SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mateja Vlahović ARMA PROCESI U MEDICINSKOJ OPTIMIZACIJI Diplomski rad Vodi

Величина: px
Почињати приказ од странице:

Download "SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mateja Vlahović ARMA PROCESI U MEDICINSKOJ OPTIMIZACIJI Diplomski rad Vodi"

Транскрипт

1 SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Mateja Vlahović ARMA PROCESI U MEDICINSKOJ OPTIMIZACIJI Diplomski rad Voditelj rada: prof.dr.sc. Siniša Slijepčević Zagreb, 2016.

2 Ovaj diplomski rad obranjen je dana u sastavu: pred ispitnim povjerenstvom 1., predsjednik 2., član 3., član Povjerenstvo je rad ocijenilo ocjenom. Potpisi članova povjerenstva:

3 Veliko hvala svima koji su bili uz mene kad je trebalo.

4 Sadržaj Sadržaj iv Uvod 1 1 Stacionarni vremenski nizovi Vremenski niz Stohastički procesi Stacionarnost i striktna stacionarnost Procjena i eliminacija trenda i senzonalnosti Autokovarijacijska funkcija stacionarnog procesa Višedimenzionalna normalna distribucija Hilbertovi prostori Unitarni prostor i njegova svojstva Hilbertovi prostori Teorem o projekciji Ortonormalni skupovi Projekcija u R n Konvergencija i najbolji linearni prediktor u L 2 (Ω, F, P) Stacionarni ARMA procesi Kauzalni i invertibilni ARMA procesi Računanje autokovarijacijske funkcije ARMA(p, q) procesa Parcijalna autokorelacijska funkcija Autokovarijacijska funkcija izvodnica Predikcija stacionarnih procesa Jednadžbe prediktora u vremenskoj domeni Rekurzivna metoda za računanje najboljih linearnih prediktora Rekurzivni prediktor ARMA(p, q) procesa iv

5 SADRŽAJ v 4.4 Predikcija stacionarnih Gaussovskih procesa; predikcijske granice Predikcija kauzalnog invertibilnog ARMA(p, q) procesa Primjena ARMA modela u medicini Opisna statistika Obrada podataka A Kodovi u R-u 58 Bibliografija 66

6 Uvod Vremenski niz je skup opažanja x t prikupljenih do nekog trenutka t. O njemu možemo razmišljati i kao modelu, tj. slučajnom procesu indeksiranom u nekom vremenu. Prilikom analize vremenskih nizova javlja se pojam stacionarnog procesa i upravo će on imati krucijalnu ulogu u toj analizi. Teorija stacionarnih procesa koristi se za analizu, fitanje i predikciju nizova. U prvom dijelu rada dajemo upravo tu teorijsku podlogu. U prvom poglavlju dajemo gornju definiciju vremenskog niza i upoznajemo se sa pojmovima njegove stacionarnosti te stohastičkog procesa. Vidjet ćemo dekompoziciju vremenskog niza na komponentu trenda i senzonalnosti te ostatka koji će biti stacionaran vremenski niz. Upoznat ćemo se s autokovarijacijskom funkcijom stacionarnog procesa i njezinim svojstvima. U drugom poglavlju osvrnut ćemo se na unitarne prostore i njihova svojstva, Hilbertove prostore kao poseban slučaj unitarnih prostora te iskazati teorem o projekciji. Treće poglavlje definira nam ARMA proces i njegova svojstva, autokorelacijsku funkciju i parcijalnu autokovarijacijsku funkciju, i uvodimo pojmove kauzalnosti i invertibilnosti procesa. Četvrto poglavlje sadrži prediktorske jednadžbe, kauzalne invertibilne ARMA(p, q) procese i njihovu predikciju. U drugom dijelu rada radimo analizu podataka dobivenih iz tajnih izvora jedne norveške bolnice. Radi se o vremenskom niz različitih vrsta pregleda u vremenskom intervalu od četrdeset dana. Iako uzorak nije ni približno dovoljan za analizu, nastojat ćemo primjeniti teoriju izloženu prije toga. Na temelju dobivenog uzorka, iako je njegova velčina malena, želimo pokazati da ARMA proces dobar model za predikciju budućih frekvencija pregleda (MR, CT, UZV, RG, Other). 1

7 Poglavlje 1 Stacionarni vremenski nizovi 1.1 Vremenski niz Pretpostavimo da je n-dimenzionalni vektor stupac X = (X 1,..., X n ), vektor slučajnih varijabli ako drugačije ne specificiramo. Nadalje, pretpostavimo li da je S proizvoljan skup, koristimo izraz S n što govori da se radi o skupu n-dimenzionalnih vektora stupaca sa vrijednostima u S i skupu od n-dimimenzionalnih vektora redaka s vrijednostima u S. Definicija Vremenski niz je skup opažanja x t prikupljenih u odredenom vremenskom trenutku t. Govorimo o diskretnom vremenskom nizu kada su opažanja prikupljena u diskretnim vremenskim trenucima, te neprekidnom vremenskom nizu kada su opažanja prikupljena u nekom neprekidnom vremenskom intervalu, npr. u [0, 1]. U slučaju neprekidnih opažanja koristit ćemo oznaku x(t) umjesto x t. Nadalje, ovdje se ćemo se primarno baviti diskretnim vremenskim nizovima. 1.2 Stohastički procesi Prvi korak u analizi vremenskog niza je odabir odgovarajućeg matematičkog modela (ili klase modela) za podatke. Da bi dopustili mogućnost nepredvidljive prirode budućih opažanja, prirodno je pretpostaviti da je svako opažanje x t ostvarena vrijednost odredene slučajne varijable X t. Tada je vremenski niz {x t, t T 0 } realizacija familije slučajnih varijabli {X t, t T 0 }. Ovakvo razmatranje sugerira modeliranje podataka kao realiziaciju stohastičkog procesa {X t, t T 0 } gdje je T nadskup skupa T 0. Definicija Stohastički proces je familija slučajnih varijabli {X t, t T 0 } definiranih na istom vjerojatnosnom prostoru (Ω, F, P). 2

8 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 3 U analizi vremenskih nizova, indeksirani skup T je skup vremenskih trenutaka poput Z = {0, ±1, ±2,... }, N = {1, 2, 3,... }, [0, +,, + i sl. Stohastički procesi u kojima T nije podskup skupa realnih brojeva R su takoder važni (primjer je geofizički stohastički proces gdje je T površina sfere i predstavlja varijable indeksirane sa njihovom lokacijom na zemljinoj površini), ali ovdje će nam T uvijek biti podskup realnih brojeva R. Uzimajući u obzir definiciju slučajne varijable možemo primjetiti da je za svaki fiksan t T, X t zapravo funkcija X t ( ) na skupu Ω. Suprotno, za svaki fiksan ω iz Ω, X t (ω) je funkcija na T. Definicija Funkcije {X t (ω), ω Ω} na T su realizacije stohastičkog procesa, tj. uzorak procesa {X t, t T}. Najčešće smo u mogućnosti definirati X t (ω) eksplicitno za svaki t i ω. Medutim, vrlo često želimo ili smo prisiljeni odrediti zbir svih zajedničkih distribucija svih konačno dimenzionalnih vektora (X t1,..., X tn ), t = (t 1,..., t n ) T n, n {1, 2,... }. U takvom slučaju moramo biti sigurni da stohastički proces s odabranom distiribucijom zbilja postoji. Kolmogorovljev teorem, kojeg ćemo u nastavku iskazati, garantira da stohastički proces postoji pod minimalnim uvjetima na odabranu funkciju distribucije. Kolmogorovljev teorem malo pojednostavljujemo s pretpostavkom da je T podskup skupa realnih brojeva R, stoga i linearno ureden skup. Kada T ne bi bio linearno ureden, potrebna je dodatna permutacija da bi dobili linearnu uredenost. Definicija Neka je T skup svih vektora {t = (t 1,..., t n ) T n : t 1 < < t n, n = 1, 2,... }. Tada su konačno dimenzionalne funkcije distribucije od X t, t T funkcije {F t ( ), t T } definirane za t = (t 1,..., t n ) s F t (x) = P(X t1 X tn ), x = (x 1,..., x n ) R n (1.1) Teorem (Kolmogorovljev teorem) Vjerojatnosne funkcije distirbucije {F t ( ), t T } su funkcije distribucije stohastičkih procesa ako i samo ako za bilo koji n {1, 2,... }, t = (t 1,..., t n ) T i 1 i n vrijedi lim x i F t(x) = F ti (x(i)) (1.2) gdje su t(i) i x(i) (n 1)-dimenzionalni vektori dobiveni brisanjem i-te komponente od t i x, respektivno. Ako je φ t ( ), karakteristična funkcija korespodentna sa F t ( ), tj. φ t (u) = e iu x F t (dx 1,..., dx n ), u = (u 1,..., u n ) R n, R n tada gornji limes možemo zapisati u ekvivalentnom obliku

9 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 4 lim φ t(u) = φ ti (u(i)), (1.3) u i gdje je u(i) (n 1)-dimenzionalni vektor dobiven brisanjem i-te komponente od u. 1.3 Stacionarnost i striktna stacionarnost Kada imamo konačan broj slučajnih varijabli, korisno je izračunati kovarijacije, kako bi dobili uvid u zavisnost izmedu slučajnih varijabli. Za vremenske nizove {X t, t T}, proširit ćemo koncept kovarijacijske matrice kako bi mogli raditi sa beskonačnim kolekcijama slučajnih varijabli. Autokovarijacijska funkcija daje nam potrebno proširenje. Definicija Ako je {X t, t T} proces takav da je Var(X t ) < za svaki t T, tada je autokovarijacijska funkcija γ X (, )od{x t } definirana s γ X (r, s) = Cov(X r, X s ) = E[(X r EX r )(X s EX s )], r, s T. (1.4) Definicija Za vremenski niz {X t, t Z}, sa skupom indeksa Z = {0, ±1, ±2,... }, kažemo da je stacionaran ako vrijedi: (i) E X t 2 < za svaki t Z (ii) EX t = m za svaki t Z (iii) γ X (r, s) = γ X (r + t, s + t) za svaki r, s, t Z Ovako definirana stacionarnost u literaturi se često zove i slaba stacionarnost, stacionarnost u širokom smislu ili stacionarnost drugog reda. Ako je {X t, t Z} stacionaran, tada je γ X (r, s) = γ X (r s, 0) za svaki r, s Z, pa ćemo redefinirati autokovarijacijsku funkciju stacionarnog procesa kao funkciju jedne varijable γ X (h) γ X (h, 0) = Cov(X t+h, X t ) za svaki t, h Z. Funkcija γ X ( ) je autokovarijacijska funkcija od {X t } i γ X (h) je njena vrijednost u pomaku h. Autokorelacijska funkcija (afc) od {X t } je definirana kao funkcija čija je vrijednost u pomaku h dana s ρ X (h) γ X(h) γ X (0) = Corr(X t+h, X t ) za svaki t, h Z. Primjetimo da smo stacionarnost definirali samo u slučaju kada je T = Z. Nije teško definirati stacionarnost koristeći generalizirani skup indeksa, ali u naše svrhe to neće biti potrebno. Želimo li modelirati skup podataka {x t, t T Z} kao realizaciju stacionarnog procesa, uvijek ga možemo smatrati dijelom realizacije stacionarnog procesa {X t, t Z}. Dajemo definiciju još jedne važne i često korištene stacionarnosti:

10 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 5 Definicija Za vremenski niz {X t, t Z} kažemo da je striktno ili jako stacionaran ako je zajednička distribucija od (X t1,..., X tk ) i (X t1 +h,..., X tk +h) jednaka za sve pozitivne cijele brojeve k i za sve t 1,..., t k, h Z. Striktna stacionarnost intuitivno znači da će grafovi realizacije vremenskog niza za dva jednako duga vremenska intervala imati slične statističke karakteristike. Na primjer, udio koordinata koje ne prelaze neku razinu x bi trebao biti isti za oba intervala. Definicija ekvivalentna je tvrdnji da (X 1,..., X k ) i (X 1+h,..., X k+h ) imaju jednaku zajedničku distribuciju za sve pozitivne cijele brojeve k i sve cijele brojeve h. Veza izmedu stacionarnosti i striktne stacionarnosti Ako je {X t } striktno stacionaran, to odmah povlači da, ako uzmemo k = 1 u Definiciji , X t ima istu distribuciju za svaki t Z. Kada je E X t 2 konačno, to implicira da su i EX t i Var(X t ) obje konstante. Nadalje, ako uzmemo k = 2 u Definiciji , vidimo da X t+h i X t imaju istu zajedničku distribuciju stoga i istu kovarijaciju za sve h Z. Tada je striktno stacionaran proces sa konačnim drugim momentom stacionaran. No, obrat zadnje tvrdnje ne vrijedi. Na primjer, ako je {X t } niz nezavisnih slučajnih varijabli koje su eksponencijalno distribuirane s očekivanjem 1 kada je t neparan i normalno distribuirane s očekivanjem i varijancom 1 kada je t paran, tada je {X t } stacionaran s γ X (0) = 1 i γ X (0) = 0 za h 0. Medutim, kako X 1 i X 2 imaju različite distirbucije, {X t } ne može biti striktno stacionaran. Ipak, postoji slučaj kada stacionarnost implicira striktnu stacionarnost. Definicija Proces {X t } je Gaussovski vremenski niz ako i samo ako su mu sve konačno dimenzionalne razdiobe višedimenzionalne normalne. Ako je {X t, t Z} stacionaran Gaussovski proces, tada je {X t } striktno stacionaran, budući da za sve n {1, 2,... } i za sve h, t 1, t 2, Z, slučajni vektori (X t1,..., X tn ) i (X t1 +h,..., X tn +h) imaju isto očekivanje i kovarijacijsku matricu, stoga imaju i istu distribuciju. Stacionarni procesi imaju krucijalnu ulogu u analizi vremenskih nizova. Naravno da mnogi promatrani vremenski nizovi izgledom nisu stacionarni. Često se takvi podaci transformiraju različitim tehnikama, koje ćemo u nastavku spomenuti, u nizove koje možemo modelirati kao realizacije nekih stacionarnih procesa. Teorija stacionarnih procesa se koristi za analizu, fitanje i predikciju dobivenih nizova. Od svih tehnika, autokovarijacijska funkcija je primarno sredstvo.

