ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠ
|
|
- Габријела Костић
- пре 6 година
- Прикази:
Транскрипт
1 ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2015./2016. GODINI MATEMATIKA Predmetno povjerenstvo zamatematiku : 1. Ana Večerak, prof. matematike (KŠC Sarajevo); 2. Jasmina Imamović, nas. matematike (KŠC Zenica); 3. Melisa Pružan, prof. matematike (KŠC Travnik); 4. Marko Pavlović, prof. matematike (KŠC Tuzla); 5. Vedran Mihić, prof. matematike (KŠC Bihać); 1 Veljača, godine
2 Sadržaj 1.UVOD 1.a Opći ciljevi ispita 1.b Obrazovni ishodi 2.VRSTE ZADATAKA I OCJENJIVANJE 3. UPUTA ZA TESTIRANJE 4. ZADATCI I RJEŠENJA ZADATAKA 5. PRIMJER URAĐENOG TESTA 6. LITERATURA 2
3 1. UVOD Na osnovi članka 78. Uredbe o odgoju i obrazovanju u Sustavu katoličkih škola za Europu, učenici nakon završene devetogodišnje osnovne škole, polažu eksternu maturu. Eksternom maturom se provjeravaju znanja, sposobnosti i vještine stečene tijekom devetogodišnjeg osnovnog odgoja i obrazovanja. U tom cilju napravljen je Katalog zadataka za polaganje ispita eksterne mature iz predmeta matematika koji obuhvaća najvažnije programske sadržaje iz matematike, što će poslužiti učenicima kao kvalitetna osnovica za nastavak daljnjeg školovanja. Katalog zadataka za polaganje eksterne mature temeljni je dokument ispita u kojem su navedeni opći ciljevi ispita, struktura testa zasnovana na programskim odrednicama Nastavnog plana i programa za osnovnu školu Sustava katoličkih škola za Europu, pravila izrade testa, literatura i zadatci označeni brojevima od 1 do 100, kao i označeni brojevi rješenja zadataka. 1.a Opći ciljevi ispita Cilj je ispita iz matematike provjeriti u kojoj mjeri pristupnici znaju, tj. mogu: rabiti matematički jezik tijekom čitanja, interpretiranja i rješavanja zadataka očitavati i interpretirati podatke zadane u analitičkome, tabličnome i grafičkome obliku ili riječima te u navedenim oblicima jasno, logično i precizno prikazivati dobivene rezultate matematički modelirati problemsku situaciju, naći rješenje te provjeriti ispravnost dobivenoga rezultata prepoznati i rabiti vezu između različitih područja matematike rabiti različite matematičke tehnike tijekom rješavanja zadataka Dostignuta razina znanja te kompetencija pristupnika provjerava se u ovim područjima: Skup realnih brojeva R Pitagorin poučak Proporcionalnost i procentni račun Cijeli i racionalni izrazi 3
4 Mnogokut Algebarski razlomljeni racionalni izrazi Linearna funkcija Linearne jednadžbe i nejednadžbe s jednom nepoznanicom Sustavi linearnih jednadžbi s dvije nepoznanice Geometrijska tijela 1.b Obrazovni ishodi Obrazovni ishodi - jasno i precizno napisana izjava o tome što bi učenik trebao znati, razumjeti, moći napraviti, vrednovati kao rezultat procesa učenja. Za svako područje ispitivanja određeni su posebni ciljevi ispita, odnosno konkretni opisi onoga što pristupnik mora znati, razumjeti i moći učiniti kako bi postigao uspjeh na ispitu. Obrazovni ishodi prikazani su u tablicama radi bolje preglednosti. U tablicama su detaljno razrađeni sadržaji koji će se ispitivati te obrazovni ishodi vezani uz pojedine sadržaje. Sadržaj Obrazovni ishodi - poznavati da se skup realnih brojeva sastoji od skupa Skup realnih brojeva R racionalnih i iracionalnih brojeva - poznavati računske operacije s realnim brojevima - rabiti Pitagorin poučak i njegov obrat (pravokutni trokut) Pitagorin poučak - rabiti Pitagorin poučak na geometrijske likove (kvadrat, pravokutnik, romb, trapez, krug) - rabiti omjere Proporcionalnost i - rabiti procente procentni račun - prepoznati i primjeniti direktnu i obrnutu proporcionalnost u jednostavnim situacijama - znati pojam stupnja - računske operacije sa stupnjevima - znati pojam cijelog i racionalnog izraza - izračunati vrijednost cijelog i racionalnog izraza Cijeli i racionalni izrazi - znati pojam polinoma - izračunati nulu polinoma - znati operacije s polinomima - rastavljati polinome na proste faktore - prepoznati elemente mnogokuta - izračunati broj dijagonala mnogokuta - izračunati zbroj unutarnjih i vanjskih kutova pravilnog Mnogokut mnogokuta - izračunati unutarnji kut pravilnog mnogokuta - izračunati opseg i površinu pravilnog mnogokuta Algebarski razlomljeni - zbrajati, oduzimati i množiti jednostavnije algebarske 4
