Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић новембар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфо

Величина: px
Почињати приказ од странице:

Download "Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић новембар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфо"

Транскрипт

1 Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић новембар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 4. ГУБИЦИ СНАГЕ, СТЕПЕН ИСКОРИШЋЕЊА И ПРОМЕНА НАПОНА ГУБИЦИ У ГВОЖЂУ О губицима у гвожђу је било речи у одељку 2.1 (одељак о магнетским материјалима) и у одељку 3.4 (одељак о празном ходу). Губици снаге у гвожђу се одређују на основу индукције у гвожђу, што је величина коју на основу спецификације трансформатора (номинална снага, напон и струја и остали специфицирани параметри), одређује конструктор трансформатора. На основу индукције у гвожђу и карактеристике магнетних лимова (која се добија од произвођача лимова) одређује се вредност специфичних губитака (W / m 3 ), а затим и укупних губитака, множењем специфичних губитака са масом језгра. Због постојања локалних ефеката магнетне индукције, односно одступања од идеалне равномерне расподеле по пресеку магнетног кола, стварни губици у гвожђу одступају од вредности одређене на описани начин. У пракси се претходно добијена вредност коригује за износ који се дефинише из искуства са претходно израђеним сличним конструкцијама трансформатора, на основу података о израчунатим вредностима губитака у гвожђу и губитака измереним у огледу празног хода. Треба напоменути да за мерење снаге снаге у огледу празног хода треба користити "специјалне" ватметре за мали фактор снаге (cos = 0.1), па и кондензаторе за компензацију реактивне снаге ГУБИЦИ УСЛЕД СТРУЈЕ ОПТЕРЕЋЕЊА Поред губитака у магнетном колу (гвожђу), који су приближно једнаки губицима у празном ходу, постоје и губици који су последица протицања струје кроз намотаје (губици због оптерећења). Губици услед струје кроз намотаје се јављају у самим намотајима и у конструкционим деловима трансформатора. Ово поглавље се доминантно и релативно детаљно бави одређивањем губитака у самим намотајима. Што се тиче губитака у конструкционим деловима трансформатора, они су последица индукованих струја у металним конструкционим деловима због расутог флукса. У прошлости, практично једини приступ је био да се ови губици процењују на основу емпиријских формула, формираних на основу резултата мерења губитака на кратко спојеним трансформаторима (испитивање коме се подвргава произведени трансформатор). У савременој инжењерској пракси допунски губици у конструкционим деловима услед индукованих струја се могу одредити коришћењем софтвера заснованих на FEM методи, који омогућавају и да се оптимизује конструкција трансформатора у смислу смањења губитака и загревања (пример: постављање и димензионисање магнетних екрана - мањих пакета лимова или шина - обично алуминијумских, на унутрашњу страну суда, паралелно намотајима, у зони где су намотаји близу 1

2 суда). Применом ових мера се смањују губици и загревање суда услед расутог флукса. Још општије, може се рећи да се конструкциониим решењем, применом екрана од добро електрично проводних материјала или екрана од добро магнетно проводних материјала, може извршити каналисање флукса и спречавања појаве индукованих струја на било ком месту унутар трансформатора где би индуковане струје довеле до великих губитака. Потенцијално велики губици се могу јавити на местима где се расути флукс затвара кроз масивне металне делове, пре свега челичне - поред већ поменутог суда, такви делови су и шине за причвршћење магнетног кола, на пример. Губици који се због протицања струје јављају у самим намотајима се уобичајено представљају као збир две компоненте: 1) компоненте Џулових губитака они се рачунају полазећи од претпоставке да се струја равномерно расподељује по попречном пресеку проводника и да је површинска густина струје једнака количнику струје која протиче кроз намотај ка мрежи и попречног пресека проводника, 2) компоненте губитака која настаје као последица одступања стварног профила струје по попречном пресеку проводника од равномерног који је наведен у тачки 1). Неравномерност струје се јавља услед два ефекта. Први је резултат расутог флукса и последичне појаве вихорних струја унутар проводника (што се разматра у поглављу 4.3) или услед неравномерне расподеле струје између паралелно везаних проводника (уколико таква веза постоји и уколико постоји разлика у отпорности и флуксним обухватима паралелних проводника). Неравномерна расподела струје између паралелних проводника се избегава транспоновањем појединачних проводника. Прва компонента (Џулови губици) се одређује на једноставан начин, множењем отпорности која би се имала при протицању једносмерне струје и квадрата ефективне вредности струје кроз намотај: Губици зависе од струје директно ( I 2 ), али и индиректно, преко специфичне електричне отпорности, која је температурно зависна (температура намотаја зависи од струје и последичних губитака, као и од температуре амбијента). ρ 2 ρ 1 = θ θ 1 2

