Microsoft Word - Resenja_ racunskih_vezbi_emp_mjss_2012.doc
|
|
- Nace Golob
- пре 5 година
- Прикази:
Транскрипт
1 ELEKTRIČNE MAŠINE Rešenja računskih vežbi PRVI DEO 1 zadatak a) U provodniku koji se kreće u hoogeno agnetno polju postoji elektrootorna sila koja se ože izraziti kao skalarni proizvod vektora dužine provodnika L i vektorskog proizvoda v B brzine v i agnetne indukcije B : E LvB Pošto je vektor agnetne indukcije B noralan na provodnik, a pri toe je noralan i na pravac kretanja, tada je elektrootorna sila koja se ia na krajevia provodnika jednaka: E LB v Intenzitet struje u kolu je : EU0 LvBU0 I R R Na provodnik dužine L, u koe postoji struja I, u hoogeno agnetno polju B, deluje elektroagnetska sila F e koja se ože izraziti kao proizvod struje I i vektorskog proizvoda L B, gde je L vektor dužine provodnika, а B vektor agnetne indukcije Ako je vektor agnetne indukcije B noralan na provodnik onda je elektroagnetska sila ( HALorentz ) koja deluje na provodnik Fe LB I Pošto se šipka kreće konstantno brzino, onda je elektroagnetska sila, definisana Lorencovi obrasce u ravnoteži sa spoljašnjo ehaničko silo koja vuče šipku : asineetfrs 1 примедбе и питања: ddc@etfrs, vukosavicetfrs
2 LvB U0 Fe Feh Feh Fe LBI LB R Iz poslednjeg izraza se izračunava potrebna vrednost elektrootorne sile jednosernog naponskog generatora, U 0 : Feh R U0 LvB L B b) Snaga izvora jednosernog napona je, u skladu sa usvojeni referentni serovia: LvB U0 Feh R Feh Pi U0I U0 LvB R L B L B Gubici u električno podsisteu su posledica nenulte vrednosti unutrašnje otpornosti naponskog generatora: Feh P e RI R L B Snaga elektroehaničkog pretvaranja se ože izračunati kao razlika uložene snage i snage gubitaka: Pe Pi P e v Feh Negativan predznak govori da ovaj elektroehanički pretvarač pretvara ehaničku energiju u električnu energiju, tj radi kao generator asineetfrs примедбе и питања: ddc@etfrs, vukosavicetfrs
3 zadatak a) Ukupna agnetska otpornost predstavlja zbir agnetskih otpornosti vazdušnog procepa, užeg i šireg dela feroagnetskog aterijala: 1 l0 1 l1 1 l R R,0 R,1 R, 0 S0 0r S1 0r S Kako je za date dienzije agnetskog kola: dužina srednje linije užeg dela feroagnetika gde postoji agnetsko polje H 1, l 1 =95 c, dužina srednje linije šireg dela feroagnetika gde postoji agnetsko polje H, l =39 c, dužina vazdušnog zazora gde postoji agnetsko polje H 0, l0 =1, površina poprečnog preseka užeg feroagnetika: S 1 =1 c x 1 c = 1 c, površina poprečnog preseka šireg feroagnetika: S = 15 c x 1 c = 15 c, površina poprečnog preseka vazdušnog procepa: S 0 = 15 c x 1 c = 15 c, ukupna agnetska otpornost agnetskog kola je: 6 A R Wb Napoena: U proračunu agnetske otpornosti, zanearuju se ivični efekti, tj satra se da je polje hoogeno, te da se efekti proene pravca linija polja u uglovia agnetskog kola ogu zaneariti Jedan od načina je da se za svaki deo asineetfrs 3 примедбе и питања: ddc@etfrs, vukosavicetfrs
4 agnetskog kola uvaži njegova aktuelna dužina, te da se polje u svako delu satra hoogeni Jedan od pristupa je definisanje srednje linije, kako je dato u pisano rešenju U slučaju da se ovakav zadatak pojavi na ispitu ili kolokvijuu, biće praćen nedvosisleni i jasni uputstvo o toe kakvu apriksiaciju treba načiniti b) Prieno graničnih teorea i Aperovog zakona rešavao agnetsko kolo: Hdl J ds I C S nac kroz S Odavde se dobija: H0l0 H1l1Hl N I Ako se usvoji pretpostavka da na razdvojnoj površi feroagnetika i vazduha nea tangencijalne koponente polja, ože se pisati da je: B0 B 0 H0, dok je: B H0 H 0 r r Prieno zakona o konzervaciji agnetskog fluksa, ia se: B S 0 H0 S BS B1S1 B1, S1 S1 odakle se sada dobija: B1 H0 S H1 0 r r S1 Zaeno izraza za jačine agnetskih polja H i H 1 u izraz za Aperov zakon dobija se vrednost agnetskog polja u zazoru: N I H0 l1 S l l0 r S1 r Stoga je jačina polja u vazdušno zazoru ka H0 539 Dalje se izračunavaju tražene vrednosti: B0 B 0H0 03 T, S B1 B 048 T, S H H H 1 A 0 539, r H S A r S 1 asineetfrs 4 примедбе и питања: ddc@etfrs, vukosavicetfrs
5 c) Prea zakonu o konzervaciji fluksa, on je po svako poprečno preseku jezgra isti i ože se izračunati, kao: 4 B1S Wb Pošto toliki fluks poseduje svaki od navojaka (zanearena su sva rasipanja fluksa), ukupni fluks celog naotaja iznosi: N 144 Wb d) Koristeći pretpostavku o linearnosti feroagnetskog aterijala, gustina agnetske energije u vazdušno zazoru, uže i šire delu feroagnetskog aterija se ože pisati kao: B0 B1 B w,0, w,1, w, 0 0r 0r Stoga je vrednost agnetske energije akuulisane u zazoru: B0 W,0 w,0dv0 w,0 V0 S0 l0 61 J V0 0 Hoogenost feroagnetskog aterijala oogućuje da se izračuna vrednost agnetske energije akuulisane u njeu: B1 B W,Fe w,1dv1 w,dv w,1 V1 w, V S1 l1 S l V1 V r 0 r 0 11 J Napoena: Račun se ože skratiti Najpre se odredi ukupna energija agnetskog polja kao W = ½ i Poto se izračuna energija agnetskog polja u vazdušno zazoru prea izrazu W 0 = S 0 l 0 B 0 // 0 Energija agnetskog polja u feroagnetsko aterijalu je razlika izeđu prethodna dva rezultata Jedan od načina je da se za svaki deo agnetskog kola uvaži njegova aktuelna dužina, te da se polje u svako delu satra hoogeni Nuerički razultati će se neznatno razlikovati (ovde nisu priloženi) asineetfrs 5 примедбе и питања: ddc@etfrs, vukosavicetfrs