5 racionalni izrazi Linearna funkcija Linearne jednadžbe i nejednadžbe s jednom nepoznanicom Sustavi linearnih jednadžbi s dvije nepoznanice Geometrijska tijela izraze - rabiti formule za kvadrat binoma i razliku kvadrata - zbrajati, oduzimati, množiti i dijeliti jednostavnije algebarske razlomke - iz zadane formule izraziti jednu veličinu s pomoću drugih - izračunati funkcijske vrijednosti - prikazati funkcije tablično i grafički - interpretirati graf funkcije - odrediti nultočke funkcije i sjecišta grafa s koordinatnim osama - iz zadanih svojstava, elemenata ili grafa odrediti funkciju - rješavati linearne jednadžbe - rješavati linearne nejednadžbe - prikazati rješenja nejednadžbe na brojevnom pravcu - rješavati matematičke probleme tekstualni zadatci - rješavati sustave linearnih jednadžbi grafički - rješavati sustave linearnih jednadžbi algebarski (metode) - rješavati probleme sustava linearnih jednadžbi tekstualni zadatci - skicirati mrežu geometrijskih tijela - prepoznati elemente tijela osnovku (bazu), vrh, visinu, dijagonale, pobočke (strane) i plašt (omotač) - odrediti oplošje i obujam - primjeniti Pitagorin poučak na geometrijska tijela 2. VRSTE ZADATAKA I OCJENJIVANJE Svi zadaci u Katalogu su koncipirani na temelju metodskih jedinica iz važećeg Nastavnog plana i programa za osnovnu školu Sustava katoličkih škola za Europu. Radna podloga za izbor zadataka su važeći udžbenici iz matematike za osnovnu školu te zbirke zadataka iz matematike za osnovnu školu. Katalog ispitnih zadataka sadrži ukupno 100 zadataka predviđenih za samostalnu vježbu učenika. Ocjenjivanje /način bodovanja/ 3. UPUTA ZA TESTIRANJE o Vrijeme predviđeno za izradu testa je 90 minuta (dva školska sata). o Tijekom izrade testa učenici neće moći koristiti mobitele, digitrone, logaritamske tablice niti bilo koja druga tehničko elektronska, printana, rukopisna i slična pomagala. Koristiti mogu isključivo kemijsku olovku s plavom ili crnom tintom. o Za vrijeme testa nije dopušteno došaptavanje, ometanje drugih učenika na bilo koji način, prepisivanje zadataka, gestikuliranje i slično. 5
6 ZADATCI : 1. SKUP REALNIH BROJEVA R 1. Izračunaj : = Rješenje 1 2. Provjeriti da li je točna jednakost : Rješenje: DA 1 2: [4 1 2 (3 0,5)] = Izračunati : 45: { 14 2: [12 2 ( 3 2) + 460: ( 23)]} = Rješenje: Izračunati : 37 {[3 + (17 9): 4 3(7 9)]: 11 + (21 19) 7} = Rješenje: Provjeriti da li je točna jednakost : Rješenje: NE 2,5: 0,5 5 + (1 0,5) = 1 2 6
7 6. Izračunati : 13 4 {4 3 [1 2 ( )] } = Rješenje: Izračunati: : {5 1 2 [ (1 1 5 )]} = Rješenje: Izračunati : Rješenje: 2 9. Izračunati : , = = Izračunaj : ((2 3) 2 4( 7) 2 ) + ( 10)= -26 7
8 2. PITAGORIN POUČAK 1. Provjeri da li je trokut pravokutni ako su njegove stranice a= 6 cm, b=8 cm i c= 10 cm. Rješenje: Trokut je pravokutni jer je 100= Stub visok 40 m vezan je čeličnim užadima za kočiće koji su zabijeni u zemlju na udaljenosti 9 m od podnožja stuba. Stub je vezan pri vrhu i na visini 12 m od zemlje. Kolika je dužina čeličnih užadi? Rješenje: 41 m i 15 m 3. Površina pravokutnog trokuta je 24 cm 2, a dužina jedne katete je 8 cm. Izračunaj opseg tog trokuta! Rješenje: b=6 cm, c=10 cm O=24 cm 4. Data je dijagonala kvadrata. Izračunaj mu opseg i površinu ako je dijagonala d=4 2 cm. Rješenje: O=16 cm i P= 16 cm 2 5. Izračunaj površinu i opseg pravokutnika čija je dijagonala 45 cm, a jedna stanica a=27cm. Rješenje: b=36 cm, O=126 cm, P = 972 cm 2 6. U jednakokrakom trokutu dužina osnovice je 10 cm i krak 13 cm odredi h, O i P tog trokuta. Rješenje: h=12cm, O=36 cm, P= 60 cm 2 7. Izračunaj površinu jednakokrakog trokuta čija je visina 12 cm, a krak 13 cm. Rješenje: a= 10 cm, P=60cm 2 8. Dijagonala romba je 8 cm, a stranica 5 cm odredi površinu i opseg. Rješenje: d 2= 6 cm, O= 20 cm, P= 24 cm 2 8
