6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
|
|
- Boris Polak
- пре 6 година
- Прикази:
Транскрипт
1 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju da se zahteva celobronost samo nekih koordinata, govorimo o problemu mešovitog celobrojnog linearnog programiranja. Naredni časovi posvećeni su sledećim problemima: Transporni problem Problem raspoređivanja (asignacije) Problem ranca (formula unapred/unazad, ranac na grupi) Gomorijev rez, Metod granjanja i odsecanja Implicitno prebrojavanje, itd. DEINICIJA Za celobrojnu kvadratnu matricu V kažemo da je unimodularnaako je. Ako je V unimodularna matrica, tada je takođe unimodularna, obzirom da je celobrojna matrica i. TEOREMA Ako je matrica celobrojna matrica ranga onda postoje takve unimodularne matrice i da je pri čemu su prirodni brojevi takvi da deli a. Dijagonalna matrica koja ima osobine iskazane teoremom, ima Smith-ovu formu. 3
2 PRIMER 40 Rešiti sistem celobrojnih jednačina: Matrica sistema transformišemo elementarnim transformacijama u Smith-ov normalni oblik D. U cilju istovromenog određivanja unimodularnih matrica i tako da je stavimo kao početne vrednosti i i sve transformacije nad vrstama ponovimo na tekućoj matrici dok sve transformacije nad kolonama ponovimo na tekućoj matrici. Kada matrica bude dovedena na Smith-ov oblik matrice i dobiće svoju pravu vrednost: U A V zarotiramo k i 2k zarotiramo v i 2v K=2k-2*k, 3K=3k-3*k V=2v-2*v K=-2k, 3K=3k-2k K=2k+k V=2v-v zarotiramo 2v i v zarotiramo k i 2k 32
3 K=2k+2*k V=2v-2*v Uvodimo smenu promenljivih: Posle množenja s leva sa matricom U polazni sistem dobija ekvivalentnu formu Odavde sledi da je. Zamenom, nalazimo da je. PRIMER 4 Dovesti na Smith-ov oblik matricu: U A V zarotiramo k I 2k K=2*k+2k, 3K=3k-k K=3k, 3K=k, K=2k-2*K, 3K=3k-3*k V=2v+v
4 K=3k-2k zarotiramo 2k i 3k K=3k-3*2k zarotiramo 3k i 2k K=3k-2*2k Provera: Rešavamo sistem: (za svaki slučaj, nije obavezna) Uvodimo smenu promenljivih: kako je i tj. odnosno, Za svako sistem ima rešenje i to su sva rešenja. 34
5 Problem ranca Problem ranca definišemo na sledeći način: Pretpostavimo da je dat neki ranac zapremine i skup predmeta kojima se ranac puni. Svaki predmet ima svoju zapreminu i vrednost. Napuniti ranac sadržajem najveće vrednosti tako da je ukupna vrednost koja se nosi u rancu maksimalna: Problem možemo da prevedemo na situaciju kada neka kompanije iz svog budžeta veličine finansira projekta. Ako je poznata cena i korist istraživanja jednog istraživača na j-tom projektu, zadatak je da se odredi broj istraživača na j-tom projektu tako da korist bude maksimalna. Ovaj problem se rešava tako što se podeli na etape. Uvodimo pomoćnu funkciju definisanu na sledeći način: Za rešavanje pomoćne funkcije koristimo sledeće rekurentne formule:. Ako punimo ranac jednim predmetom sledi da je čime smo potvrdili početni uslov. 2. gde je za. U ovom slučaju za -tu koordinatu optimalnog rešenja važi ili ( ili ( ). Optimalna vrednost je svakako uvek jednaka boljoj od navedenih vrednosti. Navedena formula se naziva još formulom unapred i ona je najpogodnija za kompjutersko izračunavanje. za a za je ukoliko se definiše za. Ako nula nije optimalno rešenje, bar jedna njegova koordinata, npr. je veća ili jednaka od ( ). - Navedene rekurzivne forumle se mogu koristiti za određivanje optimalne vrednosti problema kao i odgovarajućeg optimalnog rešenja. 35