6 3 zadatak Polazeći od izraza za trenutnu vrednost elektroagnetskog oenta: 1 dls t i t d i uočavajući da je zavisnost sopstvene induktivnosti od ugla prikazanog na slici Lax Lin Lax Lin LS cos, dobija se izraz za trenutnu vrednost oenta: 1 1 t ILax Lin sin t ILax Lin sin it ILax Lin sin itn 8 Kako je i, Ω 0, zaključuje se da se nenulta srednja vrednost oenta ože postići sao u slučaju kada je ispunjen uslov: a) Srednja vrednost oenta u slučaju ispunjenja uslova opisanog u prethodnoj tački, potiče sao od poslednjeg člana u izrazu za trenutnu vrednost oenta i iznosi: T 1 1 Msr t dt I Lax Lin sin N T 8 0 i b) U cilju izračunavanja napona na priključcia statora, potrebno je najpre izračunati fluks koji se ia u statorsko naotaju ( i ): Lax Lin Lax Lin S t LS t i t cosit cos i I t Lax Lin Lax Lin Lax Lin I cositi cos3it I cosit Wb 4 4 Napon na krajevia statorskog naotaja je: d S t Lax Lin u t RS i t RS I cositi isin it dt Lax Lin Lax Lin 3iI sin3itii sinitv 4 4 asineetfrs 6 примедбе и питања: ddc@etfrs, vukosavicetfrs
7 c) Srednja snaga elektroehaničkog pretvaranja predstavlja proizvod elektroagnetskog oenta i ugaone brzine rotora: 1 P M I L L sin W e sr ax in 8 Srednja snaga kontrolisanog izvora predstavlja zbir srednje snage elektroehaničkog pretvaranja i srednje snage gubitaka u naotaju statora: T 1 1 isr, ax in s 8 T 0 1 I isr, ax in s sin P I L L R i t dt P I L L sin R W 8 Od interesa za bolje razuevanje električnih ašina je iskoristiti dobijene rezultate i uočiti da kontraelektrootorna sila ia koponentu proporcionalnu izvodu struje, koja se često zove transforatorska es, kao i koponentu koja je propocionalna proizvodu dl/dkoja se zove dinaička es d d Li di dl di dl e L i L i dt dt dt dt dt d U poslednje delu zadatka, pod (d), traži se određivanje srednje snage U zavisnosti od pristupa, ože se javiti sabirak koji predstavlja izvod energije agnetskog polja, koji predstavlja snagu koja se ulaže u polje Poznato je da srednja vrednost snage koja se ulaže u agnetsko polje ora biti jednaka nuli (u protivno bi energija agnetskog polja neprekidno rasla ili opadala, što se ne ože održati) Tvrdnja se ože verifikovati sledećo jednačino: d W d 1 Li dt dt 1 Lax Lin Lax Lin Lax Lin I sin 4t sin t sin t (satra se da je = = i, kao i da se struja i induktivnost enjaju prea jednačinaa dati u zadatku) Uočiti da je srednja vrednost gore datog izraza jednaka nuli asineetfrs 7 примедбе и питања: ddc@etfrs, vukosavicetfrs
8 4 zadatak a) Energija akuulisana u agnetsko polju, (polju koje predstavlja sprežni ediju u procesu elektroehaničkog pretvaranja), iznosi: 1 1 W t, L i t L i t L t i t i t Kako se proces elektroehaničkog pretvaranja odvija pri struji koja je funkcija vreena pa tako nije direktno zavisna od položaja rotora, elektroagnetski oent se izračunava kao izvod energije polja po ugaono poeraju (videti predavanja): t d W d t, L1 t i1 ti cos50 t cos tn d d U skladu sa teksto zadatka, ugao (t) se ože zapisati kao: () t t(0) 50 t, 3 odakle se izračunava trenutna vrednost oenta kao: 1 t cos50 tcos50 t cos100 t N 3 3 b) Srednja vrednost oenta se izračunava usrednjavanje trenutne vrednosti oenta na periodi obrtanja rotora od T=40s: T 1 Me t dt 05N T 0 Srednja snaga elektroehaničkog pretvaranja predstavlja proizvod elektroagnetskog oenta i ugaone brzine rotora: P M 5 W e e c) Radi izračunavanja napona na krajevia statorskog naotaja, potrebno je najpre izračunati fluks koji postoji u statorsko naotaju: 1 t L1i1 t L1 t i 04cos50 t05sin 50 t Wb 3 Napon na statorski priključcia je: d1 t u1 t R1i1 t 4 cos50 t 0 sin 50 t 5 cos 50 t V dt 3 asineetfrs 8 примедбе и питања: ddc@etfrs, vukosavicetfrs