9 9. U jednakokrakom trapezu osnovice su 21 cm, 9 cm i krak 10 cm, odredi dijagonalu i površinu tog trapeza. Rješenje: h= 8 cm, d= 17 cm, P= 120 cm Opseg jednakostraničnog trokuta je 12 upisane i opisane kružnice. Rješenje: a=4 3 cm, h=6 cm, r= 2 cm, R= 4 cm 3 cm. Izračunaj mu visinu, poluprečnik 3. PROPORCIONALNOST I PROCENTNI ( POSTOTNI ) RAČUN 1. Odrediti x iz zadanog razmjera: 12:(x+2)=9:(2x-1) Rješenje: x=2 2. Odrediti x iz zadanog razmjera: (23-x):6=3x:5 Rješenje: x=5 3. Cijena nekog proizvoda iznosila je 125 KM, a zatim je povećana 10%. Kolika je nova cijena tog proizvoda? Rješenje: 137,5 KM 4. Cijena kaputa iznosila je 156 KM, a zatim je smanjena 10%. Kolika je nova cijena kaputa? Rješenje: 140,4 KM 5. Koliko je učenika imalo prolazne ocjene ako neka škola ima 650 učenika a na prvom polugodištu je procent prolaznosti 90%? Rješenje:585 učenika 9
10 6. Od 30 zadataka učenica je točno riješila 27. Koliko je procenata točno riješenih zadataka? Rješenje: 90% 7. Od 50 kg brašna može se dobiti 75 komada kruha. Koliko se komada kruha dobije od 80 kg brašna? Rješenje: 120 komada kruha 8. Na 140 km puta automobil potroši 20 l benzina. Koliki će put preći automobil s 35 l benzina? Rješenje: 245 km traktora preore njivu za 6 dana. Za koliko bi dana njivu preoralo 9 traktora? Rješenje: 8 dana 10. Neki posao 15 radnika može obaviti za 45 dana. Koliko je radnika potrebno da bi taj posao bio obavljen za 27 dana? Rješenje:25 radnika 4. CIJELI I RACIONALNI IZRAZI 1. Izračunaj koristeći pravila :( 1 2 x 2 3 y)2 = 1 4 x2-2 3 xy+4 9 y2 2. Izvrši zadane računske operacije : x 10 (x 5 ) 2 : (x) 3 (x 2 ) 3
11 3. Provjeriti točnost jednakosti : ( 1) 2 ( 2) 3 + [ ( 2) 3 ] 2 = 73 73=73 4. Ispitaj točnost jednakosti : ( ) ( ) 2 = jednakost nije ispravna. 5. Izračunaj: (2 7 :2 5 ) : 2 2 = 2 3 =8 6. Izračunati P + 3Q - 2R ako je : P= 5x 3 + 3x 2 + x 7 Q= 4x 3 2x 2 7x + 1 R=x 3 + 4x 2 5x + 2 9x 3-11x 2-10x-8 7. Da li je jednakost točna? (2x-7) (4x+7) (3x-2) ( 3x + 2) = x 2 14x 45 Jednakost nije ispravna 11
12 8. Izvrši naznačenu računsku operaciju: (3a 3 -ab+2b 2 ) (-2ab)= -6a 4 b+2a 2 b 2-4ab 3 9. Ako je P(x) = (x + 1) 2 4x 2 + 4x 1, koliko iznosi P(-2)? P(-2)= Izračunati za koliko je vrijednost polinoma A(x)=(x-1)(x-4) manja od vrijednosti polinoma B (x)= (x-2)(x-3)? 2 12
13 5. MNOGOKUT 1. Koliki je ukupan broj dijagonala 14-terokuta? terokut ima 77 dijagonala. 2. Koliko stranica ima pravilan mnogokut ako jedan njegov unutarnji kut ima 156? n= 15 Ovdje je riječ o 15-terokutu. 3. Odrediti zbroj unutarnjih kutova u pravilnom jedanaesterokutu? Sn = Koliko vrhova, stranica i kutova ima pravilan mnogkut kojemu je zbroj unutarnjih kutova jednak 2160? n= U pravilnom mnogokutu iz jednog vrha moguće je povući 12 dijagonala. Koji je to mnogokut? n = 15 =>To je petnaesterokut. 6. Koliki je opseg pravilnog deveterokuta ako mu je stranica duga 5.5 cm? 13
14 O= 49,5 cm 7. Odrediti površinu romba, ako je njegov opseg 16 cm, a duljina visine 3,2 cm. P = 12,8 cm 2 8. Odredi opseg mnogokuta kojem je zbroj svih unutarnjih kutova 2340, ako je duljina njegove stranice 2,5 cm. O= 37,5 cm 9. U kojem mnogokutu je zbroj njegovih unutarnjih kutova jednak zbroju šest pravih kutova? n=5 10. Kolika je vrijednost unutarnjeg kuta pravilnog mnogokuta sa 12 stranica. α = ALGEBARSKI RAZLOMLJENI RACIONALNI IZRAZI 1. Odredi brojevnu vrijednost razlomljenog racionalnog izraza (funkcije) f(x) = x3 2x 2 +x+7 x 2 + za x = -1 ( x 2 4 ) f( -1 ) = Za koje vrijednosti promjenjivih u skupu R razlomljeni racionalni izraz f(y) = 4y2 y+1 y 2 16 nije definiran? Rješenje: y Odredi nule razlomljene racionalne funkcije f(z) = 2z 4 z2 (z 0) 14
15 Rješenje: z=2. 4. Skrati algebarski razlomak Rješenje: x 5 x Skrati algebarski razlomak Rješenje: a+1. x 2 10x+25 x 2 25 a 2 1 a 1 (x + 5) (a 1) 6. Skrati algebarski razlomak Rješenje: 1+2x y. x 4x 3 xy 2x 2 y 7. Obavi naznačene operacije a+1 a3 9a a+3 a 2 +a Rješenje: a-3. (x 0, y 0, x 1 2 ) uz uslov a 0, a 1, a 3 8. Obavi naznačene operacije b+2 : b2 +4b+4 b 2 b 2 4 Rješenje: Obavi naznačene operacije ( x+1 x 1 x 1 Rješenje: 4x. 10. Obavi naznačene operacije ( 1 a + 1 b ) : a2 +2ab+b 2 + uz uslov b 2 x+1 ) (x2 1) uz uslov x 1 6ab 2 uz uslov a 0, b 0, a b + Rješenje: 6b a+b. 15
