I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb

Величина: px
Почињати приказ од странице:

Download "I Jednadžbe magnetostatike Odzivne funkcije Rješavanje jednadžbi II Energija polja TDM relacije #5 Makroskopska magnetostatika I Makroskopske jednadžb"

Транскрипт

1 #5 Makroskopska magnetostatika I Makroskopske jednadžbe magnetostatike II Termodinamički potencijali predavanja 20**

2 Jednadžbe magnetostatike Magnetske odzivne funkcije Rješavanje jednadžbi magnetostatike Energija magnetostatskog polja Termodinamičke relacije

3 Motivacija I u kojim sve eksperimentima u FČS statičko magnetsko polje ima važnu ulogu? - mjerenje magnetizacije (1 tesla = 10 4 gaussa 10 4 oersteda) - mjerenje magnetootpornosti i Hallovog koeficijenta u RuSr 2 EuCu 2 O 8 [Požek et al., 2007] - nuklearna magnetska rezonancija u FČS - brojne druge metode 6 MgB 2 M (10-3 emu) T (K) H = 5 oersted xy ( cm) H (T) 0 60 K 48 K (a)

4 Jednadžbe makroskopske magnetostatike postoje samo izvori struja koji su neovisni o vremenu - opći izrazi za ukupnu gustoću struja J tot (x) = J(x) + P(x)/ t + c M(x) J(x) = ρ(x)/ t - izrazi u magnetostatici J tot (x) = J(x) + c M(x), J(x) = 0 - Maxwellove jednadžbe (E(x) = 0) i rubni uvjeti B (i) = 0, (B (2) B (1) ) n 21 = 0 H (i) = 4π c J(i), n 21 (H (2) H (1) ) = 4π c K

5 Magnetske odzivne funkcije u slučaju M 0 (x) = 0 magnetska susceptibilnost paramagneta (χ > 0) i dijamagneta (χ < 0) - pomoćno magnetsko polje H(x) = B(x) 4πM(x) - magnetizacija u općem slučaju M(x,t) = M 0 (x) + M(x,t,H) - sustavi s permanentnom magnetizacijom M 0 (x) 0: feromagneti (poglavlje VII) i antiferomagneti (FČS) - M 0 (x) = 0: tenzor magnetske susceptibilnosti M α (x,t) = d 3 x dt χ αβ (x,t;x,t )H β (x,t ) β

6 Magnetske odzivne funkcije u slučaju M 0 (x) = 0 - tenzor magnetske permeabilnosti B α (x,t) = d 3 x dt µ αβ (x,t;x,t )H β (x,t ) β - izotropni homogeni sustavi χ αβ (x x,t t ) χδ α,β δ(x x )δ(t t ) µ αβ (x x,t t ) µδ α,β δ(x x )δ(t t ) - te M(x,t) = χh(x,t), B(x,t) = µh(x,t) = (1 + 4πχ)H(x,t) - bakar 4πχ = ; aluminij 4πχ =

7 Rješavanje jednadžbi magnetostatike za M 0 (x) = 0 vektorski potencijal u Coulombovom baždarenju - karakteristična geometrija problema - Maxwellove jednadžbe B (i) = 0, B (i) = (4π/c) ( J (i) + c M (i)) - rubni uvjeti (B (2) B (1) ) n 21 = 0, n 21 (B (2) B (1) ) = (4π/c)K ind 15 I x z µ V 1 V 2

8 Rješavanje jednadžbi magnetostatik za M 0 (x) = 0 Coulombovo baždarenje - uvodimo vektorski potencijal [ B (i) (x) = 0] B (i) (x) = A (i) (x) - jednadžba za vektorski potencijal u Coulombovom baždarenju [ A (i) (x) = 0] 2 A (i) (x) = (4π/c) [ J (i) (x) + c M (i) (x) ] - izotropni homogeni sustavi 2 A (i) (x) = 4π c µ(i) J (i) (x)