9 d) Trenutna snaga koja se uzia iz izvora na koji je priključen statorski naotaj jednaka je: p1 t u1 t i1 t 4cos50 t0 sin 50 t5 cos50 t 4cos50 t 3 8 8cos100 t40 sin 100 t50 cos100 t 5 W 3 Stoga, srednja vrednost ulazne snage iznosi: T 1 Pisr, p1 t dt 5 8W 8654 W T 0 i predstavlja zbir srednje snage elektroehaničkog pretvaranja i snage Džulovih gubitaka na otpornosti statorskog naotaja 5 zadatak Elektrootorna sila indukovana u provodniku na slici jednaka je E 1 =LvB, gde je v periferna brzina rotora, L dužina provodnika (tj osna dužina ašine) dok je B indukcija koja se u dato trenutku ia u tački =/ Vrednost indukcije se enja u vreenu usled obrtanja rotora Rotor se obrće brzino, tako da je = t Posatrajući sliku i uočavajući da se u zoni severnog (N) pola peranentnog agneta ia +B ax, zaključuje se da je indukcija B(=/) jednaka +B ax u vreensko intervalu t[0, / ] U trenutku t=/, na ugaonoj poziciji =/, severni agnetski pol rotora iziče i ustupa esto južno, tako da vrednost agnetske indukcije enja znak Gore rečeno se ože i ateatički iskazati Vrednost agnetske indukcije na periferiji rotora je funkcija koordinate posatrane tačke, kao i trenutnog položaja rotora, pa treba funkciju agnetske indukcije zapisati kao B(, ) Trenutna vrednost indukovane elektrootorne sile u statorsko naotaju sa jedni navojko (dva provodnika) je funkcija trenutnog položaja rotora : gde je D et B /, Lv B /, L LD B KB /, /, K LD konstantna vrednost Dakle, vreenski oblik indukovane elektrootorne sile je identičan vreensko obliku agnetske indukcije na položaju =/, tj ia se pravougaona povorka naponskih ipulsa Srednja vrednost es jednaka je nuli, dok je njena kružna učestanost jednaka brzini obrtanja rotora (tj perioda es jednaka je / ) Aplituda indukovane es jednaka je: asineetfrs 9 примедбе и питања: ddc@etfrs, vukosavicetfrs
10 E LD B ax Traženi vreenski oblik je prikazan na slici 4 ax Slika 4 b) Zbog redne veze, elektrootorna sila indukovana u statorsko naotaju je u svako trenutku jednaka zbiru elektrootornih sila svakog pojedinačnog navojka: ' ' ' et e te t e t Elektrootorne sile, indukovane u svako navojku poseduju identične talasne oblike (pravougaoni naponski ipulsi), ali sa razliko da su oni poereni za /6, odnosno za =/6/ Priroda i odnos prostornog poeraja provodnika, i vreenskog kašnjenja u obliku es je podrobnije objašnjena u naredni pasusuia Potrebno je uočiti da se proena polariteta indukovane es u jedno navojku događa u trenutku kada u blizini njegovih provodnika dolazi do proene polariteta agnetskog polja Kako se rotor obrće u seru suprotno od kazaljke na časovniku, proena es se najpre događa u navojku 1-1 (slika 3), poto u navojku -, i na kraju u navojku 3-3 Vreenski interval koji deli opisane događaje je t=/6/ Prostorni poeraj provodnika za posledicu ia vreensko (tj fazno) kašnjenje u indukovani es Dakle, elektrootorna sila u navojku 1-1, e ' t, prednjači za /6, dok elektrootorna 11 sila, e ' t u navojku 3-3, fazno kasni za /6 u odnosu na elektrootornu silu 33 indukovanu u navojku - Elektrootorna sila indukovana u navojku - je identična elektrootornoj sili određenoj u tački a) Postupak grafičkog suiranja elektrootornih sila je prikazan na slici 5 Kao što se sa slike ože videti, srednja vrednost indukovane elektrootorne sile jednaka je nuli, dok je njena aksialna vrednost: ax E LD B 3 ax asineetfrs 10 примедбе и питања: ddc@etfrs, vukosavicetfrs
11 Slika 5 asineetfrs 11 примедбе и питања: ddc@etfrs, vukosavicetfrs
12 6 zadatak a) 1Korak: Određivanje prostorne raspodele jačine agnetnog polja u zazoru, H,, koja potiče od struje rotorskog naotaja I r u funkciji ugaonog poeraja rotora u odnosu na stator, Struja koja postoji u rotorski provodnicia stvara agnetsko polje u vazdušno zazoru ašine Radijalna koponenta polja je značajno veća od tangencijalne, koja se ože zaneariti Zatvorena kontura C, prikazana na slici 1, dva puta prolazi kroz vazdušni zazor širine, na ugaono položaju i Budući da je polje radijalno a zazor relativno ali, jačina polja u dato ugaono položaju se ože satrati nezavisno i konstantno duž odsečka konture C (odsečka konture koji se nalazi u zazoru) Dakle, za određivanje krivolinijskog integrala jačine agnetskog polja po zatvorenoj konturi C, dovoljno je poznavati zazor i jačinu polja u položajia i Slika 1 asineetfrs 1 примедбе и питања: ddc@etfrs, vukosavicetfrs
13 Obrazloženje: Pošto je HFe 0, satra se da agnetsko polje postoji isključivo u vazdušno zazoru Ugao 1 jednak je razlici izeđu koordinate i ugla, koji označava poeraj rotora u odnosu na stator Na ugaono položaju i +polje H ia istu aplitudu ali suprotan znak U jedno položaju ser polja je od rotora prea statoru dok je na drugo estu suprotan Posatrano u odnosu na referentni, radijalni ser cilindričnog koordinatnog sistea (koji je u svi položajia useren od rotora prea stator), H, H, Ovakav zaključak je posledica činjenice da je ašina sietrična, kao i činjenice da polje vektora agnetske indukcije nije izvorno divb 0, što važi i za polje vektora jačine agnetskog polja H, pod uslovo da je veza B i H