6 - Ako koristimo formulu potrebno je da se pamte svi koraci dok je kod formule 2 dovoljno da se pamte samo poslednja dva rešenja. - Kod 2. formule uvodimo još jednu pomoćnu veličinu koja pamti najveći indeks j takav da je j-ta promenljiva optimalnog rešenja u pozitivna. Ukoliko je nula optimalno rešenje, definišimo ovaj indeks sa nulom. Važi rekurzija:, Na osnovu vrednosti dobijene za vrednosti i.. možemo detektujemo optimalno rešenje iz smisla indeksa i Kako upisujemo rešenja? PRIMER 42: Rešiti problem ranca koristeći rekurentnu formulu unapred. Prvo odredimo kapacitete:,. Možemo da stavimo da je ( uzima svoju maksimalnu vrednost obzirom da tada neće narušiti početna ograničenja) ormiramo tablice i Korišćenjem rekurentnih formula: k\y i\y Konačno, imamo da se maksimum dostiže za dalje gledamo za. Konačno:, hajde da rekonstruišemo raspored:, zatim 36
7 PRIMER 43: Rešiti problem ranca koristeći rekurentnu formulu unapred. Prvo odredimo kapacitete:,. ormiramo tablice i Korišćenjem rekurentnih formula: k\y i\y Konačno, imamo da se maksimum dostiže za Zatim.. Dalje imamo da je za 37
8 PRIMER 44: Rešiti problem ranca koristeći rekurentnu formulu unazad. 2 max 7x 2 2x max 2, = max,7 = x3 8 max x 8 x max 8, = max 4, = x2 6 max x 6 x max 6, + 5 =...= x2 5 max x x2 x x x2 2 0 m 5 max 5, + 4 =..= 4 3 max x 3 x max 3, + 2 =.....= 2 max x 2 x max 2, + =.....= 0 x2 x2 x2 ax 0 0 =0 0 3 * 0 / * / * 2 / * 3 / * 4 / * 5 / * 6 / * 7 / * 8 / 4 3 Vraćamo vrednost nazad: Obratiti pažnju da je ovde x a on može imati samo vrednosti 0 i, zato pišemo da je x odnosno 3 *!!!!! 38
9 PRIMER 45: Rešiti problem ranca koristeći rekurentnu formulu unazad. // tražimo maksimum za svaku potencijalnu vrednost promenljive Rekonstruišemo raspored: Maximalna vrednost ranca je 3 i postignuta je za a dostiže se za koje svoju maksimalnu vrednost dobija kada je. Poslednja vrednost dostiže se za koji svoj maksimum dostiže za, odnosno za maksimalno koje, opet, svojm maksimum dostiže za. Konačno, traženo rešenje je oblika : 2 39
10 Svodjenje asimptotskog problema na problem ranca na grupi PRIMER 46: Rešiti problem ranca na grupi Gde je grupa određena po modulu 7. 40
11 Analogno: Rekonstruišimo rešenje: za 4
12 PRIMER 47: Napisati asimptotski problem i svesti ga na problem ranca na grupi: Rešenje Uvodimo izravnajuće promenljive, dobijamo problem: Posmatramo baze :. Dalje, polazni sistem prevodimo na problem i rešavamo ga po bazičnim promenljivim, dobijamo. Zamenom u polazni sistem dobijamo problem u kome figurišu samo nebazične promenljive pri ograničenjima Smitova forma matrice A je tada je vektor celobrojan. Ako uvedemo još da je i u a poslednji izraz će biti zadovoljen ako za svako i za koje je, d deli. Asimptotski problem dobija formu. Smitova forma matrice A je, a dalje imamo da je Konačno, treba da je celo, dakle ograničenja su Ostaje funkcija cilja: odnosno, tj. Konačno, možemo zapisati početni problem kao problem ranca na grupi 42