11 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI Procjena i eliminacija trenda i senzonalnosti Prvi korak u analizi bilo kojeg vremenskog niza je grafički prikazati podatke. Ako postoje očite nepovezanosti u nizovima, poput nagle promjene razine, preporuča se analizirati niz na način da se podijeli u homogene dijelove. Ako postoje udaljena opažanja, ona bi se trebala pažljivo proučiti i provjeriti da li postoji razlog za njihovo odbacivanje (na primjer ako je opažanje zabilježeno greškom od nekog dugog procesa). Grafički test takoder može sugerirati mogućnost prezentiranja podataka kao realizacije procesa (model klasične dekompozicije) X t = m t + s t + Y t (1.5) gdje je m t funkcija koja se sporo mijenja poznata kao komponenta trenda, s t funkcija s poznatim periodom t znana kao komponenta senzonalnosti, i Y t je slučajni šum koji je stacionaran proces. Ako se senzonalne fluktuacije i fluktuacije šuma povećavaju sa razinom procesa, tada se često koristi preliminarna transformacija podataka kako bi transformirani podaci bili kompatibilni sa modelom. Naš cilj je procijeniti i odrediti determinističke komponente m t i s t u nadi da rezidual ili komponenta šuma Y t bude stacionaran slučajan proces. Tada možemo koristiti teoriju takvih procesa kako bi pronašli zadovoljavajući vjerojatnosni model za takav proces {Y t }, analizirati njegova svojstva te ga koristiti u kombinaciji s m t i s t, i to u svrhu predikcije i kontrole {X t }. Alternativni pristup, intenzivno razvijen od strane Boxa i Jenkinsa (1970), je višestruka primjena diferencijskih operatora na podacima {x t } sve dok diferencirana opažanja ne nalikuju realizaciji nekog stohastičkog procesa {W t }. Tada možemo koristiti teoriju stacionarnih procesa za modeliranje, analizu i predikciju {W t }, stoga i originalnog procesa. Dva pristupa uklanjanja trenda i senzonalnosti: (a) procjena m t i s t iz dekompozicije 1.5, i (b) diferenciranje podataka {x t }, ukratko ćemo iznijeti u nastavku. Uklanjanje trenda uz odsutnost senzonalnosti Uz odsutnost komponente senzonalnosti model 1.5 postaje X t = m t + Y t, t = 1,..., n (1.6) gdje bez smanjenja općenitosti možemo pretpostaviti da je EY t = 0. Metoda 1: (procjena metodom najmanjih kvadrata za m t ) U ovom postupku želimo prilagoditi parametarsku familiju funkcija, na primjer m t = a 0 + a 1 t + a 2 t 2 (1.7) podacima na način da odaberemo parametre, u ovoj ilustraciji a 0,a 1 i a 2, da bi minimizirali t(x t m t ) 2.

12 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 7 Metoda 2: (zagladivanje metodom linearnog filtera) Neka je q nenegativan cijeli broj i uzmimo u obzir dvostranost procesa promjenjivog prosjeka, W t = (2q + 1) 1 q X t+ j, (1.8) j= q procesa {X t } definiranog sa 1.6. Tada je za q + 1 t n q W t = (2q + 1) 1 q m t+ j + (2q + 1) 1 j= q q Y t+ j m t (1.9) pretpostavljajući da je m t približno linearan na intervalu [t q, t + q] i da je prosjek grešaka na tom intevralu blizu nula. MA nam daje procjene ˆm t = (2q + 1) 1 j= q q X t+ j, q + 1 t n q (1.10) j= q Kako X t nema opažanje za t 0 i t > n, ne možemo koristiti 1.10 za t q ili t > n q. Program smooth (zagladivanja) rješava taj problem na način da definira X t = X 1 za t < 1 i X t = X n za t > n. Za bilo koji fiksni a [0, 1], jednostrani proces promjenjivog prosjeka ˆm t, t = 1,..., n, definiran rekurzijom i ˆm t = ax t + (1 a) ˆm t 1, t = 2,..., n, (1.11) ˆm 1 = X 1, (1.12) može biti izračunat koristeći program smooth (tj. zagladivanja). Primjenu 1.11 i 1.12 često nazivamo eksponencijalno zagladivanje. Korisno je razmišljati o { ˆm t } u 1.10 kao procesu proizašlom iz {X t } primjenom linearnog operatora ili linearnog filtera ˆm t = j= a j X t+ j sa ponderima a j = (2q + 1) 1, q j q, a j = 0 za sve j > q. Ovaj filter je low-pass filter budući da uzima podatke {x t } i uklanja jako fluktuirajuću (visoko frekventnu) komponentu {Ŷ t }, i ostavlja sporo varirajuću procjenu trenda {m t }. Specifičan filter (1.10) je jedan od mnogih koji se mogu koristiti za zagladivanje. Za velike q, ako pretpostavmo (2q + 1) 1 q i= q Y t+1 0, neće samo umanjiti šum već će u isto vrijeme dopustiti funkciji linearnog trenda m t = a t +b da prode bez deformacija. Medutim, moramo biti svjesni da biranjem prevelikog q, ako m t nije linearan, filtrirani proces, iako zagladen, neće biti dobar za procjenu m t. Pametnim izborom koeficijenata {a j } mougće je kreirati filter koji ne samo da će biti efikasan u uklanjanju šuma iz podataka, već će

13 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 8 dopuštati veću klasu funkcija trenda (na primjer svi poliomi stupnja manjeg ili jednakog tri) da produ neiskrivljene kroz filter. Metoda 3: (diferenciranjem do generaliziranih stacionarnih podataka) Umjesto namjere da uklonimo trend zagladivanjem kao u prethodnoj metodi, želimo diferenciranjem ukloniti trend. Definiramo prvi operator diferenciranja s gdje je B operator pomaka unatrag X t = X t X t 1 = (1 B)X t (1.13) BX t = X t 1 (1.14) Snaga operatora B i je očita: B j (X t ) = X t j i j (X t ) = ( j 1 (X t )), j 1 i 0 (X t ) = X t. Potencije u B i ponašaju se na isti način kao i potencije u polinomijalnim funkcijama realne varijable: 2 X t = ( X t ) = (1 B)(1 B)X t = (1 2B + B 2 )X t = X t 2X t 1 + X t 2 Ako operator primjenimo na linearnu funkciju trenda m t = at + b, tada dobivamo konstantnu funkciju m t = a. Na isti način bilo koji polinomijalni trend stupnja k može biti reduciran na konstantu primjenom operatora k. Krenemo li od modela X t = m t +Y t gdje je m t = k j=0 a j t j i Y t stacionaran sa očekivanjem nula, dobivamo k X t = k!a k + k Y t, stacionaran proces s očekivanjem k!a k. Ovo razmatranje sugerira mogućnost, s obzirom na bilo koji niz podataka {x t }, primjene operatora dok ne dobijemo niz { k x t } kojeg uvjerljivo možemo modelirati kao realizaciju stacionarnog procesa. Često u praksi nailazimo da je stupanj diferenciranja k dosta mali, najčešće jedan ili dva, što naravno ovisi o činjenici da mnoge funkcije možemo dobro aproksimirati na konačnom intervalu. Eliminacija trenda i senzonalnosti Prethodno opisane metode za uklanjanje trenda prirodno se mogu proširiti na eliminaciju trenda i senzonalnosti u generaliziranom modelu X t = m t + s t + Y t (1.15) gdje je EY t = 0, s t+d = s t i d j=1 s j = 0. Metode ćemo objasniti kroz primjer u kojem je period komponente senzonalnosti d = 12. Podatke indeksiramo godišnje i mjesečno: x j,k gdje je j = 1,..., 6, k = 1,..., 12, odnosno, definiramo x j,k = x k+12( j 1), j = 1,..., 6, k = 1,..., 12.

14 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 9 Metoda 1: (metoda malog trenda) Ako je trend malen, nije nerazumljivo pretpostaviti da je trend konstantan, na primjer m j za j-tu godinu. Budući da je 12 k=1 s k = 0, to nas dovodi do prirodne nepristrane procjene: ˆm j = k=1 x j,k (1.16) dok za s k, k = 1,..., 12, imamo sljedeće procjene ŝ k = (x j,k ˆm j ) (1.17) j=1 što automatski zadovoljava zahtjev da 12 k=1 ŝ k = 0. Procijenjena greška za mjesec k j-te godine je Ŷ j,k = x j,k ˆm j ŝ k, j = 1,..., 6, k = 1,..., 12 (1.18) Generalizacija za podatke sa periodom senzonalnosti većim od 12 je očita. Metoda 2: (metoda pomičnih zareza) Ova metoda je više preferirana u odnosu na Metodu 1 budući da se ne oslanja na pretpostavku da je m t gotovo konstantan tokom svakog ciklusa. Pretpostavimo da imamo opažanja {x 1,..., x n }. Procijenimo trend primjenom MA filtera posebno odabranog za uklanjanje senzonalne komponente i šuma. Ako je period d paran, npr. d = 2q, tada koristimo ˆm t = 0.5x t q + x t q x t+q x t+q, q < t n q. (1.19) d Inače ako je period prost, npr. d = 2q + 1, tada koristimo jednostavan MA Idući korak je procjena senzonalne komponente. Za svaki k = 1,..., d, računamo prosječan w k devijacija {(x k+ jd ˆm k+ jd ) : q < k + jd n q}. Budući da prosjeci devijacija u sumi nisu nužno nula, procjenjujemo senzonalnu komponentu s k sa ŝ k = w k d 1 d w i, k = 1,..., d, (1.20) i=1 i ŝ k = ŝ k d, k > d. Podatke s uklonjenom senzonalnošću redefiniramo kao originalan niz koji nema senzonalnu komponentu: d t = x t ŝ t, t = 1,..., n. (1.21)

15 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 10 Naposljeku, ponovo procjenjujemo trend od {d t } bilo primjenom MA filtera opisanog ranije na podatke bez senzonalnosti ili prilagodbom/fitanjem polinoma za niz {d t }. Procjena šuma sada je: Ŷ t = x t ˆm t ŝ t, t = 1,..., n. Metoda 3: (diferenciranje u pomaku d) Tehnika diferenciranja koju smo ranije primijenili na podatke bez senzonalnosti, može biti proširena tako da je možemo koristiti za podatke sa senzonalnom komponentom i periodom d primjenjujući operator diferenciranja d koji je definiran sa d X t = X t X t d = (1 B d )X t. (1.22) Upravo definirani operator ne smijemo miješati sa operatorom diferenciranja d = (1 B) d koji smo definirali ranije. Primjenom operatora d na model gdje {s t } ima period d, dobivamo X t = m t + s t + Y t d X t = m t m t d + Y t Y t d što nam daje dekompoziciju diferencije d X t na komponentu trenda m t m t d i komponentu šuma Y t Y t d. Komponentu trenda možemo ukloniti sa ranije opisanim metodama. 1.5 Autokovarijacijska funkcija stacionarnog procesa Dat ćemo svojstva autokovarijacijske funkcije koju smo definirali ranije. Propozicija Ako je γ( ) autokovarijacijska funkcija stacionarnog procesa {X t, t Z}, tada vrijedi γ(0) 0, (1.23) i ako je γ( ) parna tada γ(h) γ(0) za svaki h Z, (1.24) γ(h) = γ( h) za svaki h Z. (1.25) Dokaz. Prvo svojstvo proizlazi iz definicije i vrijedi zbog Var(X t ) 0, drugo je direktna posljedica Cauchy-Schwarzove nejednakosti: dok treća vrijedi zbog Cov(X t+h, X t ) (Var(X t+h )) 1/2 (Var(X t )) 1/2 γ( h) = Cov(X t h, X t ) = Cov(X t, X t+h ) = γ(h).

16 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 11 Definicija Za realnu funkciju na skupu cijelih brojeva κ : Z R, kažemo da je pozitivno semidefinitna ako i samo ako vrijedi n a i κ(t i t j )a j 0 (1.26) i, j=1 za sve pozitivne cijele brojeve n i za svaki vektor a = (a 1,..., a n ) R n i t = (t 1,..., t n ) Z n iliakoisamoako n i, j=1 a i κ(i j)a j 0 za svaki n i a. Teorem (Karakterizacija autokovarijacijske funkcije) Realna funkcija definirana na cijelim brojevima je autokovarijacijska funkcija stacionarnog procesa ako i samo ako je parna i pozitivno semidefinitna. Za svaku autokovarijacijsku funkciju γ( ) postoji stacionaran Gussovski vremenski niz sa γ( ) kao kovarijacijskom funkcijom. Da bi dokazali da je dana funkcija pozitivno semidefinitna, ponekad je lakše odrediti stacionarni proces za danu autokovarijacijsku funkciju nego zadovoljiti definiciju pozitivne semidefinitnosti. Autokorelacijska funkcija ρ( ) ima sva svojstva kao i autokovarijacijska funkcija i zadovoljava dodatan uvjet ρ(0) = 1. Uzoračka autokovarijacijska funkcija opaženog niza podataka Iz opažanja {x 1,..., x n } stacionarnog vremenskog niza {X t }, često želimo procijeniti autokovarijacijsku funkciju γ( ) procesa {X t } u svrhu dobivanja informacija o njegovoj strukturi. To je važan korak u konstruiranju prikladnog matematičkog modela za podatke. Procjena γ( ) koju bi trebali koristiti je uzoračka autokovarijacijska funkcija. Definicija Uzoračku autokovarijacijsku funkciju niza {x 1,..., x n } definiramo sa n h ˆγ(h) := n 1 (x j+h x)(x j x), 0 h < n, (1.27) j=1 i ˆγ(h) = ˆγ( h), n < h 0, gdje je x aritmetička sredina x = n 1 n j=1 x j. U nazivniku radije koristimo n u odnosu na n h budući da nam to osigurava da matrica ˆΓ n = [ˆγ(i j)] n i, j=1 bude pozitivno semidefinitna. Uzoračka autokorelacijska funkcija definirana je u terminima uzoračke autokovarijacijske funkcije kao ˆρ(h) = ˆγ(h), h < n, ˆγ(0)

17 POGLAVLJE 1. STACIONARNI VREMENSKI NIZOVI 12 a odgovarajuća matrica ˆR n = [ˆρ(i j)] n i, j=1 je takoder pozitivno semidefinitna. Uzoračka autokovarijacijska i autokorelacijska funkcija mogu biti odredene za bilo koji set podataka {x 1,..., x n } i nisu ograničene na realizacije stacionarnog procesa. Za podatke koji imaju trend, ˆρ(h) će pokazivati spor pad kako se h povećava, i za podatke koji imaju pediodičnu komponentu, ρ(h) će se slično ponašati s istim periodom. Prema tome, ρ( ) može biti koristan indikator (ne)stacionarnosti. 1.6 Višedimenzionalna normalna distribucija n-dimenzionalan slučajan vektor je vektor stupac, X = (X 1,..., X n ), čija je svaka komponenta slučajna varijabla. Ako je E X i < za svaki i, tada definiramo očekivanu vrijednost od X kao vektor stupac µ X = EX = (EX 1,..., EX n ). (1.28) Na isti način definiramo očekivanu vrijednost bilo kojeg niza čiji su elementi slučajne varijable (npr. matrica slučajnih varijabli) i to je isti niz gdje je svaka slučajna varijabla zamijenjena svojom očekivanom vrijednosti (pod pretpostavkom da one postoje). Ako su X = (X 1,..., X n ) i Y = (Y 1,..., Y m ) slučajni vektori takvi da E X i 2 <, i = 1,..., n i E Y i 2 <, i = 1,..., m, možemo definirati kovarijacijsku matricu od X i Y kao matricu Σ XY = Cov(X, Y) = E[(X EX)(Y EY) ] = E(XY ) (EX)(EY) (1.29) (i, j)-ti element matrice Σ XY je kovarijanca, Cov(X i, Y j ) = E(X i Y j ) E(X i )E(Y j ). U posebnom slučaju kada je Y = X, Cov(X, Y) se reducira na kovarijacijsku matricu od X.