9 Primjer: demagnetizacijski efekti za paramagnetsku kuglu paramagnetska kugla u konstantnom magnetskom polju H 0 - polja su superpozicija dva doprinosa H (i) (x) = H (i) 0 + H(i) 1 (x) - demagnetizacijsko polje kugle H (1) 1 = H 1 = α N αm α ê α - polje izvan kugle, dolazi od magnetskog momenta m = (4π/3)a 3 M kugla : N z = 4π/3 H (2) 1 (x) = ( m x r 3 ) x L ploča : N z = 4π T ploča : N z = 0 H=H 0 +H1 a z V 1 µ V 2

10 Primjer: demagnetizacijski efekti za paramagnetsku kuglu - silnice magnetskog polja B (i) 1 (x) - i pomoćnog magnetskog polja H (i) 1 (x) - veza med u poljima H (2) (x) = B (2) (x), H (1) (x) = B (1) (x) 4πM(x) x x B 1 z H 1 z

11 Motivacija II na koji način možemo unutar istog formalizma studirati postojanje različitih magnetski ured enih faza (FM, AFM, SDW,...) i analizirati razne magnetske (ili elektromagnetske) odzivne funkcije? - fazni dijagram Bechgaardovih soli [Dressel, 2007] - Hallov koeficijent u (petoj) Bechgaardovoj soli [Mihaly et al., 2000] (TMTTF) 2 AsF 6 (TMTTF) 2 Br (TMTSF) 2 ClO 4 (TMTTF) 2 SbF 6 (TMTTF) 2 PF 6 (TMTSF) 2 PF loc 1D (TM) 2 X Temperature (K) 10 1 CO AFM SP AFM SDW metal SC 2D 3D Pressure ~5 kbar

12 Energija magnetostatskog polja zanima nas energija magnetostatskog polja izražena pomoću polja H(x) i B(x) - realni vodiči: Jouleov zakon δw = δt d 3 x J E - Maxwellowe jednadžbe za ω 0 E = (1/c) B/ t, H = (4π/c)J - parcijalne integracije δw = c 4π δt d 3 x (E H ) c 4π δt d 3 x H ( E ) - rezultat δw = 1 4π d 3 x H δt B t = 1 4π d 3 x H(x) δb(x)

13 Termodinamičke relacije uvodimo dvije nove varijable: H(x) i B(x) - termodinamičke relacije za gustoće unutarnje i slobodne energije za fiksan broj čestica imaju oblik du = TdS + (1/4π)H db df = SdT + (1/4π)H db - takod er definiramo pomoćne potencijale Ũ = U (1/4π)H B, F = F (1/4π)H B - oni zadovoljavaju relacije dũ = TdS (1/4π)B dh, d F = SdT (1/4π)B dh - veza izmed u polja i potencijala B = 4π ( Ũ/ H) S, H = 4π ( U/ B ) S, B = 4π( F/ H ) T H = 4π( F/ B ) T

14 Termodinamički potencijali u J(x) i A(x) representaciji kako zamijeniti H(x),B(x) reprezentaciju sa J(x),A(x) reprezentacijom - polazimo od δb = δa [δw = (1/4π) d 3 x H ( δa ) ] δw = (1/4π) d 3 x (H δa ) + (1/4π) d 3 x δa ( H ) - rezultat ( ) δf T = 1 c d 3 x J(x) δa(x), ( δ F) T = 1 c d 3 x A(x) δj(x) - veza izmed u polja i potencijala A = c ( Ũ/ J) S, J = c ( U/ A ) S, A = c( F/ J ) T J = c( F/ A ) T

15 Primjer: Gibbsov potencijal paramagneti s konstantnom magnetskom permeabilnošću - pretpostavka - provjere I i II - rezultat F(T,M,H) F 0 (T) = M2 2χ M H 1 8π H2 F/ M = 0 M(x) = χh(x) B = 4π ( F/ H ) T B(x) = H(x) + 4πM(x) F(T,M,H) F 0 (T) = 1 8π B H = 1 8π µh2

I Koeficijent refleksije Površinski plazmoni II Valovodi Rezonantne šupljine Mikrovalna mjerenja #13 Raspršenje elektromagnetskih valova na kristalima