linearna Jačina agnetskog polja u vazdušno zazoru, H,, se odredjuje prieno Aperovog zakona na konturu C: Hdl J ds IC C S Hdl H, H, H, H, H, C Krivolinijski integral vektora agnetskog polja po zatvorenoj konturi C jednak je zbiru svih struja koje prolaze kroz površ oslonjenu na konturu, I C ( agnetopobudnoj sili) Negativan predznak koji u prethodno izrazu stoji uz H, javlja se zbog toga što je ser obilaska konture C duž vazdušnog zazora na položaju suprotan od referentnog sera za radijalnu koponentu agnetskog polja u cilindrično koordinatno sisteu ' C r r D I N I d D ' C r r,ax sin d r r,ax cos ' I I N DI N U prethodno izrazu predstavlja proizvoljni ugaoni položaj u intervalu integracije Korak: H ' DIr Nr,ax cos, Određivanje agnetske indukcije u zazoru kao funkcije ugaonog poeraja rotora u odnosu na stator,, rotorske struje i paraetara ašine B H r r,ax, 0, 0 DI N cos asineetfrs 13 примедбе и питања: ddc@etfrs, vukosavicetfrs
14 3Korak: Energija agnetskog polja je doinantno skoncentrisana u zazoru i njena gustina se ože opisati izrazo : w H 05 0, Na osnovu ovoga, energija agnetskog polja se ože izračunati kao integral gustine agnetske po zapreini zazora : 4Korak: 3 D D LI ' 0 r 0 r,ax 16 V 0 W w dv 05 H, L d N Maksialna srednja vrednost oenta se ože proceniti na osnovu energije akuulisane u agnetsko polju kao : M W D LI r ' sr,ax Nr,ax b) 1Korak: Magnetna indukcija u zazoru potiče od rotorske struje i funkcija je ugaonog poeraja rotora u odnosu na stator, : Korak: ' DIr Nr,ax cos B, 0 Određivanje fluksa kroz konturu koja se oslanja na provodnike statorskog naotaja P i P Na unutrašnjoj strani statora nalazi se sinusoidalno raspodeljen naotaj statorana slici sa P i P je označen par provodnika statorskog naotaja na ugaono rastojanju koji čini konturu (navojak) Položaj konture u ortogonalno preseku je određen oso koja sa oso naotaja statora zaklapa ugao asineetfrs 14 примедбе и питања: ddc@etfrs, vukosavicetfrs
15 Fluks kroz posatranu konturu (navojak) se dobija izračunavanje površinskog integrala agnetske indukcije na površi S: B ds Pošto je poznat analitički izraz za jačinu S agnetske indukcije u vazdušno zazoru, najpogodnije je za površ integracije usvojiti polucilindrar poluprečnika D /i dužine L koji se prostire duž vazdušnog zazora i oslonjen je na konturu, od ugaonog položaja do ugaonog položaja, ( slika 3) asineetfrs 15 примедбе и питања: ddc@etfrs, vukosavicetfrs
16 D LD I r,ax 0 r ' B L N,, d sin 3Korak: Određivanje ukupnog fluksa statorskog naotaja koji potiče od polja koje postoji u zazoru Na unutrašnjoj strani statora nalazi se sinusoidalno raspodeljen naotaj statora (slika 4) Ugaono poeraju d odgovara dužinski poeraj po obiu zazora od D / d Na ' ' to poeraju nalazi se d N N D/ d N podužna s provodnika pri čeu je s gustina statorskih provodnika Kroz navojke koji čine ti provodnici javlja se fluks čija je vrednost: d S, dns Ukupan fluks se računa kao integral eleentarnog dela fluksa na intervalu untegracije 0 Ako sa S označio ukupan fluks koji se indukuje u naotaju statora, a potiče od polja koje postoji u zazoru, ia se: 3 ' ' D LD I N N ' 0 r s,ax r,ax, N d cos S s 8 0 s asineetfrs 16 примедбе и питања: ddc@etfrs, vukosavicetfrs
17 4Korak: Određivanje elektrootorne sile koja se indukuje u statorsko naotaju Elektrootorna sila koja se indukuje u statorsko naotaju, iznosi: 3 ' ' ds d S d 0 LD Ir Ns,ax N r,ax e, e, sin dt d dt 8 7 zadatak a) Zaenska šea pobudnog i araturnog kola generatora jednoserne struje za stacionarna stanja prikazana je na slici: Struja generatora I G je userena od četkice B ka četkici A indukta Preko četkice A, dovodi se na opterećanje Struja opterećenja I G se dovodi povrtani vodo natrag do četkice B Jednačina naponske ravnoteže araturnog kola generatora jednak je: U G =E R a I G =k e p R a I G Generator je noinalno pobuđen, a rotor se obrće noinalno brzino, tako da je elektrootorna sila noinalna, tj važi: E =E no =k e no no Pošto je struja opterećenja jednaka noinalnoj, I G =I no, napon na krajevia generatora je noinalan, U G =U no Jednačina naponske ravnoteže ia oblik: U no =E no R a I no Noinalna elektrootorna sila se određuje kao E no =U no +R a I no = =40 V Za novi radni reži koji je definisan strujo opterećenja I G =40A važi: U G =E no R a I G = =3 V asineetfrs 17 примедбе и питања: ddc@etfrs, vukosavicetfrs