13 PRIMER 48: Napisati asimptotski problem i svesti ga na problem ranca na grupi: Rešenje Pratimo algoritam iz prethodnog primera. Uvodimo izravnajuće promenljive prvo Smith-ova forma matrice A je Dakle, treba da važi I konačno, funkcija cilja Konačno, dobili smo problem ranca na grupi 43
14 PRIMER 49: Rešiti problem Ovo je problem ranca na grupi sa i operacijom definisanom sa Prema rekurentnoj relaciji imamo da je Dalje je Zamenom nalazimo da je za. Dijagram koji odgovara ovom problemu je Najkraći put koji spaja i ima dve grane dužine 3 I jednu granu dužine 8. 44
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеVEŽBE IZ OPERACIONIH ISTRAŽIVANJA
VEŽBE IZ OPERACIONIH ISTRAŽIVANJA Glava 4 1. Metoda grananja i odsecanja 2. Metoda grananja i ograničavanja 3. Metoda implicitnog prebrojavanja MARIJA IVANOVIĆ marijai@math.rs Metoda grananja i odsecanja
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеMicrosoft Word - AIDA2kolokvijumRsmerResenja.doc
Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft PowerPoint - 03-Slozenost [Compatibility Mode]
Сложеност алгоритама (Програмирање 2, глава 3, глава 4-4.3) Проблем: класа задатака истог типа Велики број различитих (коректних) алгоритама Величина (димензија) проблема нпр. количина података које треба
ВишеKonstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun
Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеMAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN
MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеDinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem
Dinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem nekih (moguće nijednog) elemenata polaznog niza. Formalno,
ВишеMicrosoft Word - KVADRATNA FUNKCIJA.doc
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b+ c Gde je R, a i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b+ c je parabola. Najpre ćemo naučiti kako izgleda
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеPowerPoint Presentation
Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеMicrosoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n
4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
ВишеI колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x
I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x
ВишеПрограмирај!
Листе Поред појединачних вредности исказаних бројем или ниском карактера, често је потребно забележити већи скуп вредности које су на неки начин повезане, као, на пример, имена у списку путника у неком
ВишеИспит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ
Испит из Основа рачунарске технике OO - 27/2 (9.6.2.) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећој слици: S Q R Q Асинхрони RS флип флопреализован помоћу НИ
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеИспит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след
Испит из Основа рачунарске технике OO - / (...) Р е ш е њ е Задатак Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на следећој слици: S R Асинхрони RS флип флопреализован помоћу НИЛИ кола је
ВишеОрт колоквијум
Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеMicrosoft Word - 1.Operacije i zakoni operacija
1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
ВишеNatjecanje 2016.