16 7. LINEARNA FUNKCIJA 1. Odredi k (koeficijent smjera pravca ) i n (odsječak na y-osi) funkcije 1 6 y = 5x 1 2 Rješenje: k=30, n= U funkciji y = mx 1 m 4odredi m tako da njen grafik prolazi točkom 2 A (-2,1) Rješenje: m= U funkciji y = k+3 k 3 x + izračunaj vrijednost parametra k tako da joj 5 3 grafik na y-osi gradi odsječak jednak 2. Rješenje: k =9. 4. U funkciji y = k+3 5 x k 3 3 grafik na x-osi gradi odsječak 5 2. izračunaj vrijednost parametra k tako da njen Rješenje: k = U funkciji y = k+3 k 3 x izračunaj vrijednost parametra k tako da njen 5 3 grafik prolazi kroz koordinatni početak. Rješenje: k = Odredi vrijednost parametra a za koje će funkcija y = a x 3biti opadajuća. 2 Rješenje: a >0 7. Odredi vrijednost parametra m za koje će funkcija y = (3 m)x + 4biti rastuća. Rješenje: m<3. 16
17 8. Date su fukcije y=(3m-1)x+4 i y=(5+m)x-1. Odredi m tako da grafici ovih funkcija budu paralelni. Rješenje: m = U funkciji f(x) = (m-6)x+2(m-3) odredi vrijednost parametra m tako da je f(-1) = 3. Rješenje: m = Funkciju y = 2x 1 predstavi tablicom (dovoljne su dvije točke) i grafički u pravokutnom koordinatnom sustavu. Rješenje: x y
18 8. LINEARNE JEDNADŽBE I NEJEDNADŽBE S JEDNOM NEPOZNATOM 1. Ispitaj da li su jednadžbe 3x-(5-x)=6-(2+5x) i 2 + 3x = x ekvivalentne? DA x=1. 2. Riješi jednadžbu (x + 5) 2 (x 1) (x + 1) = 16. x= Riješi jednadžbu 5y 2 8 y 6 8 = y= Riješi nejednadžbu z>1. 5z 6 2 3z+2 4 > z Koji je najveći cijeli broja koji zadovoljava nejednadžbu a+4 a a ? a 3 odgovor a=3. 6. Riješi nejednadžbu 2x(2x 5) (2x + 1) 2 1 u skupu prirodnih brojeva. x 0, odgovor x {1,2,3, } ili x 1 u N. 7. Zbroj godina majke i kćerke je 46.Poslije 10 godina majka će biti 2 puta starija od kćerke. Koliko godina sada ima majka a koliko kćerka? Majka ima 34 a kćerka 12 godina. 8. Ako 1 4 nekog broja uvećamo za 4 dobijemo isto kao da 1 tog broja umanjimo za 2. 2 Koji je to broj? x =24. 18
19 9. Kada je učenik pročitao polovinu knjige i još 20 listova ostalo mu je da pročita trećinu knjige. Koliko listova ima knjiga? x= Koji broj treba oduzeti od nazivnika i dodati brojniku razlomka 4 razlomak koji je jednak recipročnoj vrijednosti zadanog razlomka? 11 da se dobije x=7. 9. SUSTAVI LINEARNIH JEDNADŽBI S DVIJE NEPOZNATE 1. Riješi sustav linearnih jednadžbi 2x-y =1 X+2y = -7. x= -1, y= Riješi sustav jednadžbi 5x 4 11y 17 y x y 11 3y 4 x x=2, y=1. 19
20 3. Riješi sustav jednadžbi x y x y (x,y)=(15,12) 4. Riješi sustav jednadžbi 3(x+1) + 5(y-2) = 3 2(x+2) 3(y-3) = 7 x= 0, y=2. 5. Riješi sustav jednadžbi 5x 1 3y x 11 y (x,y)=(5,-3). 6. Ako dva određena broja zbrojimo, dobijemo 34. Ako od jednog oduzmemo drugi dobijemo 12. Koji su to brojevi? x= 23, y =11 20
21 7. Ivica je štedio kovanice od po 5 kn i kovanice od po 1 kn. Nakon nekog vremena uštedio je 320 kn. Ukupan broj kovanica koje je uštedio je 80. Koliko ima kovanica od 1 kn, a koliko od 5 kn? Ivica je uštedio 20 kovanica od 1 kn i 60 kovanica od 5 kn. 8. U dvorištu seoske kuće nalaze se ovce i kokoši. Ukupno ih ima 120. Ako je ukupan zbroj njihovih nogu 440, koliko ima ovaca, a koliko kokoši? Ima 20 kokoši i 100 ovaca. 9. Riješi sustav linearnih jednadžbi 6x+3y+4=o 5y= -9x-6 x= 2 3, y= Zbroj dva broja je 80, a njihov količnik 4. Koji su to brojevi? x=64, y= GEOMETRIJSKA TIJELA 1. Izračunaj oplošje ( površinu) četverostrane prizme čija je osnova romb sa dijagonalama d1=8 cm, d2= 6cm, a visina H=7 cm. a=5cm, M=140cm 2, P=188 cm 2 2. Zbroj svih bridova ( ivica ) kocke iznosi 48 cm.izračunaj njen obujam (volumen, zapreminu ). a= 4 cm, V= 64 cm 3 21
22 3. Koliki je obujam (volumen, zapreminu ) pravilne trostrane prizme osnovne ivice a=5 cm i visine H=8cm? V=50 3 cm Izračunaj oplošje (površinu ) četverostrane piramide osnove a= 6 cm i visine H=4 cm! P=96 cm Pravokutnik ima stranice a=4 cm i b=6 cm. Rotirajmo ga oko kraće stranice, pa izračunati oplošje (površinu). P= 120 π cm Oplošje (površina) kvadra iznosi 214 cm 2. Dužine osnovnih bridova (ivica) su 6cm i 5cm. Izračunati obujam (volumen, zapreminu ). c=7cm, V= 210 cm Izračunaj duljinu osnovne ivice pravilne trostrane piramide čiji je obujam (volumen, zapremina) 16 3cm 3, a duljina visine piramide 12 cm. Rješenje: a = 4 cm. 8. Odredi oplošje(površinu) kupe ako je površina omotača 40π cm 2, a dužina polumjera (poluprečnika) 3 cm. P=49 π cm Izračunaj obujam (volumen, zapreminu) stošca (kupe) ako je oplošje (površina) P = 96πcm 2, a dužina polumjera (poluprečnika) r = 6 cm. Rješenje: s = 10 cm, h = 8 cm, V = 96πcm Opseg baze ravnostranog valjka je 10π cm. Izračunaj oplošje (površinu) iobujam (volumen, zapreminu ) tog valjka. P=150π cm 2, V=250 π cm 3. 22