I Koeficijent refleksije Površinski plazmoni II Valovodi Rezonantne šupljine Mikrovalna mjerenja #13 Raspršenje elektromagnetskih valova na kristalima #13 Raspršenje elektromagnetskih valova na kristalima I Dipolno zračenje II Raspršenje vidljive svjetlosti i X zraka predavanja 20** Mjerenje koeficijenta refleksije Površinski plazmoni Valovodi Rezonantne

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Određivanje relativne permitivnosti sredstva Cilj vježbe Određivanje r Sveučilište J.J. Strossmayera Fizika 2 Predložak za laboratorijske vježbe Cilj vježbe Određivanje relativne permitivnosti stakla, plastike, papira i zraka mjerenjem kapaciteta pločastog kondenzatora U-I

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee

PRVI KOLOKVIJUM Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee PRVI KOLOKVIJUM 1992. 1. Odrediti partikularno rexee jednaqine koje zadovo ava uslov y(0) = 0. y = x2 + y 2 + y 2xy + x + e y 2. Odrediti opxte rexee jednaqine y 2y + 5y = 2e t + 3t 1. 3. Rexiti sistem

Више

PARCIJALNO MOLARNE VELIČINE

PARCIJALNO MOLARNE VELIČINE PARCIJALNE MOLARNE VELIČINE ZATVOREN TERMODINAMIČKI SISTEM-konstantan sastav sistema Posmatra se neka termodinamička ekstenzivna veličina X X (V, U, H, G, A, S) X je u funkciji bilo kog para intenzivnih

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu

Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Gravitacija kao specijalna relativistička teorija polja Jelena Filipović Fizički odsjek, PMF, Sveučilište u Zagrebu Uvod Svojstva gravitacije dugodosežna interakcija graviton je bezmasena čestica statička

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifič Cilj vježbe Određivanje specifičnog naboja elektrona Odrediti specifični naboja elektrona (omjer e/me) iz poznatog polumjera putanje elektronske zrake u elektronskoj cijevi, i poznatog napona i jakosti

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati

Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati Fizika Detaljni izvedbeni plan Prediplomski studij: Biotehnologija i istraživanje lijekova, I godina ECTS bodovi: 6 Nastavno opterećenje/sati: 40 sati (30P+10V) Praktikum: 20 sati (S) Voditelj predmeta:

Више

Matematika 2

Matematika 2 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje-4 / 45 Sadržaj: Sadržaj Tablično integriranje Očigledna supstitucija Supstitucija Supstitucija u odredenom integralu 3 Kombiniranje parcijalne integracije

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l): Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJ SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Sveučilišni studij VEKTORSKA FUNKCIJA I PRIMJERI IZ FIZIKE Završni rad Tomislav Kneţević

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Prva skupina

Prva skupina Prva skupina 1. Ravnoteža napetosti, vrste deformacija, te Lameove jednadžbe i njihovo značenje. 2. Prijenosna funkcija i frekventni odziv generaliziranog mjernog sustava. 3. Građa unutrašnjosti Zemlje.

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode] 6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн

ПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE

NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE NAPREDNI FIZIČKI PRAKTIKUM 1 studij Matematika i fizika; smjer nastavnički SLOBODNO I PRISILNO TITRANJE studij Matematika i fizika; smjer nastavnički NFP 1 1 ZADACI 1. Odredite period titranja i karakterističnu

Више

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14

8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14 8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir

Више

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot

FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robot FAKULTET STROJARSTVA I BRODOGRADNJE KATEDRA ZA STROJARSKU AUTOMATIKU SEMINARSKI RAD IZ KOLEGIJA NEIZRAZITO I DIGITALNO UPRAVLJANJE Mehatronika i robotika Zagreb, 2014. MODEL PROCESA U PROSTORU STANJA

Више

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1

kvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1 kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Dvostruki integrali Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 vostruki integrali Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod vostruki integral je integral funkcije dvije varijable. Oznaka: f

Више

Elektrotehnika, 3. modelarska vježba Katedra za strojarsku automatiku Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte na

