Zašto se \(ne\)uči geometrija

Save this PDF as:
 WORD  PNG  TXT  JPG
Величина: px
Почињати приказ од странице:

Download "Zašto se \(ne\)uči geometrija"

Транскрипт

1 Zašto se (ne)uči geometrija? Crikvenica, travanj Nives Jozić, prof.

2 Pitalica 1. Ispred mene nema nikoga, iza mene su dva 2. Ispred mene je jedan, iza mene je jedan. 3. Ispred mene nema nikoga, iza mene su dva. Kako je to moguće? 2/50

3 Učenje matematike Kroz predmet matematike treba odgovoriti na 3 pitanja: Zašto se uči matematike? Što treba učiti? Kako poučavati? Razvijanje matematičkog mišljenja logičko povezivanje, analiziranje, sistematiziranje, zaključivanje itd. Cilj učenja matematike Formiranje osobe koja je samosvjesna, čvrsta, cijeni prave vrijednosti, može ispravno odlučiti itd. Stjecanje znanja i osposobljavanje za njihovu primjenu u svakodnevnom životu 3/50

4 Zavirimo u povijest Matematika se od prapovijesnih početaka i preko prvih civilizacija razvijala emprijski. U starogrčkoj matematici započinje apstrahiranje i aksiomatiziranje. Na izgradnju sveukupne matematike veliki utjecaj imala je geometrija Ornamenti ukazuju na dominaciju geometrije. Izgradnju geometrije kao znanosti započinje Eukild - deduktivno. 4/50

5 Poznati o geometriji Egipatski faraon: Može li se na jednostavan način naučiti geometrija? Euklid: Vaše visočanstvo, nema kraljevskih putova u geometriji. Platon: Geometrija približava razum istini. Khaldum: Um koji stalno primjenjuje geometriju teško će učiniti pogrešku. 5/50

6 Prvi koraci Spoznajni put učenika treba ići od iskustvenog prema apstraktnom. Čovjek lakše razumije i pamti slike i crteže nego apstraktne simbole i pojmove. Brže uči ono što iskustveno može doživjeti. Učenje u 1. razredu započinje geometrijskim sadržajima: oblicima u prostoru i ravnini te odnosima meñu njima (model se može vidjeti, dodirnuti, napraviti, predočiti, usporediti po veličini) 6/50

7 Što je geometrija? Geometrija grč. γεωµετρία, geo Zemlja, metria mjerenje; zemljomjerstvo Geometrija dio matematike koji se bavi veličinama, oblicima i odnosima meñu njima. Osnovni geometrijski pojmovi: točka, pravac, ravnina i prostor 7/50

8 Geometrija - prva disciplina koja je aksiomatizirana Aksios - grč. tvrdnja koja ne izaziva nikakve sumnje. Principi aksiomatizacije Princip nezavisnosti - aksiomi se ne mogu izvesti deduktivno jedan iz drugoga, niti njihovi dijelovi Princip neproturječnosti iz sustava aksioma se ne može izvući deduktivno i tvrdnja i njena negacija Princip potpunosti sustav daje odgovor na svako pitanje teorije izgrañene iz tog sustava 8/50

9 Geometrija u nastavi je Idealan teren za učenje Najbolje sredstvo za razvijanje matematičkog mišljenja Prikladna za kreativan i istraživački rad 9/50

10 Geometrija u nastavi je Na margini Mnogi je ne vole učiti Privlačna je zbog zornosti. Omražena je zbog apstraktnosti. Mnogi je ne vole poučavati. Neizostavna zbog široke primjene u svim sferama društvene djelatnosti 10/50

11 Razredna nastava 1. razred (25/140 ~ 18%) Tijela u prostoru, ravne i zakrivljene plohe, ravnine i zakrivljene crte, točka 2. razred (12/140 ~ 9%) Stranice kvadrata, pravokutnika i trokuta 3. razred (40/140 ~ 29%) Ravnina, likovi u ravnini, pravac, polupravac i dužina, pravci koji se sijeku, usporedni i okomiti pravci, krug, kružnica 4. razred (40/140) Kut (pravi, šiljasti i tupi), trokut (vrste obzirom na stranice, pravokutni, opseg), pravokutnik i kvadrat (opseg i površina), kvadar i kocka (obujam kocke) 11/50