3 Промена отпорности услед промене температуре има значајну вредност: примера ради, при температури од 75 C (ова вредност одговара уобичајеном номиналном режиму рада, па се често усваја као референтна) је већа од вредности отпорности при 25 C пута, односно скоро 20 %. R 75 R 25 = = Дакле, однос губитака у раднoм режимu са струјом I 1 и температурoм намотаја 1 и у раднoм режимu са струјом I 2 и температурoм намотаја 2 износи P J1 = θ 1 ( I 2 1 ) P J θ 2 I 2 Температуре намотаја 1 и 2 зависе од снаге губитака, и одређују се применом алгоритама за термичке прорачуне трансформатора, тако да се при прорачунима високе тачности мора применити итеративна метода УТИЦАЈ РАСУТОГ ФЛУКСА НА ПОВЕЋАЊЕ АКТИВНОГ ОТПОРА И ГУБИТАКА У БАКРУ (ПОВРШИНСКИ ЕФЕКАТ И ЕФЕКАТ БЛИЗИНЕ) Магнетска индукција расутог флукса индукује у проводницима емс која изазива локалне струје - у самим масивним проводницима (то је један од главних разлога због кога се проводник намотаја израђује од снопа тањих проводника) - у паралелним гранама ако се проводник намотаја израђује од снопа тањих проводника; уколико се не би вршила транспозиција проводника (промена позиције у разним навојцима), као што се врши у пракси, у сваком од тањих проводника би се разликовао активни отпор и индукована емс, па би се струје кроз паралелно повезане тање проводнике (истог пресека) разликовале (како би се имале исте разлике потенцијала у почетним и крајњим тачкама сваког од танких проводника). Овај тип локалних струја изједначења је поменут и у поглављу 4.2. Дакле, траспозицијом се решава проблем поништавања локалних струја услед несиметрије. У тексту који следи се разматра проблем локалних струја које настају као последица магнетске индукције расутог флукса. Ове струје не излазе ван граница намотаја, односно не појављују се у спољашњем магнетном колу, због чега се зову "вихорне струје". 3