18 b) Napon na potrošaču dobijen u prethodnoj tački je veći od noinalnog Ovo se javlja zato što je struja opterećenja anja od noinalne, pa je anji i serijski pad napona, što dovodi do većeg izlaznog napona (Diskusija: Da bi se napon U G =E no R a I G sanjio a struja zadržala neizenjeno, serijska otpornost R a ogla bi se uvećati dodavanje otpornika R a =1 V/0 A=06 Ovo, eđuti nije proble koji je dat u zadataku) Ugradnjo serijskog otpora R P sanjuje se pobudna struja Kao posledica toga, uanjiće se i indukovana elektrootorna sila, pa tako i napon na potrošaču Elektrootorna sila treba da bude uanjena sa inicijalne vrednosti E no =40 V na novu vrednost E 1, koja će dati U G =0 V: E 1 =0+0 04=8 V Kako se brzina obrtanja ne enja, E no =k e no no, dok je E 1 =k e 1 no Dakle, potrebno je uanjiti pobudni fluks na vrednost 1 = no (E 1 /E no )= no 095 Pobudni fluks je proporcionalan struji pobude: Lp p I p LI p p, N odnosno, obrnuto proporcionalan ukupnoj otpornosti u pobudno kolu: P =(L P N P )U P /(R P +R P ) Kako je no =(L P N P )U P /R P, a 1 =(L P N P )U P /(R P +R P ) dobija se: (R P +R P )/R P =1+R P /R P =E no /E 1 =1/095, tako da je R P =06316 asineetfrs 18 примедбе и питања: ddc@etfrs, vukosavicetfrs
19 8 zadatak (Diskusija: Objašnjenje podataka navedenih u zadatku) Motori pretvaraju električnu snagu u ehaničku Terin noinalna snaga otora se odnosi na ehaničku snagu, tj snagu koji otor daje na svo izlazno vratilu Generatori pretvaraju ehaničku snagu u električnu Terin noinalna snaga generatora se odnosi na električnu snagu, tj snagu koji otor daje na svoji izlazni priključcia kw noinalna ehanička snaga otora (P no ) aksialna snaga koja se ože realizovati u trajno radu U slučaju MJSS u otorno režiu rada ona predstavlja korisnu ehaničku snagu koja se ostvaruje na vratilu ašine i izražava se W Trajna vrednost oenta M (no) koja se ože dobiti je anja od elektroagnetskog oenta M e(no), koji stator deluje na rotor, stoga što unutar ašine postoje ehanički gubici, oent potreban za savladavanje trenja u ležajevia, otpora vazduha i sl Dakle, u opšte slučaju, P n = no M (no) U zadacia se najčešće ehanički gubici zanearuju, pa je tada M (no) =M e(no) (kraj diskusije) a) Zaenska šea pobudnog i araturnog kola otora jednoserne struje za stacionarna stanja prikazana je na slici: Mehanička karakteristika otora se dobija iz jednačine naponske ravnoteže U a =R a I a + k e P i ože se zapisati u obliku M e =k P (U a /R a ) (k k e P /R a ) =M P -S, gde je strina karakteristike S=k k e P /R asineetfrs 19 примедбе и питања: ddc@etfrs, vukosavicetfrs
20 Mehaničku karakteristiku je oguće zapisati i kao = o -M e /S Veličine M P =k P (U a /R a ) i o =U a /(k e P ) su polazni oent i brzina praznog hoda, presečne tačke ehaničke karakteristike sa apsciso i ordinato Izeđu presečnih tačaka, karakteristika ia linearnu proenu Iz uslova zadatka, potrebno je odrediti koeficijente k e no =k no Noinalna vrednost elektrootorne sile otora jednaka je E no =U no -R a I no =k e no no = =095 V Odavde je k e no =E no / n =0944/(1500 /30)=1333 Wb ALTERNATIVA Prea uslovia zadatka, M (no) =M e(no) =P no / no =000/(1500 /30)= N Kako je k e =k, ože se izračunati da je k e no =M no / no =1333 Wb Karakteristične tačke i strina ehaničke karakteristike se izračunavaju na sledeći način: Polazni oent: M P =k no (U no /R a )=936 N Brzina praznog hoda: o =U no /(k e no )= rad/ = o/in (prietiti da je brzina praznog hoda veća od noinalne brzine Razlike ne bi bilo da je R a =0) Strina: S=k k e no /R a =17777 [N s/rad] (Polazni oent se u praksi ne ože dostići) (u okviru rešenja, potrebno je nacrtati karakteristiku i na njoj označiti presečne tačke) b) Na dobijenoj ehaničkoj karakteristici, oent koji bi se dobio pri brzini od 900 o/in bi značajno prevazišao noinalni oent asineetfrs 0 примедбе и питања: ddc@etfrs, vukosavicetfrs
21 Sanjenje napona napajanja, redukuje se brzina praznog hoda, čie se ehanička karakteristika translira naniže Potrebno je naći napon napajanja pri koe se razvija noinalni oent pri brzini od 900 o/in Kako je noinalna brzina pri kojoj se noinalni oent razvija pri noinalno naponu jednaka 1500 o/in, ovo znači da treba translirati ehaničku karakteristiku za 600 o/in naniže Pretpostavio da je napon sanjen i da iznosi U 1, čeu odgovara brzina praznog hoda 01 =U 1 /(k e no ) Tražena brzina je n 1 =900 o/in, tako da je 1 =(900 )= 01 M no /S Dakle, 01 =(900 )+M no /S= /17777=1016 rad/s Napon pri koe se ia ova brzina praznog hoda je: U 1 =k e no 01 = V Traženo uanjenje napona je U=8386 V (napoena: kada u rešenju poenutu veličinu okarakterišete kao uanjenje, tada nije potrebno koristiti predznak) 9 zadatak a) Noinalna vrednost elektrootorne sile, E no, jednaka je E no =U no R a I no =k e no no =100 V Poznata je noinalna brzina, pa je k e no =k no =04 Wb Noinalna vrednost elektroagnetskog oenta je: M no =k no I no =4 N b) Fluks u jedno navojku pobudnog naotaja u noinalni uslovia jednak je no =(k e no )/k e =04 Wb/[N R /()]= Wb Ukupan fluks pobudnog naotaja u noinalni uslovia je: Pno = N P no =15663 Wb Noinalna vrednost pobudne struje jednaka je: I Pno =U Pno /R P =05 A Induktivnost pobudnog naotaja jednaka je: L P = Pno /I Pno =513 H asineetfrs 1 примедбе и питања: ddc@etfrs, vukosavicetfrs