18 Poglavlje 2 Hilbertovi prostori Iako je moguće proučavati i analizirati vremenske nizove bez eksplicitnog korištenja terminologije i tehnika Hilbertovih prostora, postoje mnoge prednosti koje možemo dobiti iz njihove formulacije. Oni su uvelike izvedeni iz naše poznate dvodimenzionalne i trodimenzionalne Euklidske geometrije, a posebno s konceptima ortogonalnosti i ortogonalnih projekcija u tim prostorima. Ove koncepti, primjereno prošireni na beskonačno dimenzionalne Hilbertove prostore, imaju središnju ulogu u proučavanju slučajnih varijabli s konačnim drugim momentom, osobito u teoriji predikcije stacionarnih procesa. Intuicija dobivena iz Euklidske geometrije koristi se kako bi učinila naizgled komplicirane algebarske rezultate u analizi vremenskih nizova geometrijski očitima. Takoder se često koristi kao vrijedan vodič u razvoju i izgradnji algoritama. Stoga ćemo u ovom poglavlju dati mali uvod u teoriju Hilbertovih prostora kroz nekoliko definicija, teorema i propozicija bez dokaza, koji su potrebni za geometrijsko razumijevanje kasnijih poglavlja. 2.1 Unitarni prostor i njegova svojstva Definicija Za kompleksni vektorski prostor H kažemo da je unitaran prostor ako za svaki par elemenata x i y H postoji kompleksni broj x, y, kojeg nazivamo skalarni produkt od x i y, za koji vrijedi: (a) x, y = x, y (b) x + y, z = x, z + y, z za svaki x, y, z H (c) αx, y = α x, y za svaki x, y H i α C (d) x, x 0 za svaki x H (e) x, y = 0 ako i samo ako je x = 0 13

19 POGLAVLJE 2. HILBERTOVI PROSTORI 14 Realni vektorski prostor H je unitaran prostor ako za svaki x, y H postoji realan broj x, y koji zadovoljava gornje uvjete iz definicije, pri čemu se uvjet (a) reducira na slučaj x, y = y, x. Unitarni prostor je prirodna generalizacija skalarnog produkta dva vektora u n-dimenzionalnom Euklidskom prostoru. Budući da se mnoga svojstva Euklidskog prostora prenose na unitaran prostor, korisno je imati na umu Euklidski prostor. Definicija Norma elementa x unitarnog prostora definira se kao i x = x, x (2.1) U Euklidskom prostoru R k k norma vektora je jednostavno njegova duljina x = i=1 xi 2. Cauchy-Schwarzova nejednakost: Ako je H unitaran prostor, tada vrijedi x, y x y za svaki x, y H (2.2) x, y = x y ako i samo ako je x = y x, y / y, y (2.3) Nejednakost torkuta: Ako je H unitaran prostor, tada vrijedi x + y x + y za svaki x, y H (2.4) Propozicija (Svojstva norme) Ako je H kompleksan (realan) unitaran prostor i x je definirana kao u 2.1, tada vrijede sljedeća svojstva: (a) x + y x + y za svaki x, y H (b) αx = α x za svaki x H i za sve α C (α R) (c) x 0 za svaki x H (d) x = 0 ako i samo ako x = 0 Pravilo paralelograma: Ako je H unitaran prostor, tada vrijedi x + y 2 + x y 2 = 2 x y 2 za svaki x, y H Definicija Niz {x n, n = 1, 2,... } elemenata unitarnog prostora H konvergira po normi prema x H ako x n x kada n. Propozicija (Neprekidnost skalarnog produkta) Ako su {x n } i {y n } nizovi čiji elementi su iz unitarnog prostora H takvi da ξ n x 0 i y n y 0 gdje su x, y H, tada vrijedi (a) x n x, (b) x n, y n x, y.

20 POGLAVLJE 2. HILBERTOVI PROSTORI Hilbertovi prostori Unitaran prostor s dodatnim svojstvom potpunosti zovemo Hilbertovim prostorom. Da bi definirali potpunost prostora, najprije moramo definirati koncept Cauchyjevog niza. Definicija Niz {x n, n = 1, 2,... } elemenata unitarnog prostora je Cauchyjev niz ako vrijedi x n x m 0 kada m, n odnosno ako za svaki ɛ > 0 postoji pozitivan cijeli broj N(ɛ) takav da vrijedi x n x m < ɛ za svaki m, n > N(ɛ) Definicija Hilbertov prostor H je unitaran potpuni prostor, odnosno unitaran prostor u kojem svaki Cauchyjev niz {x n } konvergira po normi u neki element x H. Primjeri Hilbertovih prostora su Euklidski prostori, R k, C k, prostor slučajnih varijabli koje imaju konačan drugi moment L 2 (Ω, F, P), kompleksni L 2 (Ω, F, µ) prostori kod kojih je skalarni produkt definiran kao očekivanje umnoška dviju kompleksnih slučajnih varijabli X, Y = E(XY), a µ konačna ne-nul mjera na izmjerivom prostoru (Ω, F ). Izraze L 2 (Ω, F, P) i L 2 (Ω, F, µ) ćemo rezervirati za realne Hilbertove postore ukoliko drugačije ne napomenemo. Propozicija (konvergencija po normi i Cauchyjev kriterij) Ako je {x n } niz elemenata iz Hilbertovog prostora H, tada {x n } konvergira po normi ako i samo ako x n x m 0 kada m, n. 2.3 Teorem o projekciji Prije nego iskažemo teorem o projekciji za generalizirani Hilbertov prostor, potrebno je uvesti novu terminologiju. Definicija Linearni potprostor M Hilbertovog prostora H je zatvoren potprostor od H ako M sadrži sve svoje rubne točke, odnosno ako je x n M i x n x 0, to implicira da je x M. Definicija Ortogonalni komplement podskupa M od H definiran je kao skup M svih elemenata od H koji su ortogonalni na svaki element iz M. Prema tome, x M ako i samo ako je x, y = 0 (x y) za svaki y M (2.5) Propozicija Ako je M bilo koji podskup Hilbertovog prostora H tada je M zatvoreni podskup od H.

21 POGLAVLJE 2. HILBERTOVI PROSTORI 16 Teorem (Teorem o projekciji) Ako je M zatvoreni podskup Hilbertovog prostora H i x H, tada (i) postoji jedinstveni element ˆx M takav da vrijedi x ˆx = inf x y (2.6) y M (ii) x M i x ˆx = inf y M x y ako i samo ako je ˆx M i (x ˆm) M Element ˆm zovemo ortogonalna projekcija od x na M. Korolar (Preslikavanje projekcije od H na M) Ako je M zatvoreni podskup Hilbertovog prostora H i I je jedinično preslikavanje na H, tada postoji jedinstveno preslikavanje P M od H na M takvo da I P M preslikava H na M. P M zovemo preslikavanje projekcije od H na M. Propozicija (Svojstva preslikavanja projekcije) Neka je H Hilbertov prostor i neka je P M preslikavanje projekcije na zatvoreni podskup M. Tada vrijedi (i) P M (αx + βy) = αp M x + βp M y, x, y H, α, β C, (ii) x 2 = P M x 2 + (I P M )x 2 (iii) svaki x H ima jedinstveni rastav na elemente iz M i elemente iz M, tj. (iv) P M x n P M x ako x n x 0 (v) x M ako i samo ako P M x = x (vi) x M ako i samo ako P M x = 0 x = P M x + (I P M )x, (2.7) (vii) M 1 M 2 ako i samo ako P M1 P M2 x = P M1 za svaki x H Jednadžbe predikcije: za dani Hilbertov prostor H, zatvoreni podskup M i bilo koji element x H, teorem o projekciji pokazuje da element iz M najbliži x je jedinstveni element ˆx M takav da vrijedi x ˆx, y = 0 za sve y M. (2.8) Zadnji izraz ćemo često koristiti, interpretirajući pri tome ˆx = P M x kao najbolji prediktor od x u potprostoru M.

22 POGLAVLJE 2. HILBERTOVI PROSTORI Ortonormalni skupovi Definicija Zatvorena linearna ljuska sp{x t, t T} bilo kojeg podskupa od {x t, t T} Hilbertovog prostora H je definiran kao najmanji zatvoren podskup od H koji sadrži svaki element x t, t T. Zatvorena linearna ljuska konačnog skupa {x 1,..., x n } je skup svih linearnih kombinacija y = α 1 x 1 + +α n x n, α 1,..., α n C (ili R ako je H realan). Ako je M = sp{x 1,..., x n }, tada za bilo koji dani x H, P M x je jedinstveni element oblika P M x = α 1 x α n x n takav da ili ekvivalentno takav da x P M x, y = 0, y M P M x, x j = x, x j, j = 1,..., n. (2.9) Gornja jednadžba može biti zapisana kao skup linearnih jednadžbi za α 1,..., α n, tj. n α i x i, x j = x, x j, j = j,..., n. (2.10) i=1 Prema teoremu o projekciji gornji sustav ima barem jedno rješenje za α 1,..., α n. Jedinstvenost P M x implicira da sva rješenja gornjeg sustava moraju dati isti element α 1 x α n x n. Definicija Za skup {e t, t T} elemenata unitarnog prostora kažemo da je ortonormalan ako za svaki s, t T vrijedi 1, ako je s = t, e s, e t = (2.11) 0, ako je s t, Teorem Ako je {e 1,..., e k } ortonormalan podskup Hilbertovog prostora H i M = sp{e 1,..., e n }, tada je k P M x = x, e i e i za sve x H (2.12) P M x 2 = i=1 k x, e i 2 za sve x H (2.13) i=1

23 POGLAVLJE 2. HILBERTOVI PROSTORI 18 k x k x, e i e i x c i e i za sve x H (2.14) i=1 i za sve c 1,..., c k C (ili R ako je H realan). Jednakost vrijedi u 2.14 ako i samo ako je c i = x, e i, i = 1,..., k. Korolar (Besselova nejednakost) Ako je x bilo koji element Hilbertovog prostora H i {e 1,..., e k } je ortonormalan podskup od H, tada vrijedi i=1 k x, e i 2 x 2. (2.15) i=1 Definicija Ako je {e t, t T} ortonormalni podskup Hilbertovog prostora H i M = sp{e t, t T}, tada kažemo da je {e t, t T} potpuni ortonormalni skup ili ortonormalna baza za H. Definicija Hilbertov prostor je separabilan ako je H = sp{e t, t T} sa {e t, t T} konačan ili prebrojivo beskonačan ortonormalan skup. Teorem Ako je H separabilan Hilbertov prostor H = sp{e 1, e 2,... } gdje je {e i, i = 1, 2,... } ortonormalan skup, tada je (i) skup svih konačnih linearnih kombinacija od {e 1, e 2,... } gust u H, odnosno za svaki x H i ɛ > 0, postoji pozitivan cijeli broj k i konstante c 1,..., c k takve da k x c i e i < ɛ, (2.16) (ii) x = i=1 x, e i e i za svaki x H, tj. x n i=1 x, e i e i 0 kada n, (iii) x 2 = i=1 x, e i 2 za svaki x H, (iv) x, y = i=1 x, e i e i, y za svaki x, y H, i (v) x = 0 ako i samo ako x, e i = 0 za svaki i = 1, 2,.... Točka (iv) poznata je još kao Parsevalova jednakost. i=1 Separabilne Hilbertove prostore često susrećemo kao zatvorene linearne ljuske prebrojivih podskupova od mogućih neseparabilnih Hilbertovih prostora.

24 POGLAVLJE 2. HILBERTOVI PROSTORI Projekcija u R n R n je Hilbertov prostor sa skalarnim produktom x, y = n x i y i, (2.17) i=1 pripadajućom kvadratnom normom x 2 = n xi 2, (2.18) i=1 i kutom izmedu x i y { } x, y θ = cos 1 x y (2.19) Svaki zatvoreni podprostor H Hilbertovog prostora R n može se izraziti preko Gram- Schmidtove ortogonalizacije kao M = sp{e 1,..., e m } gdje je {e 1,..., e m } ortonormalan podskup od M i m( n) zovemo dimenzijom od M. Ako je m < n tada postoji ortonormalan podskup {e m+1,..., e n } od M = sp{e 1,..., e m }. Iz propozicije (iii) svaki x R n može biti jedinstveno prikazan kao suma dva elementa od M i M respektivno: gdje iz teorema dobivamo x = P M x + (I P M )x, (2.20) P M x = m x, e i e i (2.21) i=1 i (I P M )x = n x, e i e i. (2.22) i=m+1 Sljedeći teorem omogućuje nam računanje P M x direktno iz bilo kojeg skupa vektora {x 1,..., x m } koji razapinje M. Teorem Ako je x i R n, i = 1,..., m, i M = sp{x 1,..., x m }, tada je gdje je X n m matrica čiji j-ti stupac je x j i P M x = Xβ, (2.23) X Xβ = X x. (2.24)