I RAZRED Zadatak 1 Grafiĉki predstavi funkciju RJEŠENJE 2, { Za, imamo Za, ), imamo, Za imamo I RAZRED Zadatak 2 Neka su realni brojevi koji nisu svi jednaki, takvi da vrijedi Dokaži da je RJEŠENJE Neka
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеJEDNAKOSTI I JEDNAČINE,
ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА Диофантове једначине смо решавали у петом, шестом и седмом разреду. Тада смо се упознали и са појмом Диофантове једначине и појмом решења Диофантове једначине. Циљ ове наставне
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet
ВишеMicrosoft Word - SIORT1_2019_K1_resenje.docx
I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2
ВишеTest iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +
Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеVeeeeeliki brojevi
Matematička gimnazija Nedelja informatike 3 12. decembar 2016. Uvod Postoji 10 tipova ljudi na svetu, oni koji razumeju binarni sistem, oni koji ne razumeju binarni sistem i oni koji nisu očekivali šalu
ВишеTeorija igara
Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеKonstrukcija i analiza algoritama vežbe 10 Nina Radojičić 15. decembar Algoritamske strategije - podeli pa vladaj (divide and conquer) Ova stra
Konstrukcija i analiza algoritama vežbe 10 Nina Radojičić 15. decembar 2016 1 Algoritamske strategije - podeli pa vladaj (divide and conquer) Ova strategija rekurzivno razbija problem na 2 ili više potproblema
ВишеMicrosoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc
NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y
ВишеOsnovni pojmovi teorije verovatnoce
Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:
ВишеMicrosoft Word - 14Celobrojno.doc
3. CELOBROJNO LINEARNO PROGAMIRANJE 3.1. MODELI CELOBROJNOG PROGRAMIRANJA Svaki matematički model, sa funkcijom kriterijuma minimuma ili maksimuma, u kojem bar jedna primarna promenljiva mora biti celobrojna
Вишеkvadratna jednačina - zadaci za vežbanje (Vladimir Marinkov).nb 1 Kvadratna jednačina 1. Rešiti jednačine: a x 2 81 b 2 x 2 50 c 4 x d x 1
kvadratna jednačina - zadaci za vežbanje 0. (Vladimir Marinkov).nb Kvadratna jednačina. Rešiti jednačine: a x 8 b x 0 c x d x x x e x x x f x 8 x 6 x x 6 rešenje: a) x,, b x,, c x,,d x, 6, e x,, (f) x,.
ВишеDR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ
DR DRAGOŚ CVETKOVIC DR SLOBODAN SIMIC DISKRETNA MATEMATIKA MATEMATIKA ZA KOMPJUTERSKE NAUKĘ DRUGO ISPRAYLJENO I PROSIRENO IZDANJE HMUJ Sadrżaj Predgovor Iz predgovora prvoni izdanju knjige "Diskretne mateiuatićke
ВишеЗадатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на сл
Задатак 4: Центрифугална пумпа познате карактеристике при n = 1450 min -1 пребацује воду из резервоара A и B у резервоар C кроз цевовод приказан на слици. Разлике нивоа у резервоарима износе h = 5 m и
ВишеMicrosoft Word - MATRICE ZADACI III deo.doc
MATRICE ZADACI ( III DEO) SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI MATRICE Postupak tražeja sopstveih vredosti je sledeći: i) Za datu kvadratu matricu ( recimo matricu A) odredimo matricu A λi, gde je I
ВишеSlide 1
OSNOVNI POJMOVI Naredba je uputa računalu za obavljanje određene radnje. Program je niz naredbi razumljivih računalu koje rješavaju neki problem. Pisanje programa zovemo programiranje. Programski jezik
ВишеSlide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.
ВишеMicrosoft Word - Algebra i funkcije- napredni nivo doc
Algebra i funkcije napredni nivo 01. Nenegativna znači da je vrednost izraza pozitivna ili je jednaka 0. ( 1) ( 1)( 1) 0 razlika kvadrata (( x) + x 1+ 1 ) (( x) 1 ) 0 ( + + 1) ( 1) 0 x x+ x x+ x x x +
ВишеМ А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према свој
М А Т Е М А Т И К А Први разред (180) Предмети у простору и односи међу њима (10; 4 + 6) Линија и област (14; 5 + 9) Класификација предмета према својствима (6; 2 + 4) Природни бројеви до 100 (144; 57
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеSKRIPTE EKOF 2019/20 skripteekof.com Lekcija 1: Brojevni izrazi Lekcija 1: Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da nau
Lekcija : Brojevni izrazi Pregled lekcije U okviru ove lekcije imaćete priliku da naučite sledeće: osnovni pojmovi o razlomcima proširivanje, skraćivanje, upoređivanje; zapis razlomka u okviru mešovitog