23 PRIMJER URAĐENOG TESTA 1. ZADATCI BODOVI Izračunaj : ((2 3) 2 4( 7) 2 ) + ( 10)= = ( )-10= = (12 28 ) -10= = = = -26 =4 2. U jednakokrakom trokutu dužina osnovice je 10 cm i krak 13 cm odredi h, O i P tog trokuta. Rješenje: a=10 b= 13 h,o,p=? h 2 =b 2 -( a 2 )2 O=a+2b P= a h h 2 =(13cm) 2 -( 10cm 2 )2 h 2 =169cm 2-25cm 2 h 2 =144cm 2 h=12cm O=10cm+2 13cm O=36cm 2 P= P=60cm 2 cm 2 =4 3. Od 30 zadataka učenica je točno riješila 27. Koliko je procenata točno riješenih zadataka? Rješenje: G=30 I=27 p=? 23
24 G p=100 I p= 100 I G = = = =90% =4 4. Ispitaj točnost jednakosti : ( ) ( ) 2 =-14 Rješenje: (-25+9)-(-1+2-4) 2 =-14 (-16)-(-3) 2 = =-14-25=-14 Dakle,jednakost nije točna. =4 5. Koliko vrhova, stranica i kutova ima pravilan mnogkut kojemu je zbroj unutarnjih kutova jednak 2160? Rješenje: Podatak da je zbroj svih kutova u mnogokutu 2160 uvrstimo u formulu Sn = (n-2) 180 i dobijemo jednakost : 6. (n-2) 180 = Iz ove jednakosti izračunamo broj n. (n-2) = 2160 :180 n-2= 12 n= 14 Skrati algebarski razlomak Rješenje: Zadani mnogokut ima 14 vrhova, 14 stranica i 14 kutova. x 4x 3 xy 2x 2 y (x 0, y 0, x 1 2 ) =4 x 4x 3 xy 2x 2 y = = x(1 4x2 ) xy(1 2x) = 2 24
25 = x(1 2x)(1+2x) xy(1 2x) = 1+2x y = 7. U funkciji y = k+3 5 x k 3 3 tako da njen grafik na x-osi gradi odsječak 5 2. Rješenje: x= 5 2 y= 0 pa slijedi 0= izračunaj vrijednost parametra k k+3 5 k = k+3 k = 3(k-3)-2(k-3) 0= 3k+9-2k+6-3k+2k = 9+6 -k = 15 k=- 15 / 6 =4 8. Koji je najveći cijeli broj a koji zadovoljava nejednadžbu a+4 3 a a 1 15? =4 Rješenje: a+4 a a / 15 5(a + 4) 3(a 4) (3a 1) 5a a a 1 5a-3a-3a a -3 / ( 1) a 3 Rješenje je a=3. 25
26 9. Zbroj dva broja je 80, a njihov količnik 4. Koji su to brojevi? Rješenje: a b a+b=80 = 4 =>a= 4b 4b+b =80 5b= 80 b= 80 5 b= 16 => a= 4 16 =64 (a,b) = (64,16) 10. Pravokutnik ima stranice a=4 cm i b=6 cm. Rotirajmo ga oko kraće stranice, pa izračunati oplošje (površinu). Rješenje: r = 6 cm H = 4 cm P=? P= 2rπ(r+H) P= 2 6π (6+4) = =12π 10 = = 120πcm 2 =4 =4 26
27 Literatura: Arslanagić, Šefket, Dragoljub, Milošević. Matematika za IX razred devetogodišnje osnovne škole. Sarajevo, Bosanska riječ. Fazlić, Nasiha, Mila, Dešić. Radna sveska odabrani zadaci iz matematike za pripremanje učenika. Srebrenik, Selimpex. Hodžić, Abdulah, Robert, Onodi. Matematika sa zbirkom zadataka 7/8. Tuzla, Bosanska riječ. Hodžić, Abdulah, Robert, Onodi. Matematika sa zbirkom zadataka 8/8. Tuzla, Bosanska riječ. Maksimović, Miodrag. Zbirka zadataka iz matematike (sa rješenjima) za pripremanje prijemnog ispita za upis u I razred srednjih škola. Novi Sad, Borac Kula. Radović, Ljubomir. Matematika Zbirka riješenih zadataka za učenike osnovne škole. Sarajevo, I.P. Sarajevo publishing. Sverdec, Renata, Nikol, Radović, Tanja, Soucie, Ivana, Kokić. Tajni zadatak 007. Zagreb, Školska knjiga. Šarapa, Nikola, Boško, Jagodić, Renata, Sverdec. Matematika 7 vježbenica. Zagreb, Školska knjiga. Šarapa, Nikola, Boško, Jagodić, Vlado, Cigić. Matematika 7. Mostar, Školska naklada. 27
ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matema
ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2018./2019. GODINI MATEMATIKA Predmetno povjerenstvo za matematiku : 1. Jasmina Čajlaković, prof. matematike (KŠC Travnik); 2. Ivana Baban, prof. matematike
Више8. razred kriteriji pravi
KRITERIJI OCJENJIVANJA MATEMATIKA 8. RAZRED Učenik će iz nastavnog predmeta matematike biti ocjenjivan usmeno i pismeno. Pismeno ocjenjivanje: U osmom razredu piše se šest ispita znanja i bodovni prag
ВишеPLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred)
PLAN I PROGRAM ZA DOPUNSKU (PRODUŽNU) NASTAVU IZ MATEMATIKE (za 1. razred) Učenik prvog razreda treba ostvarit sljedeće minimalne standarde 1. SKUP REALNIH BROJEVA -razlikovati brojevne skupove i njihove
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
Више1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku:
1 Ministarstvo za obrazovanje, nauku i mlade KS ISPITNI KATALOG ZA EKSTERNU MATURU U ŠKOLSKOJ 2016/2017. GODINI MATEMATIKA Stručni tim za matematiku: Prof. dr. Senada Kalabušić Dragana Paralović, prof.