12 Predmetna nastava 5. razred (36/140 ~26%) Pravac, polupravac, dužina, simetrala dužine, kružnica i krug, paralelogram, kut (mjerenje, sukuti i vršni kutovi, trokut i vrste trokuta, osnosimetrični likovi. 6. razred (44/140 ~ 31%) Kutovi (uz presječnicu, s okomitim i usporednim kracima), trokut (zbroj kutova, simetrala kuta, konstrukcija kutova, sukladnost, tri osnovne konstrukcije, površina), četverokut (zbroj kutova, konstrukcije paralelograma, površina paralelograma i trapeza). 7. razred (93/140 ~ 66%) Koordinatni sustav na pravcu i u ravnini, sličnost trokuta i primjena, mnogokuti (pravilni, opseg i površina), kružnica i krug (Talesov poučak, pravac i kružnica, opseg i površina), graf linearne funkcije 8. razred (94/140 ~ 67%) Pitagorin poučak i primjena, preslikavanje ravnine (translacija, osna i centralna simetrija, rotacija), točke pravci i ravnine u prostoru, geometrijska tijela 12/50

13 Gimnazije i tehničke škole 1. razred (40% - 50%) Koordinatni sustav u ravnini, graf linearne funkcije, sukladnost i sličnost, krug i kružnica, izometrije ravnine 2. razred (47% - 58%) Graf kvadratne, eksponencijalne i logaritamske funkcije, trigonometrija pravokutnog trokuta, geometrija prostora 3. razred (62% - 85%) Trigonometrijske funkcije, jednadžbe i nejednadžbe, vektori u ravnini, analitička geometrija 4. razred (17% - 26%) Funkcije, primjena derivacije i integrala, geometrijska vjerojatnost. 13/50

14 Prepreke u učenju 1. Nema postupnosti Učenici najčešće ne uče redovito. Aristotel: Priroda ne čini skokove. U prirodi učenja matematike je proširivanje i nadograñivanje naučenoga. Spiralno programiranje. 14/50

15 Prepreke u učenju 2. Krivo učenje pojmova U nastavi - genetička definicija (opisno, intuitivno objašnjjnje) Učenici najčešće uče iz bilježnice, a u njima često krivo piše. Primjer: Za svaka dva pravca kažemo da su paralelni ako se ne sijeku. Za dva pravca kažemo da su paralelni ako se nalaze u istoj ravnini i nemaju zajedničkih točaka ili su im sve točke zajedničke. Uvoñenje novih pojmova definicijom: 15/50 Jasno, točno i sažeto.

16 Onaj koji cijeni praksu bez teorijskih osnova sličan je moreplovcu koji ulazi u brod bez krme i busole ne znajući kuda se plovi. 16/50

17 Učenici su pisali sve što su znali o trokutu i površini. 3 učenika točno, 21 učenik ništa. 16% D/08. 2B kategorija, 4. Z. Nerazumijevanje pojmova. 17/50

18 Prepreke u učenju 3. Nedostatak predodžbe Geometrijski zor Ima veliku metodičku vrijednost u poučavanju ako se pravilno primjeni. 18/50

19 Zor i njegove zamke Pravi kut jednak je tupom Geometrija je umijeće ispravnog zaključivanja na pogrešnim slikama. Prostorni zor 19/50

20 Iluzija ili stvarnost? 20/50

21 Crtanje geometrijskih likova 21/50

22 Crtanje elemenata geometrijskih likova Ž/2008., 6. r., 5. zadatak Zadan je jednakokračan trokut duljinom kraka 7.5 cm i kutom na osnovici od 75. Kolika je površina trokuta? 0% Visina trokuta Polovica jednakostraničnog trokuta. 22/50

23 Crtanje geometrijskih tijela Perspektiva Koliko je kocaka na slici? 23/50

24 Prostoručno crtanje Crtež na ploči predstavlja model učeniku za crtanje u bilježnicu. Mogu li učenici prostoručno crtati uredno? 24/50

25 Označavanje točaka, duljina, veličina Pitagorin poučak b c a m n h d y z fx g s e 25/50

26 24 22 Izračunavanje površine Direktno: = = = = = P= /50-8

27 Indirektno: =12 P sve = =15 P sve = = P = P = /50-8

28 Ž/08., 5. razred, 4. zadatak 21 učenik točno riješio od 166 učenika 28/50

29 Ž/08., 6. razred, 4. zadatak P P = a a 2 = 3 4 a 2 a a 8 4 učenika točno riješila od ukupno /50

30 Problemski zadatak Pronañi primjer površine kojoj je ploština konačan broj (različit od 0), a opseg beskonačan broj. d1 d2 = 2 dn dn+ 1 = 2 P < P < P TRSU X PRSQ PV > PT 30/50