Elektrotehnika, 3. modelarska vježba Katedra za strojarsku automatiku Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte na Elektrotehnika Treća modelarska vježba Motori istosmjerne struje 1. Nacrtajte nadomjesnu električnu shemu nezavisno uzbuđenog istosmjernog motora, izvedite pripadnu naponsku jednadžbu armaturnog kruga

Више

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx

Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx Kvadratna jednaqina i funkcija 1. Odrediti sve n N takve da jednaqina x3 + 7x 2 9x + 1 x 2 bar jedno celobrojno rexee. = n ima 2. Ako za j-nu ax 2 +bx+c = 0, a, b, c R, a 0, vai 5a+3b+3c = 0, tada jednaqina

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

PowerPoint Presentation

PowerPoint Presentation Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Фебруар 8. Трофазни уљни енергетски трансформатор са номиналним подацима: S =

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt - Compatibility Mode

Microsoft PowerPoint - 3_Elektrohemijska_korozija_kinetika.ppt  -  Compatibility Mode KOROZIJA I ZAŠTITA METALA dr Aleksandar Lj. Bojić Elektrohemijska korozija Kinetika korozionog procesa 1 Korozioni sistem izvan stanja ravnoteže polarizacija Korozija metala: istovremeno odvijanje dve

Више

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna 1. zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne snage osnovnog harmonika. Induktivnost prigušnice jednaka je L = 10 mh, frekvencija mrežnog

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

Анализа електроенергетских система

Анализа електроенергетских система Анализа електроенергетских система -моделовање елемената- Посматрамо погонске параметре: r, подужна отпорност l, подужна индуктивност c, подужна капацитивност g, подужна проводност Водови Геометријска

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

Neodreeni integrali - Predavanje III

Neodreeni integrali - Predavanje III Neodredeni integrali Predavanje III Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Neodredeni integrali Neodredeni integral Tablični integrali Metoda supstitucije Metoda parcijalne

Више

ma??? - Primer 6 Proracun spregnute veze

ma??? - Primer 6 Proracun spregnute veze Primer 6 Proračun spregnute veze Odrediti proračunski moment nosivosti spregnute veze grede i stuba prikazane na skici. Stub je izrađen od vrućevaljanog profila HEA400, a greda od IPE500. Veza je ostvarena

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

8. susreti Hrvatskog društva za mehaniku Osijek, 7. i 8. srpnja godine 1 Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeli

8. susreti Hrvatskog društva za mehaniku Osijek, 7. i 8. srpnja godine 1 Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeli 8. susreti Hrvatskog društva za mehaniku Numeričko modeliranje procesa kvazi-krhkog loma primjenom faznog modeliranja Seleš, K., Lesičar, T., Tonković, Z. 3 i Sorić, J. 4 Sažetak Numeričko modeliranje

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode]

Microsoft PowerPoint - IS_G_predavanja_ [Compatibility Mode] Dva pristupa u analiziranu kretana materiala: 1. Statistički pristup material se tretira kao skup molekula makroskopski fenomeni se obašnavau kao posledica molekularne aktivnosti računane primenom zakona

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Lovro Vrček Anizotropija paramagnetskog stanja monokristala (C 7 H 10 N 3 O 2

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Lovro Vrček Anizotropija paramagnetskog stanja monokristala (C 7 H 10 N 3 O 2 SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET FIZIČKI ODSJEK Lovro Vrček Anizotropija paramagnetskog stanja monokristala (C 7 H 10 N 3 O 2 )[Co(NCS) 4 ] H 2 O Zagreb, 2018. Ovaj rad izaden je

Више

Microsoft PowerPoint - NMRuvod [Compatibility Mode]

Microsoft PowerPoint - NMRuvod [Compatibility Mode] Nuklearna Magnetna Rezonancija NMR 1970.-1980. Dvodimenzijske metode i tehnike (2D NMR) POVIJESNI RAZVOJ NMR-a 1924. W. Pauli - teorijski temelji NMR 1939. Rabi i sur. - dokaz o postojanju nuklearnog spina

Више

Znanstveno računanje 2 3. i 4. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p.