25 POGLAVLJE 2. HILBERTOVI PROSTORI 20 Zadnja jednakost ima barem jedno rješenje za β, ali Xβ je isto za sva rješenja. Postoji točno jedno rješenje u jednakosti 2.24 ako i samo ako je X X regularna matrica i u tom slučaju vrijedi P M x = X(X X) 1 X x. (2.25) Ako je {x 1,..., x m } ortonormalan skup, tada je X X jedinična matrica, pa vidimo da je P M x = XX x = m x, x i x i, (2.26) i=1 u skladu s Ako je {x 1,..., x m } linearno nezavisan skup tada mora postojati jedinstveni vektor β takav da vrijedi P M x = Xβ. To znači da 2.24 mora imati jedinstveno rješenje, što u obratu implicira da je X X regularna i P M x = X(X X) 1 X x za sve x R n. Matrica X(X X) 1 X mora biti jednaka za sve linearno nezavisne skupove {x 1,..., x m } koji razapinju M budući da je P M jedinstveno definirano preslikavanje na R n. 2.6 Konvergencija i najbolji linearni prediktor u L 2 (Ω, F, P) Svi rezultati u ovom poglavlju vrijedit će za realne Hilbertove prostore L 2 = L 2 (Ω, F, P) sa skalarnim produktom X, Y = E(XY). Još ćemo napomenuti da je drugi naziv za konvergenciju u srednjem upravo konvergencija po normi u L 2, npr. ako je X n, X L 2, tada je X n L 2 X ako i samo ako X n X 2 = E X n X 2 0 kada n (2.27) Jednostavnim prepravljanjem već uspostavljenih svojstava konvergencije po normi, dobivamo sljedeću propoziciju. Propozicija (Svojstva konvergencije u srednjem) (a) X n konvergira u srednjem ako i samo ako E X m X n 2 0 kada m, n (b) Ako X n L 2 X i Y n L 2 Y kada n, (i) EX n = X n, 1 X, 1 = EX, (ii) E X n 2 = X n, X n X, X = E X 2

26 POGLAVLJE 2. HILBERTOVI PROSTORI 21 (iii) E(X n Y n ) = X n, Y n X, Y = E(XY). Definicija Ako je M zatvoreni podprostor L 2 i Y L 2, tada je najbolji srednje kvadratni prediktor od Y u M element Ŷ M takav da vrijedi Y Ŷ 2 = inf Z M Y Z 2 = inf Z M E Y Z 2. (2.28) Teorem o projekciji odmah prepoznaje jedinstveni najbolji prediktor od Y u M kao P M Y. Postavljanjem malo jače strukture na zatvoreni potprostor M, od definicije 2.27 dolazimo do pojmova uvjetnog očekivanja i najboljeg linearnog prediktora. Definicija Ako je M zatvoreni potprostor od L 2 koji sadrži konstantne funkcije, i ako je X L 2, tada definiramo uvjetno očekivanje od X uz dano M da bude projekcija E M X = P M X. (2.29) Koristeći definiciju skalarnog produkta u L 2 i jednadžbu predikcije 2.8, ekvivalentno možemo reći da je E M X jedinstveni element od M za koji vrijedi E(WE M X) = E(WX) za sve W M. (2.30) Očito operator E M na L 2 ima sva svojstva kao i operator projekcije, posebno E M (ax + by) = ae M X + be M Y, a, b R, (2.31) i Primjetimo još da je E M X n L 2 E M X ako X n L 2 X (2.32) E M1 (E M2 X) = E M1 X ako je M 1 M 2 (2.33) E M 1 = 1 (2.34) i ako je M 0 zatvoreni podprostor od L 2 koji sadrži sve konstantne funkcije, tada primjena jednadžbe predikcije 2.8 daje E M0 X = EX. (2.35) Definicija Ako je Z slučajni vektor na (Ω, F, P) i X L 2 (Ω, F, P), tada je uvjetno očekivanje od X uz dano Z definirano kao E(X Z) = E M (Z)X, (2.36) gdje je M(Z) zatvoreni podprostor od L 2 koji sadrži sve slučajne varijable u L 2 koje se mogu zapisati u obliku φ(z) za neke Borelove funkcije φ : R R.

27 POGLAVLJE 2. HILBERTOVI PROSTORI 22 Operator E M (Z) zadovoljava sva svojstva , i uz dodatak E M (Z)X 0 ako je X 0. (2.37) Definiciju uvjetnog očekivanja možemo proširiti nasljedeći način: ako su Z 1,..., Z n slučajne varijable na (Ω, F, P) i X L 2, tada možemo definirati E(X Z 1,..., Z n ) = E M(Z1,...,Z n )(X), (2.38) gdje je M(Z 1,..., Z n ) zatvoreni potprostor od L 2 koji sadrži sve slučajne varijable iz L 2 u formi φ(z 1,..., Z n ) za neke Borelove funkcije φ : R n R. Sva svojstva od E M (Z) popisana gore, prenose se na E M (Z 1,..., Z n ). Uvjetno očekivanje i najbolji linearni prediktor Prema teoremu o projekciji, uvjetno očekivanje E M(Z1,...,Z n )(X) je najbolji srednje kvadratni prediktor od X u M(Z 1,..., Z n ), tj. ono je najbolja funkcija od Z 1,..., Z n za predikciju X. Medutim, odredivanje projekcije na M(Z 1,..., Z n ) je često je vrlo teško zbog kompleksne prirode jednaddžbi S druge strane, ako je Z 1,..., Z n L 2, relativno je lagano izračunati projekciju od X na sp{1, Z 1,..., Z n } M(Z 1,..., Z n ) s obzirom da možemo pisati n P sp{1,z1,...,z n }(X) = α i Z i, Z 0 = 1, (2.39) gdje α 0,..., α n zadovoljavaju n α i Z i, Z j = X, Z j, j = 0, 1,..., n, (2.40) ili ekvivalentno, i=0 i=0 n α i E(Z i Z j ) = E(XZ j ), j = 0, 1,..., n. (2.41) i=0 Teorem o projekciji garantira da rješenje (α 0,..., α n ) postoji. Bilo koje rješenje supstituirano u 2.39, daje potrebnu projekciju, poznatu kao najbolji linearni prediktor od X u terminima 1, Z 1,..., Z n. Kao projekcija od X na podprostor od M(Z 1,..., Z n ), ono nikad neće imati manju srednje kvadratnu grešku od E M(Z1,...,Z n )X. Ipak, to je od velike važnosti iz sljedećih razloga: (a) jednostavnije ga je izračunati od E M (Z 1,..., Z n )(X), (b) Ovisi samo o prvim i drugim momentima, EX, EZ i, E(Z i Z j ) i E(XZ j ) iz zajedničke distribucije od (X, Z 1,..., Z n ),

28 POGLAVLJE 2. HILBERTOVI PROSTORI 23 (c) Ako (X, Z 1,..., Z n ) ima višedimenzionalnu normalnu distribuciju, tada je P sp{1,z1,...,z n }(X) = E M(Z1,...,Z n )(X). Općenitija definicija najboljeg linearnog prediktora glasi: Definicija Ako je X L 2 i Z λ L 2 za svaki λ Λ, tada najbolji linearni prediktor od X u terminima od {Z λ, λ Λ} definiramo kao element iz sp{z λ, λ Λ} s najmanjom srednje kvadratnom udaljenosti od X. Prema teoremu o projekciji to je samo P sp{zλ,λ Λ}X. Operatori uvjetnog očekivanja E M (Z) i E M(Z1,...,Z n ) najčešće su definirani na prostorima slučajnih varijabli X za koje vrijedi E X <, L 1 (Ω, F, P). Restrikcije tih operatora na L 2 (Ω, F, P) podudaraju se sa E M(Z) i E M(Z1,...,Z n ) kao što smo ih definirali.

29 Poglavlje 3 Stacionarni ARMA procesi U ovom poglavlju predstavit ćemo jednu od najvažnijih klasa vremenskih nizova {X t, t = 0, ±1, ±2,... } definiranih u terminima linearnih diferencijalnih jednadžbi s konstatntnim koeficijentima. Odredivanje ove dodatne strukture definira parametarsku familiju stacionarnih procesa, autoregresivni procesi pomičnih prosjeka ili ARMA procesi. Za bilo koju autokovarijacijsku funkciju γ( ) takvu da je lim h γ(h) = 0, i za bilo koji cijeli broj k > 0, moguće je pronaći ARMA proces s autokovarijacijskom funkcijom γ X ( ) tako da vrijedi γ X (h) = γ(h), h = 0, 1,..., k. Zbog toga familija ARMA procesa igra ključnu ulogu u modeliranju vremenskih nizova. Linearna struktura ARMA procesa vodi jednostavnijoj teoriji linearnih prediktora. 3.1 Kauzalni i invertibilni ARMA procesi U mnogim aspektima najjednostavniji oblik vremenskog niza {X t } je onaj u kojem su slučajne varijable X t, t = 0, ±1, ±2,... nezavisne i jednako distribuirane s očekivanjem nula i varijancom σ 2. S druge točke gledišta, ignoriramo li sva svojstva zajedničke distribucije od {X t } osim onih koja možemo zaključiti iz momenata E(X t ) i E(X s X t ), takve procese identificiramo sa klasom svih stacionarnih procesa koji imaju očekivanje nula i autokovarijacijsku funkciju σ 2, ako je h = 0, γ(h) = (3.1) 0, ako je h 0, Definicija Za proces {Z t } kažemo da je bijeli šum s očekivanjem 0 i varijancom σ 2, u zapisu {Z t } WN(0, σ 2 ) ako i samo ako {Z t } ima očekivanje nula i kovarijacijsku funkciju

30 POGLAVLJE 3. STACIONARNI ARMA PROCESI 25 Ako su slučajne varijable Z t nezavisne i jednako distribuirane s očekivanjem nula i varijancom σ 2, tada ćemo pisati {Z t } IID(0, σ 2 ) (3.2) Vrlo široka klasa stacionarnih procesa može biti generirana koristeći bijeli šum kao pogon u skupu linearnih diferencijalnih jednadžbi. Ovo vodi pojmu autoregresivnog procesa pomičnih prosjeka (ARMA). Definicija Za proces {X t, t = 0, ±1, ±2,... } kažemo da je ARMA(p, q) proces ako je {X t } stacionaran i ako za svaki t, X t φ 1 X t 1 φ p X t p = Z t + θ 1 Z t θ q Z t q (3.3) gdje je {Z t } WN(0, σ 2 ). Kažemo da je {X t } ARMA(p, q) proces s očekivanjem µ ako je {X t µ} ARMA(p, q) proces. Jednadžba 3.3 može biti zapisana simbolički u mnogo kompaktnijem obliku gdje su φ i θ polinomi p-tog i q-tog stupnja i i B je opetator pomaka unatrag definiran sa φ(b)x t = θ(b)z t, t = 0, ±1, ±2,..., (3.4) φ(z) = 1 φ 1 z φ p z p (3.5) θ(z) = 1 θ 1 z θ q z q (3.6) B j X t = X t j, j = 0, ±1, ±2,.... (3.7) Polinomi φ i θ se odnose na autoregresivne polinome i polinome pomičnih prosjeka respektivno na diferencijalne jednadžbe 3.4 Proces pomičnih posjeka reda q (MA(q)) Ako je φ(z) 1, tada za X t = θ(b)z t (3.8) kažemo da je proces pomični prosjeka reda q, tj. MA(q). Poprilično je jasno da u tom slučaju diferencijabilna jednadžba ima jedinstveno rješenje 3.8. Štoviše rješenje {X t } je stacionaran proces budući da (definirajući θ 0 = 1 i θ j = 0 za j > q), vidimo da je EX t = q θ j EZ t j = 0 j=0

31 POGLAVLJE 3. STACIONARNI ARMA PROCESI 26 i σ 2 q h j=0 Cov(X t+h, X t ) = θ jθ j+ h, ako je h q, 0, ako je h > q, Autoregresivni proces reda p (AR(p)) Ako je θ(z) 1, tada za φ(b)x t = Z t (3.9) kažemo da je autoregresivni proces reda p, tj. AR(p). U tom slučaju egzistencija i jedinstvenost stacionarnog rješenja od 3.9 zahtjeva dodatno ispitivanje. Ilustrirajmo to na slučaju φ(z) = 1 φ 1, odnosno X t = Z t + φ 1 X t 1 (3.10) Iteracijom zadnjeg izraza dobivamo X t = Z t + φ 1 Z t 1 + φ 2 1 X t 2 = = Z t + φ 1 Z t φ k 1 Z t k + φ k+1 1 X t k 1. Ako je φ 1 < 1 i {X t } je stacionaran, tada je X t 2 = E(X 2 t ) konstantno tako da X t k φ j 1 Z t j 2 = φ 2k+2 1 X t k kada k j=0 Budući da j=0 φ j 1 Z t j konvergira u srednjem (prema Cauchyjevom kriteriju), zaključujemo da je X t = φ j 1 Z t j (3.11) j=0 Jednadžba 3.11 vrijedi ne samo u smislu konvergencije u srednjem, već i (prema propoziciji niže) s vjerojatnošću 1, tj. X t (ω) = φ 1 Z t j (ω) za svaki ω E, j=0 gdje je E podskup temeljnog vjerojatnosnog prostora s očekivanjem nula. Svi konvergentni nizovi slučajnih varijabli iz ovog poglavlja bit će konvergentni u srednjem (tj. u L 2 ) i apsolutno konvergentni s očekivanjem 1. Sada je {X t } definiran sa 3.11 stacionaran budući da EX t = φ j 1 EZ t j = 0 j=0

32 POGLAVLJE 3. STACIONARNI ARMA PROCESI 27 i [ ( n Cov(X t+h, X t ) = lim E φ j n 1 Z ) ( n )] t+h j φ j 1 Z t k j=0 k=0 = σ 2 φ h 1 j=0 φ 2 j 1 = σ2 φ h 1 /(1 φ2 1 ). Štoviše, {X t } definiran sa 3.11 zadovoljava diferencijalnu jednadžbu 3.10 stoga je i jedinstveno stacionarno rješenje. U slučaju kada je φ 1 > 1 nizovi 3.11 ne konvergiraju u L 2. Medutim 3.10 možemo zapisati u drugačijem obliku Iteriranje 3.12 daje X t = φ 1 1 Z t+1 + φ 1 1 X t+1 (3.12) X t = φ 1 1 Z t+1 φ 2 1 Z t+2 + φ 2 1 X t+2 = = φ 1 1 Z t+1 φ k 1 1 Z t+k+1 + φ k 1 1 X t+k+1 što pokazuje, s istom argumentacijom kao u prethodnom odlomku, da je X t = j=1 φ j 1 Z t+ j (3.13) jedinstveno stacionarno rješenje od Ovo rješenje ne smijemo zamijeniti s nestacionarnim rješenjem {X t, t = 0, ±1, ±2,... } od 3.10 dobiveno kada je X 0 bilo koja slučajna varijabla koja nije korelirana s {Z t }. Stacionarno rješenje 3.13 se često smatra neprirodnim budući da je X t definiran sa 3.13 koreliran sa {Z s, s > t}, svojstvo koje ne zadovoljava rješenje 3.11 kada je φ 1 < 1. Stoga je uobičajeno prilikom modeliranja stacionarnih vremenskih nizova napraviti restrikciju na AR(1) proces s φ 1 < 1 za koji X t ima reprezentaciju 3.11 u terminima {Z s, s t}. Takve procese zovemo kauzalnima ili vremenski neovisni autoregresivni procesi. Treba napomenuti da svaki AR(1) proces s φ 1 > 1 može biti izražen kao AR(1) proces s φ 1 < 1 i novim bijelim šumom. Iz drugog kuta gledanja, ništa nije izgubljeno eliminacijom AR(1) procesa sa φ 1 > 1 iz razmatranja. Ako je φ 1 = 1, tada ne postoji stacionarno rješenje od Posljedično, ne postoji AR(1) proces s φ 1 = 1 prema našoj definiciji Kauzalnost i invertibilnost Koncept kauzalnosti sada definiramo za generalizirane ARMA(p, q) procese.