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - Rjesenja zadataka
1. C. Svi elementi zadanoga intervala su realni brojevi strogo veći od 4 i strogo manji od. Brojevi i 5 nisu strogo veći od 4, a 1 nije strogo manji od. Jedino je broj 3 strogo veći od 4 i strogo manji
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Више(Microsoft Word - Rje\232enja zadataka)
1. D. Svedimo sve razlomke na jedinstveni zajednički nazivnik. Lako provjeravamo da vrijede rastavi: 85 = 17 5, 187 = 17 11, 170 = 17 10, pa je zajednički nazivnik svih razlomaka jednak Tako sada imamo:
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
ВишеMAT B MATEMATIKA osnovna razina MATB.38.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT38.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеMicrosoft Word - Mat-1---inicijalni testovi--gimnazija
Inicijalni test BR. 11 za PRVI RAZRED za sve gimnazije i jače tehničke škole 1... Dva radnika okopat će polje za šest dana. Koliko će trebati radnika da se polje okopa za dva dana?? Izračunaj ( ) a) x
Више(Microsoft Word - Dr\236avna matura - kolovoz ni\236a razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA. B. Imamo redom: 0.3 0. 8 7 8 19 ( 3) 4 : = 9 4 = 9 4 = 9 = =. 0. 0.3 3 3 3 3 0 1 3 + 1 + 4 8 5 5 = = = = = = 0 1 3 0 1 3 0 1+ 3 ( : ) ( : ) 5 5 4 0 3.
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Prirodni brojevi su svi cijeli brojevi strogo veći od nule. je strogo negativan cijeli broj, pa nije prirodan broj. 14 je racionalan broj koji nije cijeli broj. Podijelimo li 14 s 5, dobit ćemo.8,
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
Више(Microsoft Word - MATA - ljeto rje\232enja)
. A. Izračunajmo najprije prvi faktor. Dobivamo:! 0 9 8! 0 9 0 9 0 9 = = = = = 9 = 49. 4! 8! 4! 8! 4! 4 3 Stoga je zadani brojevni izraz jednak 4 8 49 0.7 0.3 = 49 0.40 0.000066 = 0.007797769 0.0078. Znamenka
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. A. Svih pet zadanih razlomaka svedemo na najmanji zajednički nazivnik. Taj nazivnik je najmanji zajednički višekratnik brojeva i 3, tj. NZV(, 3) = 6. Dobijemo: 15 1, 6
ВишеMatematički leksikon
OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON Radoboj, 2012. OŠ SIDE KOŠUTIĆ RADOBOJ MATEMATIČKI LEKSIKON PROJEKT Predmet : Matematika Mentor: Ivica Švaljek Radoboj, 2012. godina Matematički leksikon OŠ
ВишеMicrosoft Word - z4Ž2018a
4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. C. Interval, tvore svi realni brojevi strogo manji od. Interval, 9] tvore svi realni brojevi strogo veći od i jednaki ili manji od 9. Interval [1, 8] tvore svi realni brojevi jednaki ili veći od 1,
ВишеEkipno natjecanje Ekipa za 5+ - kategorija MIKRO Pula, Mikro-list 1 BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVOR
Mikro-list BODOVANJE: TOČAN ODGOVOR: 6 BODOVA NETOČAN ODGOVOR: -2 BODA BEZ ODGOVORA: 0 BODOVA. Ako je 5 i 20 onda je? A) 2 B) 3 C) 4 D) 5 2. Koji broj nedostaje? A) 7 B) 6 C) 5 D) 4 3. Zbrojite najveći
ВишеMATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i
MATEMATIKA EKSTERNA PROVJERA ZNANJA UČENIKA NA KRAJU III CIKLUSA OSNOVNE ŠKOLE UPUTSTVO VRIJEME RJEŠAVANJA TESTA: 70 MINUTA Pribor: grafitna olovka i gumica, hemijska olovka, geometrijski pribor. Upotreba
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
5 5: 5 5. B. Broj.5 možemo zapisati u obliku = =, a taj broj nije cijeli broj. 0 0 : 5 Broj 5 je iracionalan broj, pa taj broj nije cijeli broj. Broj 5 je racionalan broj koji nije cijeli broj jer broj
Више(Microsoft Word - Rje\232enja zadataka)
p. D. Tražimo p R takav da je 568 = 6. Riješimo tu jednadžbu na uobičajen 00 način: Dakle, 75% od 568 iznosi 6. p 568 = 6, / 00 00 p 568 = 6 00, / : 568 6 00 600 p = = = 75. 568 568. B. Označimo traženi
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеМатематика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О
1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x
ВишеDRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK
RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI
ВишеElementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razr
Elementi praćenja i ocjenjivanja za nastavni predmet Matematika u 4. razredu ODLIČAN (5) navodi primjer kuta kao dijela ravnine omeđenog polupravcima analizira i uspoređuje vrh i krakove kuta analizira
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеMicrosoft Word - Matematika_kozep_irasbeli_javitasi_0611_horvatH.doc
Matematika horvát nyelven középszint 0611 ÉRETTSÉGI VIZSGA 006. május 9. MATEMATIKA HORVÁT NYELVEN MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA PISMENI ISPIT SREDNJEG STUPNJA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеJednadžbe - ponavljanje
PRIMJENE NA PRAVOKUTNI TROKUT sin = sin β = cos = cos β = tg kuta tg = tg β = ctg kuta ctg = ctg β = c = p + q Ako su kutovi u trokutu 30 i 60 onda je hipotenuza dva puta veća od kraće katete (c = 2a ili
Више(Microsoft Word - MATB - kolovoz vi\232a razina - rje\232enja zadataka)
. D. Izračunajmo vrijednosti svih četiriju izraza pazeći da u izrazima pod A. i B. koristimo radijane, a u izrazima pod C. i D. stupnjeve. Dobivamo: Dakle, najveći je broj sin 9. cos 7 0.9957, sin 9 0.779660696,
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
. D. Podijelimo zadanu jednakost s R T, pa dobijemo. D. Pomnožimo zadanu nejednakost sa 6. Dobivamo: p V n =. R T < x < 5. Ovu nejednakost zadovoljavaju cijeli brojevi, 0,,, i 4. i su suprotni brojevi
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
Више(Microsoft Word - Dr\236avna matura - rujan osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. B. Broj je cijeli broj, tj. pripada skupu cijelih brojeva Z. Skup cijelih brojeva Z je pravi podskup skupa racionalnih brojeva Q, pa je i racionalan broj. 9 4 je očito broj
ВишеMATEMATIKA viša razina MATA.29.HR.R.K1.24 MAT A D-S MAT A D-S029.indd :30:29
MATEMATIKA viša razina MAT9.HR.R.K.4.indd 9.9.5. ::9 Prazna stranica 99.indd 9.9.5. ::9 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
ВишеSKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.)