Znanstveno računanje 2 3. i 4. predavanje Saša Singer web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p. Znanstveno računanje 2 3. i 4. predavanje Saša Singer singer@math.hr web.math.hr/~singer PMF Matematički odjel, Zagreb ZR2 2009, 3. i 4. predavanje p.1/61 Sadržaj predavanja Primjer iz prakse (nastavak):

Више

S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar,

S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, 2006. 1 Diferencijalni račun ima veliku primenu u ekonomiji, elektrotehnici, astrofizici, astronomiji,

Више

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt Deformacija opruge: 8FD Gd n f m 4 8Fwn Gd 1 Broj zavojaka opruge Kod pritisnih opruga sa velikim brojem promena opterećenja preporučuje se da se broj zavojaka završava na 0.5, npr..5, 4.5, 5.5... Ukupan

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

untitled

untitled С А Д Р Ж А Ј Предговор...1 I II ОСНОВНИ ПОЈМОВИ И ДЕФИНИЦИЈЕ...3 1. Предмет и метод термодинамике... 3 2. Термодинамички систем... 4 3. Величине (параметри) стања... 6 3.1. Специфична запремина и густина...

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski

Више

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja

Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje i Greenove funkcije «Napredna kvantna fizika» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2010 Pregled predavanja Račun smetnje Greenove funkcije Wickov teorem Različite

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

Microsoft PowerPoint - Prvi tjedan [Compatibility Mode]

Microsoft PowerPoint - Prvi tjedan [Compatibility Mode] REAKTORI I BIOREAKTORI PODJELA I OSNOVNI TIPOVI KEMIJSKIH REAKTORA Vanja Kosar, izv. prof. KEMIJSKI REAKTOR I KEMIJSKO RAKCIJSKO INŽENJERSTVO PODJELA REAKTORA I OPĆE BILANCE TVARI i TOPLINE 2 Kemijski

Више

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b

C2 MATEMATIKA 1 ( , 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. (15 b C2 MATEMATIKA 1 (20.12.2011., 3. kolokvij) 1. Odredite a) lim x arctg(x2 ), b) y ( 1 2 ) ako je y = arctg(4x 2 ). c) y ako je y = (sin x) cos x. 2. Izračunajte osjenčanu površinu sa slike. 3. Automobil

Више

III ELEKTROMAGNETIZAM

III ELEKTROMAGNETIZAM III ELEKTROMAGNETIZAM 1 STALNO MAGNETNO POLJE U VAKUMU... 6 1.1 NAELEKTRISANJE U POKRETU KAO IZVOR MAGNETNOG POLJA... 6 1.1.1 MAGNETNA INDUKCIJA POKRETNOG TAČKASTOG NAELEKTRISANJA... 7 1.1. MAGNETNA INDUKCIJA

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

BS-predavanje-3-plinovi-krutine-tekucine

BS-predavanje-3-plinovi-krutine-tekucine STRUKTURA ČISTIH TVARI Pojam temperature Porastom temperature raste brzina gibanja plina, osciliranje atoma i molekula u kristalu i tekućini Temperatura izražava intenzivnost gibanja atoma i molekula u

Више

ALGEBRA I (2010/11)

ALGEBRA I (2010/11) ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 27. februar 2019.

Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 27. februar 2019. Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 7. februar 019. Podsetnik osnovne veličine namotaja Nomenklatura: Q....................... p........................ q........................

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29

MATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29 MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass UVOD I MATEMATIČKI KONCEPTI FIZIKA PSS-GRAD 4. listopada 2017. 1.1 Priroda fizike FIZIKA je nastala iz ljudske težnje da objasni fizički svijet oko nas FIZIKA obuhvaća mnoštvo različitih pojava: planetarne

Више

Osnove elektrotehnike-udzb.indb

Osnove elektrotehnike-udzb.indb t.h r Uvod u elektrotehniku.e le m Građa tvari i električni naboj Vodiči, poluvodiči i izolatori Coulombov zakon Električna potencijalna energija i električni potencijal w 1.1. 1.. 1.3. 1.4. en t.h r w

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 000 Београд, Мике Аласа, ПП:, ПАК: 0 0 телефон: (0) -8-7, телефакс: (0) -8-8 На основу члана 9. став. Закона о општем управном

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada:

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2015.