33 POGLAVLJE 3. STACIONARNI ARMA PROCESI 28 Definicija Za ARMA(p, q) proces definiran jednadžbom φ(b)x t = θ(b)z t kažemo da je kauzalan (ili još točnije da je kauzalna funkcija od {Z t }) ako postoji konstantan niz {ψ j } takav da j=0 ψ j < i X t = ψ j Z t j, t = 0, ±1,.... (3.14) j=0 Napomenuti ćemo da je kauzalnost svojstvo ne samo procesa {X t } već i veze izmedu dva procesa {X t } i {Z t } koji se pojavljuju u definiranju ARMA jednadžbe. Reći ćemo da je {X t } kauzalan ako je dobiven iz {Z t } primjenom kauzalnog linearnog filtera. Sljedeći teorem daje nam nužne i dovoljne uvjete da ARMA proces bude kauzalan. Takoder daje eksplicitnu reprezentaciju od X t u terminima {Z s, s t}. Teorem Neka je {X t } ARMA(p, q) proces za koji polinomi φ( ) i θ( ) nemaju zajedničke nultočke. Tada je {X t } kauzalan ako i samo ako φ(z) 0 za sve z C takva da je z 1. Koeficijenti {ψ j } u 3.14 definirani su relacijom ψ(z) = φ j z j = θ(z)/φ(z), z 1 (3.15) j=0 Ako je {X t } ARMA(p, q) proces za koji polinomi φ( ) i θ( ) imaju zajedničke nultočke, tada imamo dvije mogućnosti: (a) ni jedna od zajedničkih nultočaka ne leži na jediničnoj kružnici, u tom slučaju je {X t } jedinstveno stacionarno rješenje ARMA jednadžbi koje nemaju zajedničkih nultočaka, dobivenh uklanjanjem zajedničkih faktora od φ( ) i θ( ). (b) barem jedna od zajedničkih nultočaka leži na jediničnoj kružnici, u tom slučaju ARMA jednadžbe imaju više od jednog stacionarnog rješenja. Posljedično se ARMA procesi za koje φ( ) i θ( ) imaju zajedničke nultočke rijetko uzimaju u obzir. Prvi dio teorema pokazuje da ako je {X t } stacionarno rješenje ARMA jednadžbi s φ(z) 0 za z 1, tada imamo X t = j=0 ψ j Z t j gdje je {ψ j } definiran s Obratno, ako je X t = j=0 ψ j Z t j, tada je φ(b)x t = φ(b)ψ(b)z t = θ(b)z t. Prema tome, proces {ψ(b)z t } je jedinstveno stacionarno rješenje ARMA jednadžbi ako je φ(z) 0 za z 1. Ako φ( ) i θ( ) nemaju zajedničkih nultočaka i ako φ(z) = 0 za neke z C s z = 1, tada ne postoji stacionarno rješenje od φ(b)x t = θ(b)z t. Sada ćemo predstaviti drugi koncept koji je usko povezan s kauzalnošću.

34 POGLAVLJE 3. STACIONARNI ARMA PROCESI 29 Definicija Za ARMA(p, q) proces definiran jednadžbom φ(b)x t = θ(b)z t kažemo da je invertibilan ako postoji niz konstanti {π j } takvih da je j=0 π j < i Z t = π j X t j, t = 0, ±1,.... (3.16) j=0 Poput kauzalnosti, svojstvo invertibilnosti nije svojstvo samo procesa {X t }, već veze izmedu procesa {X t } i {Z t } koji se pojavljuju u definiciji ARMA jedandžbi. Sljedeći teorem daje dovoljne i nužne uvjete za invertibilnost procesa i definira koeficijente π j iz zapisa Teorem Neka je {X t } ARMA(p, q) proces za koji polinomi φ( ) i θ( ) nemaju zajedničke nultočke. Tada je {X t } invertibilan ako i samo ako π(z) 0 za sve z C takva da je z 1. Koeficijenti {π j } u 3.16 definirani su relacijom π(z) = π j z j = φ(z)/θ(z), z 1 (3.17) j=0 Ako je {X t } stacionarno rješenje jednadžbi i ako je φ(z)θ(z) 0 za z 1, tada φ(b)x t = θ(b)z t, {Z t } WN(0, σ 2 ), (3.18) X t = ψ j Z t j j=0 i Z t = π j X t j j=0 gdje je j=0 ψ j z j = θ(z)/φ(z) i j=0 π j z j = φ(z)/θ(z), z 1. Ako je {X t } bilo koji ARMA proces, φ(b)x t = θ(b)z t, s φ(z) ne-nul polinomom za svaki z takav da je z = 1, tada je moguće pronaći polinome φ( ), θ( ) i bijeli šum {Z t } takav da je φ(b)x t = θ(b)z t i {X t } kauzalna funkcija od {Z t }. Uz uvjet da je θ(z) ne-nul polinom kada je z = 1, θ( ) možemo izabrati na način da je {X t } takoder invertibilna funkcija od {Z t }, tj. na način da je θ(z) ne-nul polinom za z 1. Ako je {Z t } IID(0, σ 2 ), generalno {Z t } ne mora biti nezavisan, no ako je {Z t } Gaussovski, tada jest nezavisan. U nastavku ćemo se fokusirati na kauzalne invertibilne ARMA procese osim ako drugačije ne napomenemo.

35 POGLAVLJE 3. STACIONARNI ARMA PROCESI Računanje autokovarijacijske funkcije ARMA(p, q) procesa U ovom ćemo dijelu dati tri metode računanja autokovarijacijske funkcije ARMA procesa. U praksi je treća metoda najpogodnija za dobivanje brojčanih vrijednosti, dok je druga najpogodnija za dobivanje rješenja u zatvorenom obliku. Metoda 1: autokovarijacijska funkcija γ kauzalnog ARMA(p, q) procesa φ(b)x t = θ(b)z t zadovoljava γ(k) = σ 2 ψ j ψ j+ k (3.19) gdje je ψ(z) = j=0 ψ j z j = θ(z)/φ(z), za z 1, (3.20) j=0 θ(z) = 1 + θ 1 z + + θ q z q i φ(z) = 1 φ 1 z φ p z p. Kako bi odredili koeficijente ψ j možemo ponovo zapisati 3.20 u obliku ψ(z)φ(z) = θ(z) i izjednačiti koeficijente uz z j da dobijemo (definirajući θ 0 = 1,θ j = 0 za j > q i φ j = 0 za j > p), i ψ j ψ j 0<k j 0<k p φ k ψ j k = θ j, 0 j < max p,q+1 φ k ψ j k = θ j, Ove jednadžbe lako se mogu riješiti za ψ 0, ψ 1, ψ 2,.... Stoga (3.21) j max p,q+1. (3.22) ψ 0 = θ 0 = 1, ψ 1 = θ 1 + ψ 0 φ 1 = θ 1 + φ 1, ψ 2 = θ 2 + ψ 0 φ 2 + ψ 1 φ 1 = θ 2 + φ 2 + θ 1 φ 1 + φ 2 1,... (3.23) Alternativno, generalizirano rješenje 3.22 možemo zapisati kao ψ n = k r i 1 α i j n j ξi n, n max(p, q + 1) p, (3.24) i=1 j=0 gdje su ξ i, i = 1,..., k različite nultočke od φ(z) i r i je kratnost od ξ i (stoga moramo imati k i=1 = p). p konstanta α i j i koeficijenti ψ j, 0 j < max(p, q + 1) p, su tada

36 POGLAVLJE 3. STACIONARNI ARMA PROCESI 31 jedinstveno odredene s graničnim uvjetima iz Time su definirani niz {ψ j } i autokovarijacijska funkcija γ. Metoda 2: Alternativna metoda za računanje autokovarijacijske funkcije γ( ) kauzalnog ARMA(p, q) procesa φ(b)x t = θ(b)z t, (3.25) bazirana je na diferencijskim jednadžbama za γ(k), k = 0, 1, 2,..., dobivenih množenjem obje strane jednakonsti 3.25 s X t k i uzimanjem očekivanja, naime γ(k) φ 1 γ(k 1) φ p γ(k p) = σ 2 θ j ψ j k, 0 k < max(p, q + 1), (3.26) i k j q γ(k) φ 1 γ(k 1) φ p γ(k p) = 0, k max(p, q + 1). (3.27) U evaluaciji desne strane jednakosti jednadžbi koristili smo reprezentaciju X t = j=0 ψ j Z t j. Generalizacija rješenja od 3.27 ima isti oblik kao 3.24 γ(h) = k r i 1 β i j h j ξi h, h max(p, q + 1) p, (3.28) i=1 j=0 gdje su p konstanti β i j i kovarijance γ( j), 0 j < max(p, q+1) p jedinstveno odredene iz graničnih uvjeta 3.26 nakon što smo izračunali ψ 0, ψ 1,..., ψ q iz Metoda3: Numeričko odredivanje autokovarijacijske funkcije γ( ) iz jednadžbi 3.26 i 3.27 može se odmah izvesti tako da prvo pronademo γ(0),..., γ(p) iz jednadžbi s k = 0, 1,..., p, i tada rekurzivno da bi odredili γ(p + 1), γ(p + 2), Parcijalna autokorelacijska funkcija Parcijalna autokorelacijska funkcija, poput autokorelacijske funkcije, daje vitalne informacije koje se odnose na zavisnost stacionarnog procesa. Poput autokorelacijske funkcije takoder ovisi samo o drugom redu svojstava procesa. Parcijalna autokorelacijska funkcija α(k) u pomaku k može se smatrati korelacijom izmedu X 1,..., X k. Definicija Parcijalnu autokorelacijsku funkciju (pacf) α( ) stacionarnog vremenskog niza definiramo sa α(1) = Corr(X 2, X 1 ) = ρ(1), i α(k) = Corr(X k+1 P sp{1,x2,...,x k }X k+1, X 1 P sp{1,x2,...,x k }X 1 ), k 2, gdje su P sp{1,x2,...,x k }X k+1 i P sp{1,x2,...,x k }X 1 projekcije. Vrijednost α(k) poznata je kao parcijalna autokorelacija u pomaku k.

37 POGLAVLJE 3. STACIONARNI ARMA PROCESI 32 Parcijalna autokorelacija α(k), k 2, je dakle korelacija dva reziduala dobivena nakon regresije X k+1 i X 1 na sredini opažanja X 2,..., X k. Prisjetimo se da ako stacionaran proces ima očekivanje 0, tada P sp{1,x2,...,x k }( ) = P sp{x2,...,x k }( ). Ekvivalentna definicija parcijalne autokorelacijske funkcije Neka je {X t } stacionaran proces s očekivanjem 0 i autokovarijacijskom funkcijom γ( ) takvom da γ(h) 0 kada h, i pretpostavimo da su φ k j, j = 1,..., k; k = 1, 2,..., koeficijenti u reprezentaciji P sp{x1,...,x k }X k+1 = k φ k j X k+1 j. j=1 Tada iz jednadžbi X k+1 P sp{x2,...,x k }X k+1, X j = 0, j = 1,..., k, Dobivamo ρ(0) ρ(1) ρ(2)... ρ(k 1) φ k1 ρ(1) ρ(1) ρ(0) ρ(1)... ρ(k 2) φ k2 ρ(2) =, za k 1. (3.29)... ρ(k 1) ρ(k 2) ρ(k 3)... ρ(0) ρ(k) Definicija Parcijalna autokorelacijska funkcija α(k) od {X t } u pomaku k je gdje je φ kk jedinstveno odreden sa α(k) = φ kk, k 1, Definicija Uzoračka parcijalna autokorelacijska funkcija ˆα(k) u pomaku k od {x 1,..., x n } definirana je, uz uvjet da je x i x j za neke i i j, sa φ kk ˆα(k) = ˆφ kk, 1 k < n, gdje je ˆφ kk jedinstveno odreden sa 3.29 gdje je svaki ρ( j) zamjenjen sa odgovarajućom uzoračkom autokorelacijom ˆρ( j).

38 POGLAVLJE 3. STACIONARNI ARMA PROCESI Autokovarijacijska funkcija izvodnica Ako je {X t } stacionaran proces s autokovarijacijskom funkcijom γ( ), tada generirajuća autokovarijacijska funkcija definirana sa G(z) = γ(k)z k, (3.30) k= uz uvjet da red konvergira za svaki z iz za koji vrijedi r 1 < z < r uz r > 1. Često je generirajuću funkciju lako izračunati, u kojem slučaju se autokovarijacija u pomaku k može odrediti utvrdivanjem koeficijenata bilo z k ili z k. Očito je da je {X t } bijeli šum ako i samo ako je generirajuća autokovarijacijska funkcija G(z) konstantna za svaki z. Ako X t = ψ j Z t j, {Z t } WN(0, σ 2 ) (3.31) j= i postoji r > 1 takav da ψ j z j <, r 1 < z < r, (3.32) j= funkcija izvodnica G( ) ima vrlo jednostavan oblik. Lako se može vidjeti da γ(k) = Cov(X t+k, X t ) = σ 2 ψ j ψ j+ k j= stoga G(z) = σ 2 k= j= ψ j ψ j+ k z k = σ 2 [ j= ψ 2 j + k=1 j= ψ j ψ j+k (z k + z k ) ] ( )( = σ 2 j= ψ j z j k= ψ k z ). k Definirajući ψ(z) = ψ j z j, r 1 < z < r, j= rezultat možemo ljepše zapisati u obliku G(z) = σ 2 ψ(z)ψ(z 1 ), r 1 < z < r. (3.33)

39 POGLAVLJE 3. STACIONARNI ARMA PROCESI 34 Propozicija Neka je {X t } ARMA(p, q) proces koji zadovoljava jednadžbe φ(b)x t = θ(b)z t, {Z t } WN(0, σ 2 ), gdje je φ(z) 0 i θ(z) 0 za svaki z C takav da je z = 1. Tada postoje ne-nul polinomi, φ(z) i θ(z), za z 1, stupnja p i q respektivno, i bijeli šum {Z t } takav da {X t } zadovoljava kauzalne inverbitilne jednadžbe φ(b)x t = θ(b)z t.

