor: G s ()= 6
17 Prazna stranica 99 7
18 Prazna stranica 99 8
19 Prazna stranica 99 9
20 Prazna stranica 99
21 MATEMATIKA B - Ključ za odgovore, ljetni rok 9. MATEMATIKA OSVNA RAZINA. C. B 3. D 4. A 5. A 6. B 7. D 8. B 9. C. C. B. A 3. D 4. C 5. D 6. C x = 4.5, y = a a x + 3 x + 3 ( ) k 5 k x , , (,5 ) G s = s ( ) 4..64
22 ffi if!.ff#i:#*uun' rsprr onznvne MATURE MATEMATIKA - osnovna razina M A T B List za odgovore Sifra moderatora: D-S45. A B c\ D. A ex C D 3. A B C Dx 4. nx B c D 5. Ax B C D 6. A EX C D 7, A B C DX 8. A B)i c D e. A B cx D. A B Cx D. A ex c D. nx B C D 3. A B C DX 4. A B cx D 5. A B c od 6. A B cx D Ostale zadatke rije5ite u ispitnoj knjizici. Popunjava ocjenjivac Sifra ocjenjivada: MAT45.HR.R.L., illriffi iliillllil il 3558 NE FOTOKOPIRATI obrazac se ere oprcxr NE PISATI PREKO POLJA ZA ODGOVORE Oznadavati ovako: I MATB
23 MAT B MATEMATIKA osnovna razina KNJIŽICA FORMULA MAT45.HR.R.T.4 MAT T B
24 Knjižica formula F O R M U L E a a = a m n m+ n m n m n a : a = a, a a m =, a m a ( a± b) = a ± ab+ b a b = ( a b)( a+ b) b b 4ac Kvadratna jednadžba: ax + bx + c=, a, x = ±, a b 4ac b Tjeme parabole: T, a 4a Površina trokuta: P av a = Površina paralelograma: P= a v Površina jednakostraničnoga trokuta: P = a 3 4 Površina kruga: P= r π Opseg kruga: O= rπ MAT T B 99
25 Knjižica formula B = površina osnovke (baze), P = površina pobočja, h = duljina visine, r = polumjer kugle Obujam (volumen) prizme i valjka: V = B h Oplošje prizme: O= B+ P Obujam (volumen) piramide i stošca: V = B h 3 Oplošje piramide: O= B+ P Obujam (volumen) kugle: V = 4 r 3 π 3 Udaljenost točaka T, T : dt (, T ) = ( x x ) + ( y y ) Jednadžba pravca: y y = kx ( x ), k = y x y x Uvjet usporednosti pravaca: k = k MAT T B 99 3
26 Prazna stranica MAT T B 99 4
MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
ВишеMAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S
MAT A MATEMATIKA viša razina MATA.45.HR.R.K.8 Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
ВишеINF INFORMATIKA INF.35.HR.R.K1.24 INF D-S
INF INFORMATIKA INF.35.HR.R.K.24 2 Prazna stranica 99 2 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik. Nalijepite
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеMicrosoft Word - z4Ž2018a
4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеINF INFORMATIKA INF.27.HR.R.K1.20 INF D-S INF D-S027.indd :50:41
INF INFORMATIKA INF.7.HR.R.K..indd 7.7.6. 3:5:4 Prazna stranica 99.indd 7.7.6. 3:5:4 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
ВишеMicrosoft Word - 24ms241
Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako
Више(Microsoft Word - Rje\232enja zadataka)
p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi
Више(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj
ВишеKEM KEMIJA Ispitna knjižica 2 OGLEDNI ISPIT KEM IK-2 OGLEDNI ISPIT 12 1
KEM KEMIJA Ispitna knjižica 2 OGLEDNI ISPIT 2 Prazna stranica 99 2 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
ВишеXV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) zna
XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) znamenke slova Za vrijeme pisanja ispita nije dopuštena
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
ВишеSKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)
SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
Више(Microsoft Word - MATA - ljeto rje\232enja)
. A. Izračunajmo najprije prvi faktor. Dobivamo:! 0 9 8! 0 9 0 9 0 9 = = = = = 9 = 49. 4! 8! 4! 8! 4! 4 3 Stoga je zadani brojevni izraz jednak 4 8 49 0.7 0.3 = 49 0.40 0.000066 = 0.007797769 0.0078. Znamenka
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеC2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b
C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI
ВишеDvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеMathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje
MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije
ВишеEkipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR
Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
. B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino
ВишеElementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr
Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira
Више(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)
. D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ
ВишеSlide 1
OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
ВишеNAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka
NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima
ВишеProgramiranje 1 drugi kolokvij, 2. veljače Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje,
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni podsjetnik. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 1 9 Ispit iz matematike na državnoj maturi post festum Vinko Bajrović Sažetak Iznošenje arg
ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 1 9 Ispit iz matematike na državnoj maturi post festum Vinko Bajrović Sažetak Iznošenje argumenata koji ukazuju na potrebu ukidanja ispita iz
Више(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. A. Pomnožimo zadanu jednadžbu s. Dobivamo: Dijeljenjem s 5 dobivamo x 3 (4 3 x) = ( x), x 3 6 + x = 4 x, x + x + x = 4 + 3 + 6, 5 x = 3. 3 x =. 5. C. Odredimo najprije koordinate
ВишеMatematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI
Matematika horvát nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2012/2013. година
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o
Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti
Више(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. A. Prema definiciji, interval a, b] je skup svih realnih brojeva koji su strogo veći od a, a jednaki ili manji od b. Stoga je interval 3, ] skup svih realnih brojeva koji
ВишеNaziv studija
Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matema
ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matematike (KŠC Travnik); 2. Ivana Baban, prof. matematike
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
ВишеMatematički leksikon
OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON Radoboj, 2012. OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON PROJEKT Predmet : Matematika Mentor: Ivica Švaljek Radoboj, 2012. godina Matematički leksikon OŠ
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r
Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2013/2014. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеTest ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime
Test ispravio: () () Ukupan broj bodova:. veljače 04. od 3:00 do 4:00 Ime i prezime Razred Škola Županija Mentor Sadržaj Upute za natjecatelje... Zadaci... Upute za natjecatelje Vrijeme pisanja: 60 minuta
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/2016. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ
ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠC Sarajevo); 2. Jasmina Imamović, nas. matematike (KŠC
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеDržavna matura iz informatike
DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja
ВишеProgramiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 2018/2019. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеМинистарство просвете, науке и технолошког развоја ДРУШТВО МАТЕМАТИЧАРА СРБИЈЕ Општинско такмичење из математике ученика основних школа III
25.02.2017 III разред 1. Број ногу Периних паса је за 24 већи од броја њихових глава. Колико паса има Пера? 2. На излет су кренула три аутобуса у којима је било укупно 150 ученика. На првом одмору је из
ВишеMicrosoft Word - Matematika_kozep_irasbeli_1011_horvat.doc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
ВишеMicrosoft Word - 1_Uputstvo-za-ocenjivanje_ZI-2018_Matematika Jun.doc
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE
ВишеSveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič
Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеGLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, 1 sat tjedno) 6. razred (35 sati) I. Uvod u GeoGe
GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, sat tjedno) 6. razred (5 sati) I. Uvod u GeoGebru. Preuzimanje i instaliranje programa. II. Upoznavanje
Више23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi
3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem
Више0255_Uvod.p65
1Skupovi brojeva Skup prirodnih brojeva Zbrajanje prirodnih brojeva Množenje prirodnih brojeva U košari ima 12 jaja. U drugoj košari nedostaju tri jabuke da bi bila puna, a treća je prazna. Pozitivni,
Више