31 Geometrijska algebra Algebarski problemi se rješavaju pomoću geometrije = 5 2 * 3 = 6 31/50

32 Problemski zadaci (u nižim razredima) Ivan, njegova majka i otac zajedno imaju 90 godina. Ako je otac 6 godina stariji od majke, a majka ima 3 puta više godina od Ivana, koliko svaki od njih imaju godina? = 90 Ivan Majka Otac 7 * = 90 6 = 84 = 84 : 7 = 12 Ivan ima 12 godina, majka 36, a otac 42 godine. 32/50

33 Kvadratni brojevi Zbroj prvih n neparnih brojeva je n-ti kvadratni broj = = = Općenito: n = n 2 33/50

34 Geometrijski red Površina kvadrata upisanih u jednakokračan pravokutan trokut (s krakom duljine a) čini geometrijski niz: a a a,,, Zbrajanje površina čini geometrijski red. 34/50

35 Funkcije u geometriji Preslikavanja geometrijskih skupova točaka Translacija Rotacija Simetrija Homotetija (centralna simetrija) Sličnost Inverzija Projiciranje 35/50

36 Analitička geometrija Geometrijski problemi se rješavaju algebarski u koordinatnom sustavu. Grafovi elementarnih funkcija Primjena kvadratne funkcije Kompozicija elementarnih funkcija Trigonometrijska kružnica 36/50

37 Geometrijska vjerojatnost Geometrijska vjerojatnost predstavlja vjerojatnost slučajnog izbora točke iz podskupa nekog skupa. Omogućava jednostavnije rješavanje nekih problema. Ω A Ω skup točaka; A podskup od Ω µ(ω), µ(a) mjera duljine, površine obujma Vjerojatnost da se nasumce odabere točka iz skupa A: P ( A) = µ ( A) µ ( Ω ) 37/50

38 Geometrijska vjerojatnost 1. Unutar kruga slučajno je odabrana točka. Nañite vjerojatnost da točka bude u: a) Kvadratu upisanom u taj krug b) Jednakostraničnom trokutu upisanom u taj krug 2. Nasumce se biraju dvije točke iz segmenta [-2, 2]. Kolika je vjerojatnost: a) Da njihova udaljenost bude veća od 1? b) Da one dijele segment na tri jednaka dijela? c) Da obje pripadaju segmentu [-2, 0]? 38/50

39 r a r a µ ( A) = a = 2r ( Ω ) = r 2 µ π 2 2 µ ( A) P( A) = µ ( Ω) 2 P( A) = π a 3 r = a = r a 3 3r 3 µ ( A) = = µ ( Ω ) = r π 2 3r 3 P( A) = r π 39/50

40 y f( x) = x+1 g( x) = x-1 x ( ) { } A = x, y Ω : x y > 1, µ ( A) = 9 ( ) { 2 x y R x y } Ω =, : 2 2, 2 2, µ ( Ω ) = 16 9 a) P( A) = 16 b) P( A) = 0 c) P( A) = /50

41 Dokazi u geometriji Trokut i četverokut Ortocentar trokuta Sinus zbroja dvaju kutova 41/50

42 Geometrijske konstrukcije Točka je konstruirana ako je dobivena kao presjek dvaju pravaca, pravca i kružnice ili dviju kružnica. Riješiti konstruktivni zadatak znači svesti ga na ove tri konstrukcije. Pravac je konstruiran, ako su konstruirane njegove dvije točke. Trokut je konstruiran ako su konstruirana njegova tri vrha. Kružnica je konstruirana ako je njeno konstruirano središte i bilo koja njena točka. 42/50

43 Geometrijske konstrukcije Koraci Analiza Konstrukcija Dokaz valjanosti konstrukcije Diskusija 43/50

44 Geometrijske konstrukcije Metode 1. Metoda presjeka skupova točaka (GMT) 2. Metoda geometrijskih transformacija (translacija,simetrija, rotacija, homotetija, sličnost, inverzija, kontrakcija) 3. Metoda pomoćnih likova 4. Algebarska metoda (algebarski se odredi veličina pomoću koje se rješava konstrukcija) 44/50

45 Geometrijske konstrukcije Zaboravljene? Korisne Primjer (Premjeravanje zemljišta) Za dodatni rad učenika 45/50

46 Geometrija i računalo Programi dinamičke geometrije. Razni alati Internet Računalo koristiti mudro. U ključnom trenutku Vješto Ne pretjerano 46/50

47 Projektni zadaci, istraživački rad Zlatni rez Broj π (Dan broja pi) Kvadratura kruga, duplikacija kocke, trisekcija kuta Fraktalna geometrija Verižni razlomci Spirala drugog korijena 47/50

48 Matematičar svih vremena ARHIMED Noli turbare circulos meos. Ne dirajte moje krugove. 48/50

49 Sudbina može čovjeka posaditi u zlatna kola, ali ako ih on ne umije goniti, neće se ni smjesta maknuti. Hadis 49/50

50 Hvala na pozornosti. 50/50

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)

SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr

Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira

Више

Naziv studija

Naziv studija Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019.

Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019. Konstruktivne metode u geometriji prema predavanjima profesora Vladimira Voleneca verzija: 12. lipnja 2019. Sadržaj 1 Euklidske konstrukcije 2 1.1 Povijest..................................... 2 1.2 Aksiomi

Више

gt1b.dvi

gt1b.dvi r t.h en el em 6 SUKLDNOST I SLI NOST Pripremi se za gradivo koje slijedi, rijes i pripremne zadatke koji se nalaze u elektronic kom dijelu udz benika. el em en t.h r Sukladnost je rijec koju c esto susrec

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

Microsoft Word - z4Ž2018a

Microsoft Word - z4Ž2018a 4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,

Више

PRAVAC

PRAVAC Nives Baranović nives@ffst.hr Odsjek za učiteljski studij Filozofski fakultet u Splitu Razvoj geometrijskog mišljenja kroz tangram aktivnosti Radionica za učitelje i nastavnike matematike VII. simpozijum

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

Microsoft Word - 24ms221

Microsoft Word - 24ms221 Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, 1 sat tjedno) 6. razred (35 sati) I. Uvod u GeoGe

GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, 1 sat tjedno) 6. razred (35 sati) I. Uvod u GeoGe GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, sat tjedno) 6. razred (5 sati) I. Uvod u GeoGebru. Preuzimanje i instaliranje programa. II. Upoznavanje

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

Matematički leksikon

Matematički leksikon OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON Radoboj, 2012. OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON PROJEKT Predmet : Matematika Mentor: Ivica Švaljek Radoboj, 2012. godina Matematički leksikon OŠ

Више

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste

Више

atka 25 (2016./2017.) br. 98 Nastavak iz atke broj 97. U Nacrtaj i ti! Nikol Radović, Sisak prošlim brojevima atke upoznali smo neke metode vizualizac

atka 25 (2016./2017.) br. 98 Nastavak iz atke broj 97. U Nacrtaj i ti! Nikol Radović, Sisak prošlim brojevima atke upoznali smo neke metode vizualizac Nastavak iz atke broj 97. U Nacrtaj i ti! Nikol Radović, Sisak prošlim brojevima atke upoznali smo neke metode vizualizacije trodimenzijskih geometrijskih figura u dvodimenzijskome okruženju. Prije nego

Више

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr

Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij studenog Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vr 1 2 3 4 5 Σ Ime i prezime, JMBAG: ELEMENTARNA GEOMETRIJA prvi kolokvij - 24. studenog 2017. Napomene: Kolokvij ima ukupno 5 zadataka, svaki zadatak vrijedi 7 bodova. Vrijeme rje²avanja je 120 minuta. Odmah

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka) . D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

Jednadžbe - ponavljanje

Jednadžbe - ponavljanje PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili

Више

Matematika_kozep_irasbeli_javitasi_1013_horvat

Matematika_kozep_irasbeli_javitasi_1013_horvat Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni

Више

PROJEKT UNAPRJEĐENJE PISMENOSTI U ZDRAVSTVENOM UČILIŠTU UP Danijel Kolarid PRIMIJENJENA TRIGONOMETRI

PROJEKT UNAPRJEĐENJE PISMENOSTI U ZDRAVSTVENOM UČILIŠTU UP Danijel Kolarid PRIMIJENJENA TRIGONOMETRI www.pismenost.eu info@pismenost.eu PROJEKT UNAPRJEĐENJE PISMENOSTI U ZDRAVSTVENOM UČILIŠTU UP.03.2.2.03.0185 Danijel Kolarid PRIMIJENJENA TRIGONOMETRIJA Kurikulum fakultativnog predmeta Zagreb, rujan 2018.

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u

Више

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5.