40 Poglavlje 4 Predikcija stacionarnih procesa Ovdje ćemo proučiti problem predikcije vrijednosti {X t, t n + 1} stacionarnog procesa u terminima od {X 1,..., X n }. Ideja je iskoristiti opažanja uzeta u trenutku ili prije trenutka n da bi predvidjeli daljnje ponašanje od {X t }. Za bilo koji dani zatvoreni podprostor M od L 2 (Ω, F, P), najbolji prediktor u M od X n+h je definiran kao element od M s minimalnom kvadratnom udaljenšću od X n+h. Naravno to nije jedina moguća definicija najboljeg, ali za procese sa konačnim drugim momentom vodi teoriji predikcije koja je jednostavna, elegantna i korisna u praksi. Ranije smo pokazali da projekcije P M{X1,...,X n } X n+h i P sp{1,x1,...,x n }X n+h su respektivno najbolje funkcije od X 1,..., X n i najbolja linearna kombinacija od 1, X 1,..., X n za predikciju X n+h. Zbog toga ćemo se koncentrirati na potonje prediktore (najbolje linearne prediktore) umjesto rada sa uvjetnim očekivanjem. 4.1 Jednadžbe prediktora u vremenskoj domeni Neka je {X t } stacionaran proces s očekivanjem µ i autokovarijacijskom funkcijom γ( ). Tada je proces {Y t } = {X t µ} stacionaran proces s očekivanjem 0 i autokovarijacijskom funkcijom γ( ) i vrijedi P sp{1,x1,...,x n }X n+h = µ + P sp {Y 1,..., Y n })Y n+h. (4.1) Bez smanjena općenitosti, kroz poglavlje ćemo pretpostaviti da je µ = 0. Pod tom pretpostavkom jasno je da je 4.1 Jednadžbe za one-step prediktore P sp{1,x1,...,x n }X n+h = P sp{x1,...,x n }X n+h. (4.2) Neka H n predstavlja zatvoreni linearni potprostor sp{x 1,..., X n }, n 1, i neka ˆX n+1, n 0, predstavlja one-step prediktor, definiran sa 35

41 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 36 0, ako je n = 0, ˆX n+1 = P Hn X n+1, ako je n 1, (4.3) Budući da je ˆX n+1 H n, n 1, možemo pisati ˆX n+1 = φ n1 X n + + φ nn X 1, n 1. (4.4) gdje φ n1,..., φ nn zadovoljava prediktorsku jednadžbu 2.8, tj. n φ ni X n+1, X n+1 j = X n+1, X n+1 j, j = 1,..., n, i=1 uz X, Y = E(XY). Zbog linearnosti skalarnog produkta ove jednadžbe možemo zapisati u obliku n φ ni γ(i j) = γ( j), j = 1,..., n, ili ekvivalentno i=1 Γ n φ n = γ n, (4.5) gdje je Γ n = [γ(i j)] i, j=1,...,n, γ n = (γ(1),..., γ(n)) i φ n = (φ n1,..., φ nn ). Teorem o projekciji garantira da jednadžba 4.5 ima barem jedno rješenje budući da se ˆX n+1 mora moći izraziti u obliku 4.4 za neke φ n R n. Jednadžbe 4.4 i 4.5 su poznate kao one-step prediktorske jednadžbe. Iako može postojati više rješenja od 4.5, svaki od njih, kada se supstituira u 4.4, mora dati jednaki prediktor ˆX n+1 budući da znamo da je ˆX n+1 jedinstveno definiran. Postoji točno jedno rješenje od 4.5 ako i samo ako je Γ n regularna, i u tom slučaju rješenje je φ n = Γ 1 n γ n, (4.6) Uvjeti iz sljedeće propozicije dovoljni su da bi osigurali regularnost od Γ n za svaki n. Propozicija Ako je γ(0) > 0 i γ(h) 0 kada h, tada je kovarijacijska matrica Γ n = [γ(i j)] i, j=1,...,n od (X 1,..., X n ) regularna za svaki n. Korolar Uz uvjete iz prethodne propozicije, najbolji linearni prediktor ˆX n+1 od X n+1 u terminima od X 1,..., X n je ˆX n+1 = n φ ni X n+1 i, n = 1, 2,..., i=1 gdje je φ n := (φ n1,..., φ nn ) = Γ 1 n γ n, γ n = (γ(1),..., γ(n)) i Γ n = [γ(i j)] i, j=1,...,n. Srednje kvadratna greška je v n = γ(0) γ nγ 1 n γ n.

42 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 37 Jednadžbe za h-step prediktore, h 1 Najbolji linearni prediktor od X n+h u terminima od X 1,..., X n za bilo koji h 1 možemo pronači na isti način kao i ˆX n+1. Dakle, gdje je φ (h) n P Hn X n+h = φ (h) n1 X n + + φ (h) nn X 1, n, h 1, (4.7) = (φ (h) n1,..., φ(h) nn ) bilo koje rješenje (jedinstveno ako je Γ n regularna) od gdje je γ (h) n = (γ h, γ h+1,..., γ n+h 1 ). Γ n φ (h) n = γ (h) n, (4.8) 4.2 Rekurzivna metoda za računanje najboljih linearnih prediktora U ovom dijelu ćemo dati dva rekurzivna algoritma za odredivanje one-step prediktora ˆX n+1, n 1, definiranog sa 4.3 i pokazati ćemo kako ih iskoristiti za računanje h-step prediktora P Hn X n+h, h 1. Rekurzivna predikcija je od velike važnosti u praksi budući da direktno računanje P Hn X n+h iz 4.7 i 4.8 za velike n zahtjeva rješenje velikog sustava linearnih jednadžbi. Štoviše, svaki put kada se broj opažanja poveća, cijeli proces se mora ponoviti. Algoritmi koje ćemo opisati u ovom dijelu dozvoljavaju nam računanje najboljeg linearnog prediktora bez ikakvih računanja inveznih matrica. Nadalje, oni koriste prediktore temeljene na n opažanja da bi izračunali one temeljene na n + 1 opažanja, n = 1, 2,.... Rekurzivna predikcija korištenjem Dubin - Levinsonovog algoritma Budući da je ˆX n+1 = P Hn X n+1, n 1, možemo ˆX n+1 izraziti u obliku ˆX n+1 = φ n1 X n + + φ nn X 1, n 1. (4.9) Srednje kvadratnu grešku prediktora označavati ćemo sa v n. Dakle, v n = E(X n+1 ˆX n+1 ) 2, n 1, (4.10) i očito je v 0 = γ(0). Algoritam odreden u idućoj propoziciji, poznat kao Dubin - Levinsonov algoritam, je rekurzivna shema za računanje φ n := (φ n1,..., φ nn ) i v n za n = 1, 2,.... Propozicija (Dubin - Levinsonov algoritam) Ako je {X t } stacionarni proces s očekivanjem 0 i autokovavrijacijskom funkcijom γ( ) takvom da je γ(0) > 0 i γ(h) 0 kada h

43 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 38, tada koeficijenti φ ni i srednje kvadratne greške v n definirani sa 4.9 i 4.10 zadovoljavaju φ 11 = γ(1)/γ(0), v 0 = γ(0), i φ nn = [ n 1 γ(n) φ n 1, j γ(n j) ] v 1 n 1, (4.11) φ n1. φ n,n 1 = i=1 φ n 1.1. φ n 1,n 1 φ nn φ n 1,n 1. φ n 1,1 (4.12) v n = v n 1 [1 φ 2 nn]. (4.13) U poglavlju 3.4 dali smo dvije definicije parcijalne autokorelacijske funkcije od {X t } u pomaku h, tj. i α(n) = Corr(X n+1 P sp{x2,...,x n }X n+1, X 1 P sp{x2,...,x n }X 1 ) α(n) = φ nn. U idućem korolaru dati ćemo ekvivalenciju ove dvije definicije uz uvjete iz propozicije Korolar (Parcijalna autokorelacijska funkcija) Uz pretpostavke iz propozicije vrijedi φ nn = Corr(X n+1 P sp{x2,...,x n }X n+1, X 1 P sp{x2,...,x n }X 1 ). Rekurzivna predikcija korištenjem inovacijskog algoritma Druga rekurzija, dana u donjoj propoziciji , ovisi o dekompoziciji od H n na n ortogonalnih potprostora pomoću Gram-Schmidtovog postupka ortogonalizacije. Propozicija je generalno više primjenjiva od propozicije budući da dopuštamo mogućnost da {X t } bude nestacionaran proces s očekivanjem 0 i autokovarijacijskom funkcijom, κ(i, j) = X i, X j = E(X i X j ). Kao i prije, definiramo H n = sp{x 1,..., X n }, ˆX n+1 kao u 4.3 i v n = X n+1 ˆX n+1 2. Očito je (definirajući ˆX 1 := 0), H n = sp{x 1 ˆX 1, X 2 ˆX 2,..., X n ˆX n }, n 1,

44 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 39 tako da n ˆX n 1 = θ n j (X n+1 j ˆX n+1 j ). j=1 Sad ćemo dati rekurzivnu shemu za računanje {θ n j, j = 1,..., n; v n }, n = 1, 2,.... Propozicija (inovacijski algoritam) Ako {X t } ima očekivanje 0 i E(X i X j ) = κ(i, j), gdje je matrica [κ(i, j)] n i, j=1 regularna za svaki n = 1, 2,..., tada one-step prediktori ˆX n+1, n 0, i njihove srednje kvadratne greške v n, n 1, su dane sa 0, ako je n = 0, ˆX n+1 = n (4.14) j=1 θ n j (X n+1 j ˆX n+1 j ), ako je n 1, i v 0 = κ(1, 1) ( θ n,n k = v 1 k κ(n + 1, k + 1) k 1 ) j=0 θ k,k j θ n,n j v j, k = 0, 1,..., n 1 v n = κ(n + 1, n + 1) n 1 j=0 θn,n 2 j v j. (4.15) Dok Durbin - Levinson algoritam daje koeficijente od X 1,..., X n u reprezentaciji ˆX n+1 = n j=1 φ n j X n+1 j, inovacijski algoritam daje koeficijente inovacije, (X j ˆX j ), j = 1,..., n, u ortogonalnom proširenju ˆX n+1 = n j=1 θ n j (X n+1 j ˆX n+1 j ). Potonje proširenje je izuzetno jednostavno za uporabu i, u slučaju ARMA(p, q) procesa, može biti još više pojednostavljeno. Propozicija takoder daje inovacijsku reprezentaciju od X n+1. Dakle, definirajući θ n0 = 1, možemo pisati X n+1 = n θ n j (X n+1 j ˆX n+1 j ), n = 0, 1, 2,.... Rekurzivni izračun h-step prediktora, h 1 j=1 Uvest ćemo oznaku P n za operator projekcije P Hn. Tada h-step prediktor P n X n+h lako možemo pronaći uz pomoć Propozicije Uz Propoziciju za h 1, vrijedi n+h 1 P n X n+h = P n P n+h 1 X n+h = P n ˆX n+h = P n j=1 θ n+h 1, j (X n+h j ˆX n+h j ). Budući da je (X n+h j ˆX n+h j ) H n za j < h, iz Propozicije slijedi P n X n+h = n+h 1 j=h θ n+h 1, j (X n+h j ˆX n+h j ) (4.16)

45 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 40 gdje su koeficijenti θ n j odredeni kao ranije s Štoviše, srednje kvadratnu grešku možemo izraziti kao E(X n+h P n X n+h ) 2 = X n+h 2 P n X n+h 2 = κ(n + h, n + h) n+h 1 j=h θ 2 n+h 1, j v n+h j j. (4.17) 4.3 Rekurzivni prediktor ARMA(p, q) procesa Propoziciju možemo direktno primjeniti na prediktora kauzalnog ARMA procesa φ(b)x t = θ(b)z t, {Z t } WN(0, Σ 2 ) (4.18) gdje je kao i obično, φ(b) = 1 φ 1 B φ p B p i θ(b) = 1 + θ 1 B + + θ q B q. Medutim, vidjet ćemo da drastično pojednostavljenje u kalkulaciji može biti napravljeno ako, umjesto primjene Propozicije diretno na {X t }, primjenimo je na transformirani proces llw t = σ 1 X t, t = 1,..., m, (4.19) W t = σ 1 φ(b)x t, t > m gdje je m = max(p, q) (4.20) Zbog jednostavnosti definirat ćemo θ 0 = 1 i pretpostaviti da je p 1 i q 1. Ne dolazi do smanjenja općenitosti s ovim pretpostavkama budući da u ovoj analizi dopuštamo da bilo koji od koeficijenata φ i i θ i bude jednak 0. S potprostorom H n definiranim u dijelu 5.1, možemo pisati H n = sp{x 1,..., X n } = sp{w 1,..., W n }, n 1. (4.21) Za n 1, ˆX n+1 i Ŵ n+1 će označavati projekcije na H n od X n+1 i W n+1 respektivno. Kao u 4.3 možemo definirati ˆX 1 = Ŵ 1 = 0. Autokovarijacijsku funkciju γ X ( ) od {X t } možemo lako izračunati koristeći bilo koju od metoda opisanih u 3.3. Autokovarijacije κ(i, j) = E(W i W j ) se mogu naći iz σ 2 γ X (i j), 1 i, j m, σ 2[ γ X (i j) p r=1 κ(i, j) = φ rγ X (r i j ) ], min(i, j) m < max(i, j) 2m, q r=1 θ rθ r+ i j, min(i, j) > m, 0, inače, (4.22) gdje prihvaćamo konvenciju θ j = 0 za j > q.