Више

MDA_EOL_rasprodaja

MDA_EOL_rasprodaja Spisak velikih kućnih aparata sa sniženim cenama i lokacije na kojima su dostupni Lokacija Gorenje Studija u kome je artikal Raspoloživi broj dostupan aparata Redovna cena Snižena cena BO 647A30XG Ugradna

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)

PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove

Више

osnovni gredni elementi - primjer 2.nb

osnovni gredni elementi - primjer 2.nb MKE: Zadatak 1 - Primjer 1 Za nosač na slici potrebno je odrediti raspodjelu momenata savijanja pomoću osnovnih grednih elemenata. Gredu diskretizirati sa elementa. Rezultate usporediti sa analitičkim

Више

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA

OD MONOKRISTALNIH ELEKTRODA DO MODELÂ POVRŠINSKIH REAKCIJA UVOD U PRAKTIKUM FIZIKALNE KEMIJE TIN KLAČIĆ, mag. chem. Zavod za fizikalnu kemiju, 2. kat (soba 219) Kemijski odsjek Prirodoslovno-matematički fakultet Sveučilište u Zagrebu e-mail: tklacic@chem.pmf.hr

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универзитет у Београду Краљице Марије 16, 11000 Београд mtravica@mas.bg.ac.rs

Више

MAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S

MAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S MAT B MATEMATIKA osnovna razina MAT45.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Више

Makroekonomija

Makroekonomija Ekonomski rast Štednja, akumulacija kapitala i proizvodnja Tehnološki napredak Prof.dr Maja Baćović 28/03/2019. Pojmovi Rast mjera kvantitativne promjene pojave ili procesa Razvoj mjera kvalitativne promjene

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

4

4 4.1.2 Eksperimentalni rezultati Rezultati eksperimentalnog istraživanja obrađeni su u programu za digitalno uređivanje audio zapisa (Coll Edit). To je program koji omogućava široku obradu audio zapisa.

Више

PowerPoint prezentacija

PowerPoint prezentacija pred. Marin Binički / Arhitektonski fakultet 21/02/2019 Zgrade 2020+ Energetska učinkovitost i održivost zgrada nakon 2020. 1 ekvivalentne emisije ( eq) Staklenički plin Formula Potencijal globalnog zagrijavanja

Више

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно

Више

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEK FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Preddiplomski studij MODELIRANJE I SI

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEK FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Preddiplomski studij MODELIRANJE I SI SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEK FAKULTET ELEKTROTEHNIKE, RAČUNARSTVA I INFORMACIJSKIH TEHNOLOGIJA Preddiplomski studij MODELIRANJE I SIMULACIJA RELUKTANTNOG MOTORA U ANYSYS MAXWELL PROGRAMU

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Више

Uvod u fiziku cvrstog stanja - << Fizika cvrstog stanja >>

Uvod u fiziku cvrstog stanja - << Fizika cvrstog stanja >> Uvod u fiziku čvrstog stanja «Fizika čvrstog stanja» Ivo Batistić Fizički odsjek, PMF Sveučilište u Zagrebu predavanja 2013/2014 (zadnja inačica 21. srpnja 2016.) Pregled predavanja Što je fizika kondenzirane

Више

XIII. Hrvatski simpozij o nastavi fizike Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,2,3,4 1 Odjel za fiziku, S

XIII. Hrvatski simpozij o nastavi fizike Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,2,3,4 1 Odjel za fiziku, S Ogib na pukotini: teorija i pokusi Velimir Labinac 1, Luka Zurak 1, Marin Karuza 1,,3,4 1 Odjel za fiziku, Sveučilište u Rijeci Centar za mikro i nano znanosti i tehnologije, Sveučilište u Rijeci 3 Fotonika

Више