4 4

5 Посматрајмо намотаје примара (унутрашњи намотај) и секундара (спољашњи намотај), кроз који теку исте вредности сведене струје (као код разматрања реактансе расипања). Нека су димензије пресека намотаја примара p x q (пресек s = p x q) и нека намотај примара има m колона и n врста, као што је приказано на слици 4.5 а). Може се сматрати да расподела расутог флукса не зависи од расподеле струје по пресеку проводника, односно да увођење ове апроксимације не доводи до велике грешке у израчунатој расподели расутог флукса; средња вредност густине струје оптерећења у примарном намотају (кроз који протиче струја I s = I 1 - I ) износи J s = I s / s. Претпостављајући синусну расподелу струје примара (i s = 2 I s sin( t)), из израза (други израз испод израза (3.22) у одељку 3.5.4) се долазио до B max = B m sin(ω t) = μ N I smax 0 sin(ω t) = μ m n 2 I s h 0 sin(ω t) = 2 μ h h 0 m n p q J s sin(ω t) У делу првог намотаја индукција расипања расте линеарно, од нулте вредности (за x = 0) до B m (за x = m q), као што је објашњено у одељку ; максимална тренутна вредност индукције расипања на координати x је једнака x B(x) = B m m q Флукс индукције расипања (његова максимална тренутна вредност) кроз диск пречника D u + 2 x * (D u представља пречник унутрашње стране унутрашњег намотаја) се може одредити интеграцијом (у кругу пречника D u не постоји флукс расипања, односно вредност магнетне индукције је у тој зони једнака нули): x x φ m (x x ) = B(x)π (D u + 2 x) dx = B m m q π (D u + 2 x) dx 0 Ако се претпостави да је ширина намотаја (m q) много мања од унутрашњег пречника намотаја (D u ), може се сматрати да се површ елементарног диска (ширине dx), (D u + 2 x) dx мало мења са променом координате x, односно да се може узети да је једнак ( (D u + D u + 2 m q) / 2) dx = l sr dx; дакле, l sr = (D u + m q). У том случају претходни интеграл постаје x x x φ m (x x ) = B(x)π (D u + m q) dx = π (D u + m q) B(x) dx = π (D u + m q) B m dx m q φ m (x ) = π (D u + m q) B m m q x x 0 dx = l sr B m x 2 m q 2 = 1 2 B x 2 m m q l sr Временска промена флукса (он је у фази са струјом која га изазива - is) кроз диск пречника D u + 2 x * износи φ(x ) = 1 2 B m x 2 m q l sr sin( t) Промена флукса у времену доводи до генерисања електромоторне силе (e x ) у контури пречника D u + 2 x * и ширине dx, чија је вредност e x = dφ(x ) = 1 dt 2 ω B x 2 m m q l sr cos( t) (A) Из претходног израза се уочава да Е x фазнo касни у односу на флукс (x) за / 2. Ова електромоторна сила делује у контури електричног проводника пресека p dx и дужине l sr, чија 5

6 отпорност износи dr = l sr / (p dx), кроз који протиче струја di x (површинска густина струје j x = di x / p dx). Поред електромоторне силе (e x ) у овој контури делује и електромоторна сила услед промене заједничког флукса кроз примарни и секундарни намотај (e) - заједнички флукс се затвара у зони до унутрашње површи примарног намотаја (због тога он не зависи од координате x; x = 0 на унутрашњој површи примарног намотаја), као и напон доведен на прикључке примарног намотаја (u prim ), подељен са бројем навојака примарног намотаја: u = u prim / (m n). Примена другог Кирхофовог закона на прстен ширине dx даје u = e + e x + di x dr u = e + e x + j x l sr (Б) - расути флукс ( у претходном тексту), - флукс магнећења, који проузрокује E x Укупна густина струје кроз прстен j x може да се прикаже као збир фиксне (константне по пресеку) компоненте (j s ), која је једнака количнику спољашње струје i s и попречног пресека проводника p q (j s = i s / (p q)) и густине вихорне струје која се затвара у самом проводнику (j vx ): j x = j s + j vx (В) 6

7 7

8 p У литератури је уобичајен приступ да се компонента густине струје која потиче од спољне струје (j s ) равномерно расподељује по пресеку. Наведена претпоставка значајно поједностављује поступак и прихватљива је са практичног становишта. Уколико се ова претпоставка не би усвојила, дошло би се до система Максвелових једначина које се могу решити само применом FEM метода и софтвера. С обзиром да се вредности u и e не мењају са променом координате x, а да се e x мења са променом координате x, j x, односно њена просторно променљива компонента j vx, мора бити променљива (мења се са променом координате x). Вихорне струје се затварају у самом проводнику, односно не излазе ван намотаја, због чега њен интеграл по површи попречног пресека сваког од m x n проводника (по пресеку p x q) мора да буде једнак нули: j vx ds = 0 односно, под претпоставком да се густина струје не мења по висини проводника, x=kq x=(k 1)q x=kq x=(k 1)q j vx p dx = 0 Полазећи од израза (Б) и (В) може се написати u = e + e x + (j s + j vx ) l sr j vx dx = 0 (Г) 8