46 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 41 Primjenom Propozicije na proces {W t } dobivamo Ŵ n+1 = n j=1 θ n j (W n+1 j Ŵ n+1 j ), 1 n < m, Ŵ n+1 = q j=1 θ n j(w n+1 j Ŵ n+1 j ), n m, (4.23) gdje su koeficijenti θ n j i srednje kvadratne greške r n = E(W n+1 Ŵ n+1 ) 2 dobivene rekuzijom iz 4.15 s κ definiranim kao u Bitna značajka prediktora 4.23 je iščezavanje θ n j kada su n m i j > q. Da bi pronašli ˆX n od Ŵ n promatramo, projicirajući svaku stranu od 4.19 na H t 1, tada Ŵ t = σ 1 ˆX t, t = 1,..., m, (4.24) Ŵ t = σ 1 [ ˆX t φ 1 X t 1 φ p X t p ], t > m, i što zajedno sa 4.19 pokazuje da je X t ˆX t = σ[w t Ŵ t ], za svaki t 1. (4.25) Zamjenom (W j Ŵ j ) sa σ 1 (X j ˆX j ) u 4.23 i supstitucijom u 4.24, konačno dobivamo ˆX n+1 = n j=1 θ n j (X n+1 j ˆX n+1 j ), 1 n < m, ˆX n+1 = φ 1 X n + + φ p X n+1 p + q j=1 θ (4.26) n j(x n+1 j ˆX n+1 j ), n m, E(X n+1 ˆX n+1 ) 2 = σ 2 E(W n+1 Ŵ n+1 ) 2 = σ 2 r n (4.27) gdje su θ n j i r n dobiveni iz 4.29 s κ definiranim kao u Jednadžbe 4.26 odreduju one-step prediktore ˆX 2, ˆX 3,..., respektivno. Kovarijance κ(i, j) transformiranog procesa {W t } ovise samo o φ 1,..., φ p, θ 1,..., θ q i ne ovise o σ 2. Isto vrijedi i za θ n j i r n. Reprezentacija 4.26 za ˆX n+1 je osobito pogodna s praktične točke gledišta, ne samo zbog jedinstvenosti rekurzije za koeficijente, već i zato što za n m zahtjeva najviše p zadnjih opažanja X n,..., X n 1 p i najviše q zadnjih inovacija (X n 1 j ˆX n 1 j ), j = 1,..., q, da bi predvidjeli X n+1. S druge strane, direktna primjena Propozicije na {X t } vodi reprezentaciji od ˆX n+1 u terminima svih n prethodnih inovacija (X j ˆX j ), j = 1,..., n. Može se pokazati da ako je {X t } invertibilan da tada kad n, tada r n 1 i θ n j θ j, j = 1,..., q. h-step prediktori ARMA(p, q) procesa, h 1 Kao u 5.2, koristit ćemo oznaku P n za projekciju P Hn. Tada iz 4.16 imamo P n W n+h = n+h 1 j=h θ n+h 1, j (W n+h j Ŵ n+h j ) = σ 1 n+h 1 j=h θ n+h 1, j (X n+h j ˆX n+h j ).

47 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 42 Koristeći taj rezultat i primjenjujući operator P n na obje strane jednadžbe 4.19, zaključujemo da h-step prediktor P n X n+h zadovoljava n+h 1 j=h θ n+h 1, j (X n+h j ˆX n+h j ), 1 m n, P n X n+h = p i=1 φ ip n X n+h i + (4.28) h j q θ n+h 1, j (X n+h j ˆX n+h j ), h > m n, Jednom kad prediktore ˆX 1,..., ˆX n izračunamo iz 4.26, uz fiksni n, jednostavno je rekurzivno odrediti prediktore P n X n+1, P n X n+2, P n X n+3,... iz Pod pretpostavkom da je n > m, što je uvijek slučaj s problemima predikcije u praksi, za h 1 imamo P n X n+h = p φ i P n X n+h i + i=1 q θ n+h 1, j (X n+h j ˆX n+h j ), (4.29) j=h gdje je drugi izraz nula ako je h > q. Izražavajući X n+h kao ˆX n+h +(X n+h ˆX n+h ), možemo pisati p q X n+h = φ i X n+h i + θ n+h 1, j (X n+h j ˆX n+h j ), (4.30) i=1 gdje je θ n0 := 1 za svaki n. Oduzimanjem 4.29 od 4.30 dobivamo j=h X n+h P n X n+h p h 1 φ i (X n+h i P n X n+h i ) = θ n+h 1, j (X n+h j ˆX n+h j ), (4.31) i=1 j=0 tj. X n+1 P n X n+1 X n+1 ˆXn + 1 Φ. = Θ. X n+h P n X n+h X n+h ˆX n+h gdje su Φ i Θ donje trokutaste matrice, Φ = [φ i j ] h i, j=1 (φ 0 := 1, φ j := 0 ako je j > p ili j < 0), (4.32) i Θ = [θ n+i 1,i j ] h i, j=1 (θ n0 := 1, θ n j := 0 ako je j > q ili j < 0). Iz 4.32 odmah možemo vidjeti da kovarijacijska matrica vektora prediktora (X n+1 P n X n+1,..., X n+h P n X n+h ) je C = Φ 1 ΘVΘ Φ 1, (4.33)

48 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 43 gdje je V = diag(v n, v n+1,..., v n+h 1 ). Lako se pokaže da je Φ 1 donjetrokutasta matrica Φ 1 = [χ i j ] n i, j=1 (χ 0 := 1, χ j := 0 ako je j < 0) (4.34) čije komponente χ j, j 1, možemo lako izračunati iz rekurzivne relacije χ j = min(p, j) k=1 φ k χ j k, j = 1, 2,.... (4.35) Srednje kvadratna greška h-step prediktora P n X n+h je dobivena iz 4.33 h 1 ( j ) 2 σ 2 n(h) := E(X n+h P n X n+h ) 2 = χ r θ n+h r 1, j r v n+h j 1. (4.36) Pretpostavljajući invertibilnost ARMA procesa, možemo pustiti n u 4.29 i 4.36 da bi dobili aproksimaciju za veliki uzorak, j=0 r=0 P n X n+h p φ i P n X n+h i + i=1 q θ j (X n+h j ˆX n+h j ) (4.37) j=h i gdje je h 1 ( j ) 2 h 1 σ 2 n(h) σ 2 χ r θ j r = σ 2 ψ 2 j, (4.38) j=0 r=0 j=0 ( )( q ψ j z j = χ j z j θ j z ), j z 1. j=0 j=0 j=0 4.4 Predikcija stacionarnih Gaussovskih procesa; predikcijske granice Neka je {X t } stacionaran Gaussovski proces s očekivanjem nula i kovarijacijskom funkcijom γ( ) takvom da je γ(0) > 0 i γ(h) 0 kada h. Prema jednadžbi 4.7 najbolji linearni prediktor od X n+h u terminima X n = (X 1,..., X n ) je P n X n+h = [γn + h 1, γn + h 2,..., γ(h)]γ 1 n X n, h 1 (4.39)

49 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 44 Kalkulacija za P n X n+h jednostavno je izvedena rekurzivno uz pomoć 4.16, ili u slučaju ARMA(p, q) procesa, korištenjem Budući da (X 1,..., X n+h ) ima višedimenzionalnu normalnu distribuciju, slijedi da P n X n+h = E M{X1,...,X n }X n+h = E(X n+h X 1,..., X n ). Za stacionaran Gaussovski proces jasno je da je predikcijska greška n (h) := X n+h P n X n+h normalno distribuirana s očekivanjem nula i varijancom σ 2 (h) = E n (h) 2, koja može biti izračunata bilo iz 4.17 u generalnom slučaju, ili iz 4.36 ako je {X t } ARMA(p, q) proces. Označimo li sa Φ 1 α/2 (1 α/2)-kvantil standardne normalne distribucije, možemo iz razmatranja u prethodnom odlomku zaključiti da X n+h leži izmedu granica P n X n+h ± Φ 1 α/2 σ n (h) s vjerojatnošću (1 α). Ove granice nazivamo (1 α)-predikcijske granice za X n+h. 4.5 Predikcija kauzalnog invertibilnog ARMA(p, q) procesa u terminima od X j, < j < n Ponekad je korisno, primarno u procjeni P n X n+h za velike n, odrediti projekciju od X n+h na M n = sp{x j, < j n}. Ovdje ćemo razmotriti problem u slučaju kada je {X t } kauzalan invertibilan ARMA(p, q) proces, φ(b)x t = θ(b)z t, {Z t } WN(0, σ 2 ) (4.40) Kako bi pojednostavili zapis, pretpostavljamo da je n fiksan pozitivan cijeli broj i definiramo X t := P Mn X t (= X t za t n). (4.41) Tada možemo odrediti X n+h i E(X n+h X n+h ) 2 iz sljedećeg teorema. E(X n+h X n+h ) 2 je korisno za velike n kao aproksimacija za E(X n+h P n X n+h ) 2. Teorem Ako je X t kauzalan invertibilan ARMA proces 4.40 i X t je definiran sa 4.41, tada X n+h = π j X n+h j (4.42) i j=1

50 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 45 X n+h = ψ j Z n+h j, (4.43) gdje je j=0 π j z j = φ(z)/θ(z) i j=0 ψ j z j = θ(z)/φ(z), z 1. Štoviše, j=h Dokaz. Iz teorema i znamo da je i h 1 E(X n+h X n+h ) 2 = σ 2 ψ 2 j. (4.44) Z n+h = X n+h + X n+h = j=0 π j X n+h j (4.45) j=1 ψ j Z n+h j. (4.46) j=0 Primjenom operatora P Mn na obje strane jednadžbe i korištenjem činjenice da je Z n+h ortogonalan na M n za svaki k 1, dobivamo jednadžbu 4.42 i Tada oduzimanjem 4.43 od 4.46 dobivamo h 1 X n+h X n+h = ψ j Z n+h j, (4.47) iz čega direktno slijedi Jednadžba 4.42 je najprikladnije za računanje X n+h. h = 1, 2, 3,..., korištenjem uvjeta X t = X t, t n. Stoga, j=0 in f ty X n+1 = π j X n+1 j, j=1 X n+2 = π 1 X n+1 itd. π j X n+2 j, j=2 Može se riješiti rekurzivno za Za velike n, krnje rješenje X T n, dobiveno iz j=n+h π j X n+h j = 0 u 4.42 i rješavanjem dobivene jednadžbe, n+h 1 X T n+h = π j X T n+h j uz X t = X t, t = 1,..., n, j=1

51 POGLAVLJE 4. PREDIKCIJA STACIONARNIH PROCESA 46 je ponekad korišteno kao aproksimacija za P n X n+h. Ovaj postupak daje n X T n+1 = π j X n+1 j, j=1 X T n+2 = π X n+1 1 T n+1 π j X n+2 j, itd. Srednje kvadratna greška od X n+h definirana u 4.44 takoder se ponekad koristi u aproksimaciji za E(X n P n X n+h ) 2. Aproksimacija 4.44 je zapravo velika uzoračka aproksimacija 4.38 za srednje kvadratnu grešku 4.36 od P n X n+h. Za AR(p) proces, jednadžba 4.42 dovodi do očekivanog rezultata uz srednje kvadratnu grešku Za MA(1) proces 4.42 daje uz srednje kvadratnu grešku j=2 X n+1 = φ 1 X n + + φ p X n++1 p, E(X n+1 X n+1 ) 2 = σ 2. X n+1 = ( θ 1 ) j+1 X n j, j=0 E(X n+1 X n+1 ) 2 = σ 2. Skraćena aproksimacija za P n X n+1 za MA(1) proces je n+1 X T n+1 = ( θ 1 ) j+1 X n j, j=0 što može bili loša aproksimacija ako je θ 1 blizu 1. Za fiksni n, predikcijske greške X n+h X n+h, h = 1, 2,..., nisu nekorelirane. Jasno je da je iz 4.47 kovarijanca h-step i k-step prediktorskih grešaka h 1 E[(X n+h X n+h )(X n+h X n+h )] = σ 2 ψ j ψ j+k h za k h. (4.48) Odgovarajuća kovarijanca od (X n+h P n X n+h ) i (X n+h P n X n+h ) kompliciranija, ali je možemo izvesti iz j=0

52 Poglavlje 5 Primjena ARMA modela u medicini U ovom poglavlju se bavimo analizom podataka jedne bolnice, a ta je analiza napravljena u statističkom programu R. Kod u R-u nije optimiziran budući da je napravljen u svrhu prikaza rezultata potrebnih za ovaj diplomski rad. 5.1 Opisna statistika Najprije ćemo se upoznati sa podacima: njihovim izgledom, strukturom i značenjem. Sljedeća tablica daje nam primjer podataka koje koristimo za analizu. Tablica 5.1: Primjer tablice s podacima Pregled Spol Dob Datum pregleda UZV F MR M RG M CT F Other M Pregledi koje bolnica radi su: CT (računalna tomografija), MR (magnetna rezonanca), RG (rendgen), UZV (ultrazvuk) i Other (ostalo). Spol pacijenata označen je sa F (žensko) i M (muško). Dob pacijenata je u skupu {1,..., 103}, a datumi koje imamo kreću se u rasponu od 01. siječnja do 09. veljače (40 dana). Tablica s podacima ukupno sadrži redaka, odnosno obavljenih pretraga nad pacijentima. Kroz idućih nekoliko dijagrama možemo bolje vidjeti s kakvim podacima radimo.. 47

53 POGLAVLJE 5. PRIMJENA ARMA MODELA U MEDICINI 48 Slika 5.1: Frekvencije spolova pacijenata Slika 5.2: Frekvencije pregleda Na slici 5.1 možemo vidjeti da je udio pacijentica veći u odnosu na pacijente, dok iz slike 5.2 vidimo frekvencije pregleda, pri čemu je u bolnici u 40 dana najviše napravljeno rendgena, a najmanje ultrazvuka od četiri vrste istaknutih pretraga. Na slikama vidimo frekvencije pregleda; slika 5.3 sadrži frekvencije svih pre-

54 POGLAVLJE 5. PRIMJENA ARMA MODELA U MEDICINI 49 gleda u vremenskom periodu od 40 dana, a ostale slike frekvencije po pojedinim vrstama pregleda. Na dijagramima možemo uočiti periodičnost, tj. tjedne i vikende, pa je zanimljivo kako se neki pregledi obavljaju vikendima (CT slika 5.4 lijevo, RG slika 5.5 i UZV slika 5.6 lijevo), dok druge ne (MR slika 5.4 desno i ostali slika 5.6 desno). Kako je 1. siječanj srijeda (u tjednu), vidimo da su se pregledi obavljali po uzoru na vikende što je sasvim u redu budući da se radi o neradnom danu. Slika 5.3: Frekvencije svih pregleda kroz promatrani vremenski period Dijagram 5.7 daje frekvencije pregleda po dobi pacijenata: mlade generacije obavljaju manje pregleda u odnosu na starije generacije. U promatranom vremenskom periodu najviše pregleda obavili su pacijenti u dobi od 67 godina, a zanimljiv je dupli broj pregledanih jednogodišnjaka u usporedbi s djecom do dobi od 10 godina. Na slikama 5.8 i 5.9 možemo vidjeti frekvencije kao vremenski niz, tj. reći ćemo da promatramo kretanje broja pregleda kroz vrijeme na 5.8 i kretanje broja prosječne dobi i spola na 5.9. Na slici 5.8 kretanje vidimo za sve preglede skupa i pojedinačno. Kao i na dijagramima, lako možemo identificirati tjedne i vikende što bi značilo da postoji senzonalnost s periodom d = 7. Slična situacija je i na slici 5.9 kada promatramo kretanje muških i ženskih pacijenata (u sumi) koji su obavljali preglede u vremenskom intervalu od 40 dana (zadnja dva prikaza: Female i Male). Iz prva dva prikaza na istoj slici gdje vidimo kretanje prosječne dobi po spolu senzonalnot nije očita.