22 10 zadatak a) Mehanička karakteristika otora se dobija iz jednačine naponske ravnoteže U a =R a I a +k e P i ože se zapisati u obliku M e =k P (U a /R a ) (k k e P /R a ) =M P -S, gde je strina karakteristike S=k k e P /R a Mehaničku karakteristiku je oguće zapisati i kao = o -M e /S Veličine M P =k P (U a /R a ) i o =U a /(k e P ) su polazni oent i brzina praznog hoda, presečne tačke ehaničke karakteristike sa apsciso i ordinato Izeđu presečnih tačaka, karakteristika ia linearnu proenu Iz uslova zadatka, potrebno je odrediti koeficijente k e no =k no Noinalna vrednost elektrootorne sile otora jednaka je E no =U no -R a I no =k e no no =0 0=180 V Odavde je k e no =E no / no =180/150=1 Wb Karakteristične tačke i strina ehaničke karakteristike se izračunavaju na sledeći način: Polazni oent: M P =k no (U no /R a )=13 N Brzina praznog hoda: o = U no /(k e no )= rad/s=17507 o/in Strina: S=k k e no /R a =07 [N s/rad] (Polazni oent se u praksi ne ože dostići) Za radni reži opisan u uvodu zadatka (M =6 N) oguće je izračunati brzinu okretanja rotora 1 Siste se posatra u stacionarno stanju, uz zanearivu frikciju, pa je M e =M =6 N=13-07 odakle se izračunava da je =(13-6)/07=175 rad/s asineetfrs примедбе и питања: ddc@etfrs, vukosavicetfrs
23 b) Kako strina ehaničke karakteristike nije funkcija napona indukta, a brzina praznog hoda linearno zavisi od istog, to će svođenje napona indukta na nulu rezultovati transliranje ehaničke karakteristike kao na gore prikazanoj slici Izraz koji opisuje novu ehaničku karakteristiku sada glasi: rad M e N07 s Presek nove karakteristike sa karakteristiko opterećenja M =6 N se sada poera u drugi kvadrant Očigledno je da ašina prelazi u generatorski reži rada U novo stacionarno stanju je brzina okretanja rotora: rad M e 6N 83 s Kako je napon napajanja jedna nuli, nea razene snage sa izvoro Serovi oenta i brzine su suprotni, dakle, ašina koči, radi kao generator, i pretvara ehanički rad u električnu energiju Snaga koja se u ovo režiu rada preuzia od ehaničkog opterećenja (radne ašine), uz zanearenje gubitaka ehaničke prirode, pretvara se u električnu snagu i u potpunosti disipira u naotajia, stvarajući Džulove gubitke u bakru araturnog naotaja Snaga pretvaranja električne energije u ehanički rad je: P e =M e =-(6/07) 6=-50 W Drugi rečia, snaga ehaničko-električnog pretvaranja je +50 W PROVERA: (nije neophodna) Struja koja se u ovo režiu ia u naotaju arature je I a =M e /(k no )=-5 A Snaga gubitaka u naotaju je P cu =R a I a = (-5) =+50 W Dakle, snaga dobijena kočenje se troši u naotajia asineetfrs 3 примедбе и питања: ddc@etfrs, vukosavicetfrs
Microsoft Word - Resenja racunske_emp_mjss.doc
Električne ašine Računske vežbe EMP MJSS 1 zadatak rešenje a) U toku ovog procesa, ostvarena je razena energije koja se, shodno zakonu o održanju energije, ože zapisati kao: Wi We Weh, gde navedene oznake
ВишеMicrosoft Word - AM_SM_Samostalni_Rad.doc
OG2EM Zadaci za saostalni u toku druge polovine kursa Tekst sadrži 1 zadataka koji predstavljaju varijaciju zadataka rađenih u toku časova računskih vežbi. Izenjene su brojne vrednosti, ni režii, i slično.
Више?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:
РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан
ВишеMicrosoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt
Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна
ВишеMicrosoft Word - Elektrijada_V2_2014_final.doc
I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата
ВишеMicrosoft Word - Elektrijada_2008.doc
I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна
ВишеUniverzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o
Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima
ВишеSinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 27. februar 2019.
Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 7. februar 019. Podsetnik osnovne veličine namotaja Nomenklatura: Q....................... p........................ q........................
ВишеPowerPoint Presentation
Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика
ВишеEНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као
EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно
ВишеMicrosoft Word - 4.Ee1.AC-DC_pretvaraci.10
AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике
ВишеДинамика крутог тела
Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.
ВишеЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Фебруар 8. Трофазни уљни енергетски трансформатор са номиналним подацима: S =
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
ВишеЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ
Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)
ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са
ВишеEnergetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna
1. zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne snage osnovnog harmonika. Induktivnost prigušnice jednaka je L = 10 mh, frekvencija mrežnog
Више3_Elektromagnetizam_09.03
Elektromagnetizam Tehnička fizika 2 14/03/2019 Tehnološki fakultet Elektromagnetizam Elektromagnetizam je grana klasične fizike koja istražuje uzroke i uzajamnu povezanost električnih i magnetnih pojava,
ВишеMicrosoft Word - oae-09-dom.doc
ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić Osnovi analogne elektronike domaći zadaci - 2009 Osnovi analogne elektronike 3 1. Domaći zadatak 1.1. a) [5] Nacrtati direktno spregnut
ВишеMicrosoft Word - Document1
10. Veza izeđu dva eleenta porojenja 110kV sa potporni izolatoria na nosačia izvedena je užadia Al/Fe 40/40 (slika ). Odrediti sile koje djeluju na ove potporne izolatore. Potrebni podaci za proračun su
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005
ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је
Вишеoae_10_dom
ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić domaći zadaci - 2010 1. Domaći zadatak 1.1. a) [4] Nacrtati direktno spregnut pojačavač (bez upotrebe sprežnih kondenzatora) sa NPN tranzistorima
ВишеProracun strukture letelica - Vežbe 6
University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović
ВишеШколска година 2018 / 2019 Припремио: Проф. Зоран Радаковић новембар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфо
Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић новембар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања
ВишеMicrosoft PowerPoint - ravno kretanje [Compatibility Mode]
КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y
ВишеMicrosoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n
4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju
ВишеUniverzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Sinhrone mašine (13E013SIM) Računske vežbe I deo Namotaji SM
Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Sinhrone mašine (13E013SIM) Računske vežbe I deo Namotaji SM, indukovana ems, polje pobudnog namotaja, reakcija
ВишеMicrosoft Word - 7. cas za studente.doc
VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni
ВишеBroj indeksa:
putstvo za 5. laboratorijsku vežbu Napomena: svakoj brojnoj vrednosti fizičkih veličina koje se nalaze u izveštaju obavezno pridružiti odgovarajuće jedinice, uključujući i oznake na graficima u tabelama
ВишеТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,
ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,
ВишеCRNOGORSKI KOMITET CIGRE Fuštić Željko doc. dr Martin Ćalasan Elektrotehnički fakultet,ucg Simulacione i eksperim
CRNOGORSKI KOMITET CIGRE Fuštić Željko zeljkofustic@gmail.com doc. dr Martin Ćalasan Elektrotehnički fakultet,ucg martinc@ac.me Simulacione i eksperimentalne karakteristike asinhronog generatora KRATAK
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеPowerPoint Presentation
Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеElektrične mreže i kola 5. oktobar Osnovni pojmovi Električna mreža je kolekcija povezanih elemenata. Zatvoren sistem obrazovan od elemenata iz
Električne mreže i kola 5. oktobar 2016 1 Osnovni pojmovi Električna mreža je kolekcija povezanih elemenata. Zatvoren sistem obrazovan od elemenata izmedu kojih se vrši razmjena energije putem električne
ВишеMicrosoft PowerPoint - predavanje_sile_primena_2013
Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да
ВишеPowerPoint Presentation
МОБИЛНЕ МАШИНЕ II предавање 4.2 \ ослоно-кретни механизми на точковима, кинематика и динамика точка Кинематика точка обимна брзини точка: = t транслаторна брзина точка: = t Услов котрљања точка без проклизавања:
Више48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср
I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50
ВишеЗборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху
Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,
ВишеШколска година 2018 / 2019 Припремио: Проф. Зоран Радаковић октобар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфор
Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић октобар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
ВишеMicrosoft Word - teorijapitanja.doc
1. Специфични отпор трења у лежајевима. Приказати механички карактеристику МЈСС са независном побудом, као и карактеристику МЈСС са редном побудом. Означити карактеристичне тачке и нагибе на овим карактеристикама
ВишеMicrosoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc
задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }
ВишеMicrosoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]
6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеFTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva
Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara
ВишеPismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što
Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu
ВишеELEKTRONIKA
МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА
Више1
PROVOđENJE TOPLOTE ovođenje toplote ili kondukcija je način kretanja toplote koji je svojstven čvrsti aterijalia, iako se pojavljuje (ali sa anearljivi inteniteto) i kod luida. Karakteristika aterijala
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеCRNOGORSKI KOMITET MEĐUNARODNOG VIJEĆA
CRNOGORSKI KOMITET CIGRE Ognjen Lukačević* Elektrotehnički fakultet ognjen.lukacevic96@gmail.com Dimitrije Bojović Elektrotehnički fakultet bojovic.dile333@gmil.com Martin Ćalasan Elektrotehnički fakultet
ВишеPRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o
PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena
ВишеElektrotehnički fakultet Univerziteta u Beogradu Relejna zaštita laboratorijske vežbe Vežba 4: ISPITIVANJE STATIČKE GENERATORSKE ZAŠTITE Cilj vežbe je
Vežba 4: ISPITIVANJE STATIČKE GENERATORSKE ZAŠTITE Cilj vežbe je ispitivanje sledećih zaštitnih releja: (1) zemljospojnog za zaštitu statora generatora (RUWA 117 E), (2) podnaponskog releja (RUVA 116 E),
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
Више8. ( )
8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед
ВишеMicrosoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt
ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p
ВишеMicrosoft Word - TPLJ-januar 2017.doc
Београд, 21. јануар 2017. 1. За дату кружну плочу која је еластично укљештена у кружни прстен и оптерећења према слици одредити максимални напон у кружном прстену. М = 150 knm/m p = 30 kn/m 2 2. За зидни
ВишеДелове текста између маркера прочитати информативно (из тог дела градива се неће постављати питања на испиту) и 10. Специјални трансформатори ПР
Делове текста између маркера прочитати информативно (из тог дела градива се неће постављати питања на испиту) и 0. Специјални трансформатори 0.. ПРЕТВАРАЧИ БРОЈА ФАЗА У различитим инжењерским применама
ВишеRG_V_05_Transformacije 3D
Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеEMC doc
ИСПИТ ИЗ ЕЛЕКТРОМАГНЕТСКЕ КОМПАТИБИЛНОСТИ 28. мај 2018. Напомена. Испит траје 120 минута. Дозвољена је употреба литературе и рачунара. Коначне одговоре уписати у одговарајуће кућице, уцртати у дате дијаграме
ВишеMicrosoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc
Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеIII ELEKTROMAGNETIZAM
III ELEKTROMAGNETIZAM 1 STALNO MAGNETNO POLJE U VAKUMU... 6 1.1 NAELEKTRISANJE U POKRETU KAO IZVOR MAGNETNOG POLJA... 6 1.1.1 MAGNETNA INDUKCIJA POKRETNOG TAČKASTOG NAELEKTRISANJA... 7 1.1. MAGNETNA INDUKCIJA
ВишеMikroelektronske tehnologije
2019 Predavanje 6 II semestar (2+2+0) Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs http://mikro.elfak.ni.ac.rs Pogledaj interesantno predavanje http://www.allaboutcircuits.com/videolectures/inductors-part-1/
ВишеMicrosoft PowerPoint - OMT2-razdvajanje-2018
OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м
ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам
ВишеMicrosoft Word - ETF-journal- Vujicic-Calasan
SIMULACIJA RADA ELEKTROSTATIČKOG V-C GENERATORA U PRAZNOM HODU I KRATKOM SPOJU Vladan Vujičić, Martin Ćalasan Ključne riječi: Elektrostatički generator, HVDC prenos energije, Prazan hod, Kratak spoj Sažetak:
ВишеIII разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв
ЗАДАЦИ ФЕРМИОНСКА КАТЕГОРИJА 1. Маjа се пење уз покретне степенице под углом од θ = 30 и дужине L = 10m. Ако jе линеарна брзина степеница v S = m s, а она се у односу на њих креће брзином v M = 1, m s,
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА
ВишеIII разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв
ЗАДАЦИ БОЗОНСКА КАТЕГОРИJА 1. Деjан и Jован играjу кошарку за два различита кошаркашка клуба. У току утакмице, Деjан шутира троjку са удаљености D = 7,5 m. Након што подигне руке при избачаjу, лопта jе
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
Вишеmfb_april_2018_res.dvi
Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!
ВишеJEDNOFAZNI ASINKRONI MOTOR Jednofazni asinkroni motor je konstrukcijski i fizikalno vrlo sličan kaveznom asinkronom trofaznom motoru i premda je veći,
JEDNOFAZNI ASINKRONI MOTOR Jednofazni asinkroni motor je konstrukcijski i fizikalno vrlo sličan kaveznom asinkronom trofaznom motoru i premda je veći, skuplji i lošijih karakteristika od trofaznog iste
ВишеLAB PRAKTIKUM OR1 _ETR_
UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеRomanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к
Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних
ВишеMicrosoft PowerPoint - Teorija kretanja vozila-predavanje 4.1.ppt
ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање 4.1 гусенична возила, отпори кретања, Код дефинисања параметара функција кретања возила на гусеницама разматрају се следећи случајеви кретања: а) праволиниjско кретање
ВишеМатрична анализа конструкција
. 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на
ВишеSlide 1
Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са
ВишеРепублички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум: године Тема: Елементи и начин
Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум:.06.2009. године Тема: Елементи и начин вредновања графичког рада из раванских носачи 1 Увод:
ВишеToplinska i električna vodljivost metala
Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
Више1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O
http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..
Више11
Refleksije Sve do sada, naročito za putujuće valove, niso razatrali što se događa kada val naiđe na kraj sustava ili se u sustavu proijeni reakcija sustava na putujući val proijeni se ipedancija. Vrlo
ВишеПрикључење објекта произвођача Тачке као и тачке , и у постојећим Правилима о раду дистрибутивно
Прикључење објекта произвођача Тачке 3.5.1. 3.5.6. као и тачке 3.5.7.14.6.1, 3.5.7.14.6.3. и 3.5.7.14.6.5. у постојећим Правилима о раду дистрибутивног система се мењају са оним које су наведене у тексту
Вишеuntitled
С А Д Р Ж А Ј Предговор...1 I II ОСНОВНИ ПОЈМОВИ И ДЕФИНИЦИЈЕ...3 1. Предмет и метод термодинамике... 3 2. Термодинамички систем... 4 3. Величине (параметри) стања... 6 3.1. Специфична запремина и густина...
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
Више8. predavanje Vladimir Dananić 17. travnja Vladimir Dananić () 8. predavanje 17. travnja / 14
8. predavanje Vladimir Dananić 17. travnja 2012. Vladimir Dananić () 8. predavanje 17. travnja 2012. 1 / 14 Sadržaj 1 Izmjenični napon i izmjenična struja Inducirani napon 2 3 Izmjenični napon Vladimir
ВишеПрегријавање електромотора
1. Електрична тестера када се обрће нормалном брзином повлачи релативно малу јачину струје. Али ако се тестера заглави док сијече комад дрвета, осовина мотора је спријечена да се обрће па долази до драматичног
Више