9 односно u e e x j vx = j l sr l s sr Интеграцијом j vx, у границама од (k - 1) q до k q, долази се до u e 1 ( j l s ) (kq (k 1) q)) sr l sr Из (Б) и (В) проистиче u e e x j l s = + j sr l vx sr Заменом (Е) у (Ђ) добија се ( e x 1 + j l vx ) q sr l sr 1 j vx = ( e l x + 1 sr q Заменом вредности за e x из (А) у (Ж) долази се до 1 j vx = (( 1 l sr 2 ω B x2 m m q l sr cos( t)) + 1 q 1 ω j vx = l sr 2 B m Уврштавањем вредности за l sr x=kq x=kq x=(k 1)q x=kq x=(k 1)q x=kq m q cos( t) (x2 1 q x=(k 1)q x=(k 1)q e x dx e x dx = 0 (Д) = 0 (Ђ) (Е) e x dx) (Ж) ( 1 2 ω B x2 m m q l sr cos( t)) dx) (kq) 3 ((k 1)q) 3 B m = 2 μ h 0 m n p q J s у израз (З), користећи везу cos( t) = - sin( t - / 2), долази се до j vx = 1 ω 1 2 h μ 0 n p J s 2 sin( t π 2 ) (x2 q 2k3 (k 1) 3 ) 3 односно j vx = α 2 J s 2 (x 2 q 2 k3 (k 1) 3 )sin( t π 3 2 ) где је α 2 = ω 2 μ p n 0 h = π μ 0 f p n h Фазор густине струје J vx је функција координате x; његова ефективна вредност износи J vx = α 2 J s (x 2 q 2 k3 (k 1) 3 ) 3 J vx = α 2 J s (x 2 q 2(k (k 1))(k2 + k(k 1) + (k 1) 2 ) ) 3 J vx = α 2 J s (x 2 q 2 (k2 + k 2 k + k 2 2 k + 1) ) 3 J vx = α 2 J s (x 2 q 2 (k 2 k ) ) 3 ) (З) J vx = α 2 J s (x 2 q 2 k(k 1) q2 3 ) и он је фазно померен за / 2 у односу на фазор густине струје J s. На слици 4.5 в) је приказана промена промена J vx / J s ; прецизније, није приказана ефективна вредност J vx, већ је уважена и 9

10 промена знака услед промене знака чиниоца (x 2 q 2 k3 (k 1) 3 ). Ефективна вредност резултантне густине струје, која је релевантна за губитке, због фазног помераја између фазора J vx и J s од / 2, износи J x = J s 2 + J vx 2 На слици 4.5 г) је приказана промена промена J x / J s. 3 Укупни губици у сваком од проводника у k-тој колони (k = 1,..., m) су једнаки P Cu = di 2 x dr = (J x ds) 2 ρ l sr ds = J x 2 ρ l sr ds = P Cu = k q (k 1)q P Cu = J s 2 p q ρ l sr + k q (J s 2 + J vx 2 )ρ l sr p dx k q (k 1)q J vx 2 ρ l sr p dx k q (k 1)q J x 2 ρ l sr p dx P Cu = J 2 s p q ρ l sr + (α 2 J s (x 2 q 2 k(k 1) q2 3 )) ρ l sr p dx (k 1)q k q P Cu = J 2 s p q ρ l sr + α 4 J 2 s ρ l sr p (x 2 q 2 k(k 1) q2 2 3 ) dx (k 1)q Губици у сваком од проводника у k-тој колони се могу изразити као збир Џулових губитака и допунских губитака услед вихорних струја, који су одређени првим и другим сабирком у претходном изразу, респективно: P Cu = P J + P Cu dop Однос укупних према Џуловим губицима у сваком од проводника у k-тој колони износи P Cu P J k q = 1 + P Cu dop = 1 + α4 P J q (x2 q 2 k(k 1) q2 3 ) dx (k 1)q Средња вредност повећања губитака услед вихорних струја се добија као средња вредност односа P Cu / P J у свих m колона - тај однос се назива средњи сачинилац повећања губитака (Филдов фактор): m k=1 P J m k f = 1 m P Cu k = 1 α4 (1 + m q (x2 q 2 k(k 1) q2 3 ) dx) k=1 k q (k 1)q Решавањем интеграла, а затим сумирањем насталих редова, долази се до вредности средњег сачиниоца повећања губитака (Филдовог фактора)