SKUPOVI TOČAKA U RAVNINI 1.) Što je ravnina? 2.) Kako nazivamo neomeđenu ravnu plohu? 3.) Što je najmanji dio ravnine? 4.) Kako označavamo točke? 5.) U kakvom međusobnom položaju mogu biti ravnina i točka?
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
ВишеPRAVAC
Nives Baranović nives@ffst.hr Odsjek za učiteljski studij Filozofski fakultet u Splitu Razvoj geometrijskog mišljenja kroz tangram aktivnosti Radionica za učitelje i nastavnike matematike VII. simpozijum
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година
Вишеs2.dvi
1. Skup kompleksnih brojeva 1. Skupovibrojeva.... Skup kompleksnih brojeva................................. 6. Zbrajanje i množenje kompleksnih brojeva..................... 9 4. Kompleksno konjugirani
ВишеMatematika_kozep_irasbeli_javitasi_1013_horvat
Matematika horvát nyelven középszint 1013 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA HORVÁT NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formalni
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеNAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka
NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima
Више(Microsoft Word - Dr\236avna matura - kolovoz osnovna razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Zadani broj očito nije niti prirodan broj niti cijeli broj. Budući da je 3 78 3. = =, 00 5 zadani broj možemo zapisati u obliku razlomka kojemu je brojnik cijeli broj
ВишеMicrosoft Word - 24ms241
Zadatak (Branko, srednja škola) Parabola zadana jednadžbom = p x prolazi točkom tangente na tu parabolu u točki A? A,. A. x + = 0 B. x 8 = 0 C. x = 0 D. x + + = 0 Rješenje b a b a b a =, =. c c b a Kako
ВишеFOR_Matema_Srednja
Јован Бојиновић НЕОПХОДНЕ ФОРМУЛЕ ИЗ МАТЕМАТИКЕ ЗА ПОЛАГАЊЕ ПРИЈЕМНОГ ИСПИТА ЗА ФАКУЛТЕТЕ Формуле из планиметрије и стереометрије Страна: ПОВРШИНА ТРОУГЛА. Површина троугла се може израчунати и Хероновим
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
C Vrijedi jednakost: = 075, pa zaključujemo da vrijedi nejednakost 4 To znači da zadani broj pripada intervalu, 05 < < 05 4 D Riješimo zadanu jednadžbu na uobičajen način: x 7 x + = 0, x, 7 ± ( 7) 4 7
ВишеObrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI
Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. D. Zadatak najbrže možemo riješiti tako da odredimo decimalne zapise svih šest racionalnih brojeva (zaokružene na dvije decimale ako je decimalan zapis beskonačan periodičan decimalan broj). Dobivamo:
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
. C. Zaokružimo li zadani broj na najbliži cijeli broj, dobit ćemo 5 (jer je prva znamenka iza decimalne točke 5). Zaokružimo li zadani broj na jednu decimalu, dobit ćemo 4.6 jer je druga znamenka iza
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
b. C. Neka je a prost prirodan broj. Tada je a prirodan broj ako i samo ako je b nenegativan cijeli broj (tj. prirodan broj ili nula). Stoga ćemo svaki od zadanih brojeva zapisati kao potenciju čija je
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. D. Skup svih realnih brojeva koji su jednaki ili manji od je interval, ]. Skup svih realnih brojeva koji su strogo veći od je interval, +. Traženi skup tvore svi realni
ВишеMicrosoft Word - vodic B - konacna
VODIČ B za škole za srednje stručno obrazovanje i obuku školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 28. siječnja AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA,
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B varijanta 8. siječnja 019. AKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJERENSTVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
Више7. а) 3 4 ( ) ; б) ( ) ( 2 5 ) ; в) ( ) 3 16 ; г) ( ). 8. а) ( г) ) ( ) ; б)
7. а) ( 5 + 5 ) ; б) ( 5 8 5 6 ) ( 2 5 ) ; в) ( 9 + ) 6 ; г) 5 ( 2 + 2 29 ). 8. а) ( г) 2 2 + ) ( + 2 ) ; б) 2 ( + 2 ) + 2 ; в) ( 0 + 5 ) ( 2 ( 7 6 )) ; 7 2 + ( + ( 8 6 ( 2 ) 2 )) ; д) ( 2 5 ( 2 + 7 0
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
Више(Microsoft Word - Dr\236avna matura - lipanj osnovna razina - rje\232enja)
1. D. Aproksimirajmo svaki od navedenih razlomaka s točnošću od : 5 = 0.71485 0.71, 7 4. = 0.4 0.44, 9 = 0.90 0.91. 11 Odatle odmah zaključujemo da prve tri nejednakosti nisu točne, kao i da je točna jedino
ВишеMAT B MATEMATIKA osnovna razina MATB.45.HR.R.K1.20 MAT B D-S
MAT B MATEMATIKA osnovna razina MAT45.HR.R.K. Prazna stranica 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.
ВишеGLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, 1 sat tjedno) 6. razred (35 sati) I. Uvod u GeoGe
GLOBALNI IZVEDBENI PLAN I PROGRAM ZA IZVOĐENJE NASTAVE GEOGEBRE U OSNOVNOJ ŠKOLI (matematička grupa, sat tjedno) 6. razred (5 sati) I. Uvod u GeoGebru. Preuzimanje i instaliranje programa. II. Upoznavanje
Више(Microsoft Word - Dr\236avna matura - prosinac vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. A. Pomnožimo zadanu jednadžbu s. Dobivamo: Dijeljenjem s 5 dobivamo x 3 (4 3 x) = ( x), x 3 6 + x = 4 x, x + x + x = 4 + 3 + 6, 5 x = 3. 3 x =. 5. C. Odredimo najprije koordinate
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеNaziv studija
Naziv studija Integrirani preddiplomski i diplomski učiteljski studij Naziv kolegija Matematika 2 Status kolegija Obvezni Godina 1. godina Semestar 2. semestar ECTS bodovi 3 Nastavnik Mr.sc. Damir Mikoč
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
Више(Microsoft Word - Dr\236avna matura - svibanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA. C. Broj.5 je racionalan broj (zapisan u decimalnom obliku), ali ne i cijeli broj, pa ne pripada skupu cijelih brojeva Z. Broj je iracionalan broj (ne može se zapisati u
ВишеXV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) zna
XV. GIMNAZIJA, ZAGREB PROVJERA POSEBNIH ZNANJA IZ PREDMETA MATEMATIKA ISPITNA KNJIŽICA Datum Trajanje 60 minuta Zaporka (tri znamenke i pet slova) znamenke slova Za vrijeme pisanja ispita nije dopuštena
Више(Microsoft Word - Dr\236avna matura - rujan vi\232a razina - rje\232enja)
. B. Primijetimo da vrijedi jednakost I. ZADATCI VIŠESTRUKOGA IZBORA, =, 4 4. Stoga zadanom skupu pripadaju svi cijeli brojevi jednaki ili veći od, a strogo manji od. 4 Budući da nije cijeli broj, zadanom
Више(Microsoft Word - Dr\236avna matura - svibanj osnovna razina - rje\232enja)
. B. Podsjetimo da oznaka uz točku na brojevnom pravcu pridruženu realnom broju a znači da broj a ne pripada istaknutom podskupu skupa realnih brojeva, a da oznaka [ uz istu točku znači da broj a pripada
ВишеMinistarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMAT
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
Вишеos07zup-rjes.dvi
RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI
ВишеMathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje
MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
ВишеMicrosoft Word - inicijalni test 2013 za sajt
ИНИЦИЈАЛНИ ТЕСТ ИЗ МАТЕМАТИКЕ ЗА УЧЕНИКЕ ПРВОГ РАЗРЕДА ЗЕМУНСКЕ ГИМНАЗИЈЕ шк. 13 14. Циљ Иницијални тест за ученике првог разреда Земунске гимназије организован је с циљем увида у предзнање ученика, тј.
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеDržavna matura iz informatike
DRŽAVNA MATURA IZ INFORMATIKE U ŠK. GOD. 2013./14. 2016./17. SADRŽAJ Osnovne informacije o ispitu iz informatike Područja ispitivanja Pragovi prolaznosti u 2014./15. Primjeri zadataka po područjima ispitivanja
ВишеObrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI
Obrazac Metodičkih preporuka za ostvarivanje odgojno-obrazovnih ishoda predmetnih kurikuluma i međupredmetnih tema za osnovnu i srednju školu OSNOVNI PODATCI Ime i prezime Zvanje Naziv škole u kojoj ste
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА школска 2015/2016. година УПУТСТВО ЗА РАД Тест који треба да решиш
ВишеMicrosoft Word - KUPA-obnavljanje.doc
KUPA Kupa je oblo feometrijko telo čija je onova krug, a omotač je deo obrtne konune površi a vrhom u tački S. S r Oa kupe je prava koja prolazi kroz vrh kupe i centar onove kupe. Ako je oa normalna na
ВишеAgencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA PISANA PROVJERA ZNANJA - 5. razred Za
Agencija za odgoj i obrazovanje Hrvatska zajednica tehničke kulture 58.ŠKOLSKO NATJECANJE MLADIH TEHNIČARA 206. PISANA PROVJERA ZNANJA - 5. razred Zaporka učenika: (peteroznamenkasti broj i riječ) Ukupan
ВишеACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 1 9 Ispit iz matematike na državnoj maturi post festum Vinko Bajrović Sažetak Iznošenje arg
ACTA MATHEMATICA SPALATENSIA Series didactica Vol.2 (2019) 1 9 Ispit iz matematike na državnoj maturi post festum Vinko Bajrović Sažetak Iznošenje argumenata koji ukazuju na potrebu ukidanja ispita iz
Више(Microsoft Word - Dr\236avna matura - lipanj vi\232a razina - rje\232enja)
I. ZADATCI VIŠESTRUKOGA IZBORA 1. D. Zadatak rješavamo koristeći kalkulator. Izračunajmo zasebno vrijednost svakoga izraza: log 9 0.95509987590055806510 log 9 = =.16995 (ovdje smo primijenili log 0.0109995669811951788979
ВишеШифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП
Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
Више3. ЛИНЕАРНЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ С ЈЕДНОМ НЕПОЗНАТОМ КереШго та1ег зги/иогит ез1 (Обнављање је мајка наука) Латинска сентенца (изрека) Линеарна јед
3. ЛИНЕАРНЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ С ЈЕДНОМ НЕПОЗНАТОМ КереШго та1ег зги/иогит ез1 (Обнављање је мајка наука) Латинска сентенца (изрека) Линеарна једначина по х је свака једначина са непознатом х која
ВишеMicrosoft Word - DIOFANTSKE JEDNADŽBE ZADACI docx
DIOFANTSKE JEDNADŽBE Jednadžba s dvjema ili više nepoznanica čiji su koeficijenti i rješenja cijeli brojevi naziva se DIOFANTSKA JEDNADŽBA. Linearne diofantske jednadžbe 3" + 7% 8 = 0 nehomogena (s dvjema
Више