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
Више2015_k2_z12.dvi
OBLIKOVANJE I ANALIZA ALGORITAMA 2. kolokvij 27. 1. 2016. Skice rješenja prva dva zadatka 1. (20) Zadano je n poslova. Svaki posao je zadan kao vremenski interval realnih brojeva, P i = [p i,k i ],zai
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
ВишеMicrosoft Word - 7. cas za studente.doc
VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
ВишеMicrosoft Word - 12ms121
Zadatak (Goran, gimnazija) Odredi skup rješenja jednadžbe = Rješenje α = α c osα, a < b < c a + < b + < c +. na segmentu [ ], 6. / = = = supstitucija t = + k, k Z = t = = t t = + k, k Z t = + k. t = +
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJA.doc
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
ВишеModel podataka
Fakultet organizacionih nauka Uvod u informacione sisteme Doc. Dr Ognjen Pantelić Modeliranje podataka definisanje strategije snimanje postojećeg stanja projektovanje aplikativno modeliranje implementacija
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
Више3.Kontrlne (upravlja~ke) strukture u Javi
Објектно орјентисано програмирање Владимир Филиповић vladaf@matf.bg.ac.rs Александар Картељ kartelj@matf.bg.ac.rs Низови у програмском језику Јава Владимир Филиповић vladaf@matf.bg.ac.rs Александар Картељ
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
ВишеVjezbe 1.dvi
Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva
ВишеSlide 1
0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеS E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar,
S E M I N A R S K I R A D Primena diferencijalnog računa Marina -Dokić Marina Jokić Tatjana Jakšić Decembar, 2006. 1 Diferencijalni račun ima veliku primenu u ekonomiji, elektrotehnici, astrofizici, astronomiji,
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija
ВишеFunkcije predavač: Nadežda Jakšić
Funkcije predavač: Nadežda Jakšić funkcije delovi programa koji izvršavaju neki zadatak, celinu; dele na ugrađene, korisničke i main funkciju ugrađene funkcije printf,scanf... da bi se one izvršile potrebno
ВишеLAB PRAKTIKUM OR1 _ETR_
UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA
ВишеMAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА
MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока
ВишеDM
CHAPTER. KOMBINATORNA PREBRAJANJA.4 Rekurete relacije izova.5 Geeratore fukcije Ako je broji iz zadat rekuretom relacijom, kao alat za rešavaje uvodimo pojam geeratore fukcije. Geeratora fukcija iza je
ВишеClassroom Expectations
АТ-8: Терминирање производно-технолошких ентитета Проф. др Зоран Миљковић Садржај Пројектовање флексибилних ; Математички модел за оптимизацију флексибилних ; Генетички алгоритми у оптимизацији флексибилних
ВишеALIP1_udzb_2019.indb
Razmislimo Kako u memoriji računala prikazujemo tekst, brojeve, slike? Gdje se spremaju svi ti podatci? Kako uopće izgleda memorija računala i koji ju elektronički sklopovi čine? Kako biste znali odgovoriti
ВишеMicrosoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx
Универзитет у Београду Математички факултет О неким класичним квадратним Диофантовим једначинама Мастер рад ментор: Марко Радовановић студент: Ивана Фируловић Београд, 2017. Садржај Увод...2 1. Линеарне
ВишеMicrosoft PowerPoint - C-4-1
Pregled iskaza u C-u Izraz; Iskaz dodele, serijski komponovani iskaz; blok Uslovni iskazi i izrazi; složeno grananje Iterativni iskazi Iskaz dodele Promena vrednosti a = Ψ; Izračunava vrednost izraza Ψ,
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеOptimizacija
Optimizacija 1 / 43 2 / 43 Uvod u optimizaciju Zadana funkcija Uvod u optimizaciju f : R n R Cilj: Naći x, točku minimuma funkcije f : - Problem je jednostavno opisati x = arg min x R n f (x). - Rješavanje
Вишеuntitled
РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)
ВишеPitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 19. decembar Teorijska pitanja 1. V
Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Tijana Šukilović, Miloš Antić, Nenad Lazić 9. decembar 6 Teorijska pitanja. Vektori: Definicija vektora, kolinearni i koplanarni vektori,
Више