11 Израз за вредност средњег сачиниоца повећања губитака (Филдов фактор), који представља однос укупних губитака у намотају и укупних Џулових губитака (Џулови губици се израчунавају као производ отпора намотаја једносмерној струји и квадрата ефективне вредности струје која протиче кроз намотај и мрежу на коју је он повезан) гласи (1) Губици услед вихорних струја су већи за бакар него за алуминијум (2) Насупрот Џулових губитака, који расту са порастом температуре (услед пораста специфичне електричне отпорности са порастом температуре), допунски губици (губици услед вихорних струја) опадају са порастом температуре. 11

12 Из израза (А) и (Д) се може закључити да се максималне густине вихорних струја јављају до зазора између примарног и секундарног намотаја, па се ту јављају и највећи губици и највећа генерисана топлота која доводи до загревања проводника. Читаво извођење у поглављу 4.3. се односи на намотај примара. Слична разматрања се могу спровести за намотај секундара, код кога магнетна индукција расутог поља опада од максималне вредности до нуле како се иде од унутрашњег до спољашњег пречника намотаја. За одређивање неравномерности струја по пресеку проводника и одређивање последичних додатних губитака, може се користити и други приступ, преко решавања Максвелових једначина. У том приступу, поступак садржи два дела. Први део је одређивање расподеле магнетног поља, полазећи од равномерне расподеле струје по попречном пресеку проводника (равномерно се расподељује спољна струја, односно струја која протиче ка мрежи), користећи FEM софтвер. Други део је одређивање снаге додатних губитака у проводнику полазећи од вредности магнетног поља на спољашњој површи проводника. Разлика у односу на приступ преко вихорних струја, који је детаљно елабориран у претходном тексту, је што се уместо дефинисања елементарних прстенова бесконачно мале ширине и флукса који се обухватају овим контурама, користе изрази добијени решавањем Максвелових једначина унутар проводника за дефинисане вредности магнетног поља на спољашњој (граничној) површи проводника (ово представља гранични услов потребан за решење Максвелових једначина). Примера ради, за проводник ширине 2 q, специфичне електричне 1 проводности, при дубини продирања електромагнетног таласа ( ), снага губитака f настала као резултат дејства аксијалног магнетног поља H z (под претпоставком да је једнака на обе вертикалне граничне површи проводника) износи P = H z 2 (sinh(2 k q) sin (2 k q)) (где је k = 1 / ). У σ δ (cosh(2 k q) + cos (2 k q)) случају да је 2 q <<, важи P = H z 2 (2 k q) 3. Постојање радијалне компоненте поља H r (иста вредност 6 σ δ 0 12