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA 5. Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 57. ŽUPANIJSKO/KLUPSKO NATJECANJE MLADIH TEHNIČARA 205. PISANA PROVJERA ZNANJA 5. RAZRED Zaporka učenika: Ukupan zbroj bodova pisanog

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,

Више

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR

Ekipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći

Више

MATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN

MATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god. 2014.-15. Uvodni sat (1 sat) Ponavljanje: Rujan 14 sati Tijela u prostoru, Geometrijski likovi (1 sat) Točka, ravna

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) . D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Microsoft Word - Mat-1---inicijalni testovi--gimnazija

Microsoft Word - Mat-1---inicijalni testovi--gimnazija Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x

Више

(Microsoft Word - MATA - ljeto rje\232enja)

(Microsoft Word - MATA - ljeto rje\232enja) . A. Izračunajmo najprije prvi faktor. Dobivamo:! 0 9 8! 0 9 0 9 0 9 = = = = = 9 = 49. 4! 8! 4! 8! 4! 4 3 Stoga je zadani brojevni izraz jednak 4 8 49 0.7 0.3 = 49 0.40 0.000066 = 0.007797769 0.0078. Znamenka

Више

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati

atka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

PŠ TRNJANSKI KUTI 1. RAZRED Nastavni predmet Smjer Datum Bilješka Datum upisa Zadnje izmjenio/la Matematika (000108) Osnovna škola - redovni program 1

PŠ TRNJANSKI KUTI 1. RAZRED Nastavni predmet Smjer Datum Bilješka Datum upisa Zadnje izmjenio/la Matematika (000108) Osnovna škola - redovni program 1 PŠ TRNJANSKI KUTI 1. RAZRED program 13.02.2017. Zbrajanje i oduzimanje do 10 17.01.2017. 12:26:02 Melita Galovac (06.02.2017.) program 09.03.2017. Naše tijelo i zdravlje 17.01.2017. 12:39:43 Melita Galovac

Више

294 PLANIMETRIJA PLANIMETRIJA, dio geometrije koji proučava skupove točaka u euklidskoj ravnini (v. Geometrija, TE 6, str. 120). Neki posebni skupovi

294 PLANIMETRIJA PLANIMETRIJA, dio geometrije koji proučava skupove točaka u euklidskoj ravnini (v. Geometrija, TE 6, str. 120). Neki posebni skupovi 294 PLANIMETRIJA PLANIMETRIJA, dio geometrije koji proučava skupove točaka u euklidskoj ravnini (v. Geometrija, TE 6, str. 120). Neki posebni skupovi točaka, kao što su dužina, kut, kružnica i krug, jesu

Више

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc

Microsoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i

MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba

Више

Slide 1

Slide 1 OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

SVEUČILIŠTE U ZAGREBU UČITELJSKI FAKULTET ODSJEK ZA UČITELJSKE STUDIJE VERONIKA TKALEC DIPLOMSKI RAD KOCKA I KVADRAT KAO DIO PROJEKTNE NASTAVE MATEMAT

SVEUČILIŠTE U ZAGREBU UČITELJSKI FAKULTET ODSJEK ZA UČITELJSKE STUDIJE VERONIKA TKALEC DIPLOMSKI RAD KOCKA I KVADRAT KAO DIO PROJEKTNE NASTAVE MATEMAT SVEUČILIŠTE U ZAGREBU UČITELJSKI FAKULTET ODSJEK ZA UČITELJSKE STUDIJE VERONIKA TKALEC DIPLOMSKI RAD KOCKA I KVADRAT KAO DIO PROJEKTNE NASTAVE MATEMATIKE Zagreb, studeni 2015. SVEUČILIŠTE U ZAGREBU UČITELJSKI

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln

Zadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Untitled Spreadsheet

Untitled Spreadsheet 1.razred-PŠ Kaštelir 18.01.2019. Kontrolni test 1 (cjeline 0.1.2.3.; pozdravi, brojevi, muški i ženski rod imenica, izrazi na pitanje kako si?) Priroda i društvo 29.01.2019. Zima Hrvatski jezik 30.01.2019.

Више

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za

Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan

Више

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Marinela Bockovac Inverzija u ravnini i primjene Diplomski rad Osijek, 2018.

Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Marinela Bockovac Inverzija u ravnini i primjene Diplomski rad Osijek, 2018. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Marinela Bockovac Inverzija u ravnini i primjene Diplomski rad Osijek, 2018. Sveučilište J. J. Strossmayera u Osijeku Odjel za matematiku Marinela

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem

75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem 75 Bolyai - Gerwienov teorem Margita Pavleković Sažetak.Bolyai-Gerwienov teorem ima veliku primjenu u nastavi geometrije u osnovnoj školi. Ovaj teorem glasi: Ako dva ravninska poligona imaju jednake površine,

Више

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje

MathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije

Више

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apol

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apol ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 67 91 Generalizirani Apolonijev problem Antonija Guberina, Nikola Koceić Bilan Sažetak Apolonijev problem glasi: Konstruiraj kružnicu koja dodiruje

Више

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI

Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste

Више

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Више

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je

1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na je 1. Počevši iz vrha šiljastokutnog trokua povučena je visina kojoj je točka A 1 nožište na nasuprotnoj stranici. Iz točke A 1 povučena je okomica na jednu od preostale dvije stranice i njezino nožište na

Више

(Microsoft Word - 11 Dopunska- MAT- Ksenija Laleta-Pu\236.rtf)

(Microsoft Word - 11 Dopunska- MAT- Ksenija Laleta-Pu\236.rtf) rad s djecom s poteškoćama u svladavanju gradiva iz matematike razvijanje samopouzdanja kod djece usvajanje gradiva koje učenici ne mogu usvojiti na nastavi matematike prilagoñavanje nastavnih sadržaja

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

INTERPRETER LOGO NAREDBI Teodor Lozinski Tomislav Višnić Kolegij: Uporaba računala u nastavi, Fizički odsjek, PMF, Sveučilište u Zagrebu, UVOD Z

INTERPRETER LOGO NAREDBI Teodor Lozinski Tomislav Višnić Kolegij: Uporaba računala u nastavi, Fizički odsjek, PMF, Sveučilište u Zagrebu, UVOD Z INTERPRETER LOGO NAREDBI Teodor Lozinski Tomislav Višnić Kolegij: Uporaba računala u nastavi, Fizički odsjek, PMF, Sveučilište u Zagrebu, 2018. UVOD Zadatak je pomoću jednostavnih naredbi koji su inspirirani

Више

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matema

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matema ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matematike (KŠC Travnik); 2. Ivana Baban, prof. matematike

Више

1.NASTAVNI PLAN I PROGRAM ZA PRVI RAZRED GIMNAZIJE.pdf

1.NASTAVNI PLAN I PROGRAM ZA PRVI RAZRED GIMNAZIJE.pdf GIMNAZIJA Informacijsko komunikacijskih tehnologija Razred: prvi NASTAVNI PROGRAM ZA PREDMET: MATEMATIKA; Sedmični broj časova: 3 Godišnji broj časova : 105 Programski sadržaji za prvi razred: Teme : 1)

Више

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979

Више

XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) zna

XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) zna XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) znamenke slova Za vrijeme pisanja ispita nije dopuštena

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,

Више

ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične)

ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija 1.0 1 Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) euklidske geometrije ravnine i prostora koristeći algebarske

Више

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2

MAT-KOL (Banja Luka) Matematički kolokvijum XIV(3)(2008), DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE Dr Šefket Arslanagić 1 i Alija Miminagić 2 T-KOL (anja Luka) atematički kolokvijum XIV()(008), 1-1 DEVET RJEŠENJ JEDNOG ZDTK IZ GEOETRIJE Dr Šefket rslanagić 1 i lija iminagić Samostalno rješavanje malog broja teških problema je, bez sumnje, od

Више

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ

ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠC Sarajevo); 2. Jasmina Imamović, nas. matematike (KŠC

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година

Више

Matematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI

Matematika horvát nyelven középszint Javítási-értékelési útmutató 1813 ÉRETTSÉGI VIZSGA május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI Matematika horvát nyelven középszint 83 ÉRETTSÉGI VIZSGA 09. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Važne informacije

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja) . B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom

Више

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

MAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S

MAT A MATEMATIKA viša razina MATA.45.HR.R.K1.28 MAT A D-S MAT A MATEMATIKA viša razina MATA.45.HR.R.K.8 Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

4.4 DOPUNSKA NASTAVA Matematika 1. razred ciljevi aktivnosti, programa i/ili projekta - Utjecati na svladavanje redovitog programa i pozitivno u

4.4 DOPUNSKA NASTAVA Matematika 1. razred ciljevi aktivnosti, programa i/ili projekta - Utjecati na svladavanje redovitog programa i pozitivno u 4.4 DOPUNSKA NASTAVA 4.4.1 Matematika 1. razred - Utjecati na svladavanje redovitog programa i pozitivno utjecati na brojčanu ocjenu predmeta Namjena aktivnosti, Nositelji aktivnosti, i njihova odgovornost

Више