55 POGLAVLJE 5. PRIMJENA ARMA MODELA U MEDICINI 50 Slika 5.4: Frekvencije CT-a i MR-a kroz promatrani vremenski period Slika 5.5: Frekvencije RG-a kroz promatrani vremenski period

56 POGLAVLJE 5. PRIMJENA ARMA MODELA U MEDICINI 51 Slika 5.6: Frekvencije UZV-a i ostalih pregleda kroz promatrani vremenski period Slika 5.7: Frekvencije svih pregleda po dobi pacijenata

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski

Више

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor

Sadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte

Више

Microsoft Word - 15ms261

Microsoft Word - 15ms261 Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i

Више

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević

UAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja

Више

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (

JMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. ( MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski

Више

Microsoft Word - predavanje8

Microsoft Word - predavanje8 DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).

Више

Matrice. Algebarske operacije s matricama. - Predavanje I

Matrice. Algebarske operacije s matricama. - Predavanje I Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,

Више

vjezbe-difrfv.dvi

vjezbe-difrfv.dvi Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je

Више

Elementarna matematika 1 - Oblici matematickog mišljenja

Elementarna matematika 1 - Oblici matematickog mišljenja Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s

Више

knjiga.dvi

knjiga.dvi 1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............

Више

Konacne grupe, dizajni i kodovi

Konacne grupe, dizajni i kodovi Konačne grupe, dizajni i kodovi Andrea Švob (asvob@math.uniri.hr) 1. veljače 2011. Andrea Švob (asvob@math.uniri.hr) () Konačne grupe, dizajni i kodovi 1. veljače 2011. 1 / 36 J. Moori, Finite Groups,

Више

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler

Skalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba

Више

Microsoft Word - 6ms001

Microsoft Word - 6ms001 Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću

Више

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p

Numerička matematika 11. predavanje dodatak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. p Numerička matematika 11. predavanje dodatak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb NumMat 2019, 11. predavanje dodatak p. 1/46 Sadržaj predavanja dodatka

Више

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod

Diferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod 1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,

Више

(Microsoft Word - Rje\232enja zadataka)

(Microsoft Word - Rje\232enja zadataka) 1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:

Више

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka) . B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji

Више

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16

7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16 7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Metoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih

Metoda konačnih elemenata; teorija i praktična implementacija math.e 1 of 15 Vol.25. math.e Hrvatski matematički elektronički časopis Metoda konačnih 1 of 15 math.e Hrvatski matematički elektronički časopis Metoda konačnih elemenata; teorija i praktična implementacija klavirska žica konačni elementi mehanika numerička matematika Andrej Novak Sveučilište

Више

07jeli.DVI

07jeli.DVI Osječki matematički list 1(1), 85 94 85 Primjena karakterističnih funkcija u statistici Slobodan Jelić Sažetak. U ovom radu odred ene su funkcije distribucije aritmetičke sredine slučajnog uzorka duljine

Више

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1

LINEARNA ALGEBRA 2 Popravni kolokvij srijeda, 13. velja e Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x 3, x 4 ) C 4 : x 1 Zadatak 1. ( 7 + 5=12 bodova) Zadan je potprostor L = {(x 1, x 2, x, x 4 ) C 4 : x 1 + x 2 + x = 0, x 1 = 2x 2 } unitarnog prostora C 4 sa standardnim skalarnim produktom i vektor v = (2i, 1, i, ) C 4.

Више

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.

1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. 1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako

Више

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler

Uvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija

Више

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013

Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013 Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku Preddiplomski studij matematike Margareta Tvrdy Banachovi prostori Završni rad Osijek, 2013. Sveučilište J.J.Strossmayera u Osijeku Odjel za matematiku

Више

ФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА

ФАКУЛТЕТ  ОРГАНИЗАЦИОНИХ  НАУКА Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:

Више

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.

MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010. MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je

Више

Microsoft Word - 09_Frenetove formule

Microsoft Word - 09_Frenetove formule 6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši

Више

Linearna algebra Mirko Primc

Linearna algebra Mirko Primc Linearna algebra Mirko Primc Sadržaj Poglavlje 1. Polje realnih brojeva 5 1. Prirodni i cijeli brojevi 5 2. Polje racionalnih brojeva 6 3. Polje realnih brojeva R 9 4. Polje kompleksnih brojeva C 13 5.

Више

Matematika 1 - izborna

Matematika 1 - izborna 3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva

Више

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D

Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.

Више

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)

(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc) Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (

Више

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osije

Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osije Sveučilište J.J. Strossmayera u Osijeku Odjel za matematiku Sveučilišni preddiplomski studij matematike Ana Vilić Unitarni operatori Završni rad Osijek, 2018. Sveučilište J.J. Strossmayera u Osijeku Odjel

Више

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +

Test iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz

Више

Optimizacija

Optimizacija Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

Teorija skupova - blog.sake.ba

Teorija skupova - blog.sake.ba Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno

Више

FINANCIJSKI VREMENSKI NIZOVI INDEXI BURZE, CIJENE ZLATA, TEČAJNE LISTE DNEVNO ZAPISIVANJE CIJENA skupljanjem npr. dnevnih cijena vremenski niz iz niza

FINANCIJSKI VREMENSKI NIZOVI INDEXI BURZE, CIJENE ZLATA, TEČAJNE LISTE DNEVNO ZAPISIVANJE CIJENA skupljanjem npr. dnevnih cijena vremenski niz iz niza FINANCIJSKI VREMENSKI NIZOVI INDEXI BURZE, CIJENE ZLATA, TEČAJNE LISTE DNEVNO ZAPISIVANJE CIJENA skupljanjem npr. dnevnih cijena vremenski niz iz niza odredimo proces KARAKTERISTIKA napredvidljivost (nedeterminiranost)

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada:

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elizabeta Borovec ALGEBARSKA PROŠIRENJA POLJA Diplomski rad Voditelj rada: prof. dr. sc. Dražen Adamović Zagreb, rujan, 2015.

Више

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14

Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Neprekidnost Jelena Sedlar Fakultet građevinarstva, arhitekture i geodezije Jelena Sedlar (FGAG) Neprekidnost 1 / 14 Jelena Sedlar (FGAG) Neprekidnost 2 / 14 Definicija. Jelena Sedlar (FGAG) Neprekidnost

Више

Univerzitet u Nišu Prirodno-matematički fakultet Departman za matematiku Različite karakterizacije proizvoda projektora Master rad Mentor: Prof. dr. D

Univerzitet u Nišu Prirodno-matematički fakultet Departman za matematiku Različite karakterizacije proizvoda projektora Master rad Mentor: Prof. dr. D Univerzitet u Nišu Prirodno-matematički fakultet Departman za matematiku Različite karakterizacije proizvoda projektora Master rad Mentor: Prof. dr. Dragana Cvetković-Ilić Student: Miljan Ilić Niš, 2019.

Више

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL

Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRAL Sveučilište u Splitu Fakultet prirodoslovno-matematičkih znanosti i odgojnih područja Zavod za fiziku Pripremni tečaj za studente prve godine INTEGRALI Sastavio: Ante Bilušić Split, rujan 4. 1 Neodredeni

Више

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.

ZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2. ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:

Више

Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi

Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi Generalizirani trag i normalne forme za logiku interpretabilnosti Vedran Čačić PMF Matematički odsjek Sveučilište u Zagrebu Dubrovnik radiona Sustavi dokazivanja 28. lipnja 2012. Zašto logika interpretabilnosti?

Више

Algebarski izrazi (4. dio)

Algebarski izrazi (4. dio) Dodatna nastava iz matematike 8. razred Algebarski izrazi (4. dio) Aleksandra-Maria Vuković OŠ Gornji Mihaljevec amvukovic@gmail.com 12/21/2010 SADRŽAJ 7. KVADRATNI TRINOM... 3 [ Primjer 18. Faktorizacija

Више

s2.dvi

s2.dvi 1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Elma Daferović HIJERARHIJA KONVEKSNIH FUNKCIJA Diplomski rad Voditelj rada: prof. dr. sc. Sanja Varošanec Zagreb, srpanj 218.

Више

Microsoft Word - 24ms241

Microsoft Word - 24ms241 Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs

Numeričke metode u fizici 1, Projektni zadataci 2018./ Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrs Numeričke metode u fizici, Projektni zadataci 8./9.. Za sustav običnih diferencijalnih jednadžbi, koje opisuju kretanje populacije dviju vrsta životinja koje se nadmeću za istu hranu, dx ( dt = x x ) xy

Више

Natjecanje 2016.

Natjecanje 2016. I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka

Више

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori

JMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori 1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena

Више

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f

18 1 DERIVACIJA 1.3 Derivacije višeg reda n-tu derivaciju funkcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadatak 1.22 Nadite f 8 DERIVACIJA.3 Derivacije višeg reda n-tu derivaciju funcije f označavamo s f (n) ili u Leibnizovoj notaciji s dn y d x n. Zadata. Nadite f (x) ao je (a) f(x) = ( + x ) arctg x (b) f(x) = e x cos x (a)

Више

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2

Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2 Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične)

ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) ANALITIČKA GEOMETRIJA Željka Milin Šipuš i Mea Bombardelli verzija 1.0 1 Uvod i povijesni osvrt Analitička geometrija bavi se proučavanjem (klasične) euklidske geometrije ravnine i prostora koristeći algebarske

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Veeeeeliki brojevi

Veeeeeliki brojevi Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu

Више

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l):

Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 24 uzoraka seruma (µmol/l): Zadatak 1 U tablici se nalaze podaci dobiveni odredivanjem bilirubina u 4 uzoraka seruma (µmol/l): 1.8 13.8 15.9 14.7 13.7 14.7 13.5 1.4 13 14.4 15 13.1 13. 15.1 13.3 14.4 1.4 15.3 13.4 15.7 15.1 14.5

Више

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Go

SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Go SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Petar Bakić GEOMETRIJA SHEMA Diplomski rad Voditelj rada: prof. dr. sc. Goran Muić Zagreb, srpanj 2014. Ovaj diplomski rad obranjen

Више

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do

2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj -kugli K(T 0 ; ; ) D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do 2.7 Taylorova formula Teorem 2.11 Neka funkcija f : D! R; D R m ; ima na nekoj "-kugli K(T 0 ; ; ") D; T 0 x 0 1; :::; x 0 m neprekidne derivacije do ukljucivo (n + 1) vog reda, n 0; onda za svaku tocku

Више

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6

Више

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja) 1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.

Више

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka

NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

P1.1 Analiza efikasnosti algoritama 1

P1.1 Analiza efikasnosti algoritama 1 Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata

Више

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO

Pripreme 2016 Indukcija Grgur Valentić lipanj Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO Pripreme 016 Indukcija Grgur Valentić lipanj 016. Zadaci su skupljeni s dva predavanja na istu temu, za učenike od prvog do trećeg razreda i za MEMO kandidate. Zato su zadaci podjeljeni u odlomka. U uvodu

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0

Newtonova metoda za rješavanje nelinearne jednadžbe f(x)=0 za rješavanje nelinearne jednadžbe f (x) = 0 Ime Prezime 1, Ime Prezime 2 Odjel za matematiku Sveučilište u Osijeku Seminarski rad iz Matematičkog praktikuma Ime Prezime 1, Ime Prezime 2 za rješavanje

Више

Osnovni pojmovi teorije verovatnoce

Osnovni pojmovi teorije verovatnoce Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:

Више

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja) 1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,

Више

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Saže

ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Saže ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 57 66 Malo kompleksne analize i osnovni teorem algebre Ljiljana Arambašić, Maja Horvat Sažetak Cilj je ovog rada približiti neke osnovne pojmove

Више

Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prostori nizova c 0 i l p Master rad Mentor: Prof. dr. Dragan -Dorđević Stu

Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prostori nizova c 0 i l p Master rad Mentor: Prof. dr. Dragan -Dorđević Stu Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Prostori nizova c 0 i l p Master rad Mentor: Prof. dr. Dragan -Dorđević Student: Jelena Mosić Niš, 2016. SADRŽAJ 2 Sadržaj 1 Uvod

Више

Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku Master rad GRUPNI INVERZ OPERATORA Mentor: Prof. dr Dijana Mosić Student: Iva

Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku Master rad GRUPNI INVERZ OPERATORA Mentor: Prof. dr Dijana Mosić Student: Iva Univerzitet u Nišu PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku Master rad GRUPNI INVERZ OPERATORA Mentor: Prof. dr Dijana Mosić Student: Ivana Stamenković Niš, 2018. Sadržaj Predgovor 2 1 Uvod

Више

Mere slicnosti

Mere slicnosti Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti

Више

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani

Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013./ Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani Grupiranje podataka: pristupi, metode i primjene, ljetni semestar 2013/2014 1 5 Standardizacija podataka Predavanja i vježbe 8 Ako su podaci zadani s više obilježja (atributa), ta se obilježja mogu međusobno

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)

(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka) . D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,

Више

Microsoft PowerPoint - jkoren10.ppt

Microsoft PowerPoint - jkoren10.ppt Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni

Више

Microsoft Word - Rjesenja zadataka

Microsoft Word - Rjesenja zadataka 1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji

Више

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja) . D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi

Више

Microsoft Word - Pripremni zadatci za demonstrature

Microsoft Word - Pripremni zadatci za demonstrature poglavlje: KOMPLEKSNI BROJEVI Napomena: U svim zadacima koristi se skraćena oznaka: cis ϕ := cos ϕ + i sin ϕ. 1 3 z1 = x y i, z = 3 3 i 1 i z 3 = z Odredite x, y R tako da vrijedi jednakost z 1 = z. 1.

Више

8. razred kriteriji pravi

8. razred kriteriji pravi KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag

Више

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита

Више

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o

Sveučilište J.J. Strossmayera Fizika 2 FERIT Predložak za laboratorijske vježbe Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske o Lom i refleksija svjetlosti Cilj vježbe Primjena zakona geometrijske optike (lom i refleksija svjetlosti). Određivanje žarišne daljine tanke leće Besselovom metodom. Teorijski dio Zrcala i leće su objekti

Више

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр

РЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања

Више

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK

Више

Postojanost boja

Postojanost boja Korištenje distribucije osvjetljenja za ostvaranje brzih i točnih metode za postojanost boja Nikola Banić 26. rujna 2014. Sadržaj Postojanost boja Ubrzavanje lokalnog podešavanja boja Distribucija najčešćih

Више

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja) I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj

Више

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)

(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja) 5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj

Више

Microsoft Word - 12ms121

Microsoft Word - 12ms121 Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +

Више

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine

Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Више