13 на доњој и горњој хоризонталној површи проводника) доводи до снаге додатних губитака P = H r 2 (sinh(2 k p) sin (2 k p)) σ δ (cosh(2 k p) + cos (2 k p)) ; у случају да је 2 p <<, P = H r 2 (2 k p) 3 У вези са првим делом, одређивањем расподеле магнетног поља, треба рећи да не постоји магнетна симетрија по угаоној координати, односно да се расподела расутог магнетног поља разликује по угаоној координати. Највећа разлика постоји у делу намотаја који се налази испод горњег и доњег јарма (раван симетрије намотаја у средишњој равни магнетног кола) и у делу намотаја у равни симетрије намотаја управној на раван магнетног кола. Слична расподела расподели у наведеној равни управној на раван магнетног кола важи и у равни магнетног кола, али у простору ван магнетног кола (између стуба крајње фазе магнетног кола и суда). Могуће је вршити 3D прорачуне расутог магнетног поља, али је то повезано са низом практичних ограничења, због чега се из практичних разлога врше два 2D прорачуна поља (у две наведене равни), а затим врши усредњавање добијених вредности којим се добија средња вредност губитака у сваком од навојака у намотају. Коначно, опција за одређивање губитака је да се они добију директно из FEM совтвера (дакле, без претходно разматраног другог дела). 6 σ δ СТЕПЕН ИСКОРИШЋЕЊА СНАГЕ Степен искоришћења представља однос корисне (излазне) P 2 и утрошене (улазне) P 1 снаге. Разлика улазне и излазне снаге претвара снагу генерисања топлотне енергије P g. Као номинална снага трансформатора дефинише се његова привидна снага. С обзиром да трансформатор по правилу ради при номиналном напону или вредности напона блиској номиналној, номинални режим рада се може дефинисати и као рад са струјом једнаком номиналној. Из наведених разлога и степен оптерећења трансформатора ( ) се може исказати као однос струје секундара и номиналне струје секундара, или као однос привидне снаге секундара и номиналне привидне снаге секундара: Корисна (активна) снага је једнака производу привидне снаге и фактора снаге (cos ) оптерећења (на секундарној страни трансформатора), тако да је степен искоришћења снаге једнак 13

14 Приближно се може сматрати да су губици у гвожђу (P Fe ) једнаки губицима у празном ходу (P 0 ); ово није сасвим тачно јер губици у гвожђу зависе од магнетне индукције B m, која зависи од E, која опада са порастом оптерећења. За губитке у бакру се приближно узима да су једнаки губицима одређеним у огледу кратког споја, прерачунатим на средњу температуру намотаја од 75 C, помноженим са квадратом степена оптерећења трансформатора ( ). На овај начин се занемарује чињеница да ће при раду трансформатора температура зависити од степена оптерећења трансформатора. β U 2n I 2n cosφ η = β U 2n I 2n cosφ + β 2 (4.12) P k75 + P 0 Прерачунавање губитака измерених у огледу кратког споја на средњу температуру намотаја од 75 C се врши на следећи начин. Нека се оглед кратког споја изводи на температури 1. Занемарујући губитке у суду и конструкционим деловима трансформатора (видети текст испод табеле 3.1; уважавање ових губитака је могуће, при чему би се они одредили преко користећи измерену вредност губитака у огледу кратког споја и вредност додатних губитака при температури 1 одређеној преко Филдовог фактора), за трофазни трансформатор се може написати P k (θ 1 ) = P DC (θ 1 ) + P d (θ 1 ) = 3 (R 1 (θ 1 ) + R 2 (θ 1 ))I P dj (θ 1 ) R 1 и R 2 ' отпор примара и отпор секундара сведена на примар, једносмерном струјом при температури 1. Из измерене вредности губитака у огледу кратког споја при температури 1 (P k (θ 1 )) и израчунате вредности P DC (θ 1 ) = 3 (R 1 (θ 1 ) + R 2 (θ 1 ))I 1 2, добија се P dj (θ 1 ), а из њих вредности компоненти DC и додатних губитака на температури 75 C: 14

15 Максимум степена искоришћења снаге, као функције степена оптерећења трансформатора ( ) се налази изједначавањем извода степена искоришћења (израз (4.12)) по са нулом (d / d = 0): β U 2n I 2n cosφ + β 2 P k75 + P 0 β (U 2n I 2n cosφ + 2 βp k75 ) = 0 Оптерећење при коме се достиже максимум степена искоришћења при задатом фактору снаге оптерећења (cos ) не зависи фактора снаге. Са друге стране, вредност максималног степена искоришћења зависи од фактора снаге (видети израз (4.12)) и његов апсолутни максимум се достиже за фактор снаге cos = 1 и за оптерећење opt = (P 0 / P k75 ). 15

16 бити виши ако максимум степена искоришћења снаге ( max ) не наступи при номиналном, већ при неком мањем оптерећењу. Дакле, треба да буде β max < 1, а искуство показује да практична доња граница до које се спушта β max износи 0.4. Смањивање вредности β max значи смањивање односа номиналних губитака у гвожђу и губитака у бакру при номиналној снази. Треба имати на уму да је степен искоришћења снаге само један од практичних аспеката. Било како да је конструисан, односно како год да је оптимизован однос губитака у гвожђу и у намотајима, трансформатор мора да има укупне губитке испод гарантованих, као и порасте температура испод гарантованих. Следећи суштински аспект у вези са овим је цена трансформатора, приближно одређена количином утрошеног материјала. Суштина је да се укупни трошкови (трошкови израде и цена изгубљене енергије током експлоатације трансформатора) минимизирају. Додатни аспект који треба имати у виду је да по правилу оптерећење трансформатора у електроенергетском систему расте у времену (пораст потрошње због прикључења нових потрошача), тако да се оптерећење често мења у односу на првобитно предвиђено (опција да се граде нове трансформаторске станице постоји, али постоји јак тренд да се снага оптерећења трансформатора постојећих трансформатора повећава како се не би улазило у инвестиције изградње) Мере за повећање енергетске ефикасности С обзиром на општи тренд повећања енергетске ефикасности, који подразумева пре свега смањење губитака енергије као паразитног ефекта при конверзији енергије или обављања неког технолошког процеса, потребно је продискутовати које могућности постоје код трансформатора. Једна од "вечитих идеја" је остварити супрапроводност намотаја, односно применити такве материјале и охладити их на толико ниске температуре да им отпор падне на тако малу вредност да губици у намотајима постану занемарљиви. Ово је изводљиво, али стање технологије, цена оваквог постројења и његова комплексност, па самим тим и тешко одржавање, нису довели до њихове значајније примене у пракси. Не треба заборавити и утрошак енергије постројења за добијање течног хелијума или азота као расхладног средства (њихова температура се мора одржавати близу температуре апсолутне нуле; развојем савремених материјала повећава се температура при којој се постижу супрапроводна својства, али је она и даље веома ниска). Поред температуре, услов за постизање супрапроводних својстава је да је јачина магнетног поља у коме се налази проводник испод граничне вредности за тип примењеног материјала. Због наведених разлога, супрапроводни намотаји су још увек на нивоу истраживачких пројеката и пилот постројења, и још увек се не налазе у значајнијој практичној употреби. 16

17 Следећа могућност је оптимизација броја трансформатора у паралелном раду: укључивањем већег броја трансформатора значи да се смањују губици у намотајима (они су сразмерни квадрату струје), а повећавају губици у магнетном колу. Пример: ако је оптерећење једног трансформатора, губици износе β 2 P k75 + P 0 ; по укључењу другог трансформатора, односно при паралелном раду два трансформатора, губици би износили 2 ( β 2 2 ) P k75 + 2P 0 = β 2P k P 0 Наравно, повећање димензија трансформатора (повећање пресека магнетног кола, чиме се смањује магнетно поље и губици у језгру, или повећање пресека намотаја, чиме се смањује густина струје и губици у намотају), смањује изгубљену енергију, али повећава количину утрошеног материјала и цену трансформатора). Једна од могућности да се повећа енергетска ефикасност, односно смањи изгубљена енергија, је да се топлота која се одводи са хладњака искористи за загревање просторија или загревање топле воде. Ова могућност не захтева компликоване техничке системе које би требало додати на стандардне елементе за хлађење трансформатора - посебно ако се користе стандардни хладњаци уље - вода. При томе је битно да се осигура да проток воде кроз хладњак уље вода и температура воде на уласку у хладњак остану у опсегу који гарантује снагу хлађења за коју је хладњак предвиђен. Ово се мора остварити у свим радним режимима система у који из хладњака дотиче вода загрејана у хладњаку уље - вода. Примера ради, у зимском периоду, вода се може загревати у хладњаку уље - вода, загрејана вода цевима довести до размењивача топлоте вода - ваздух, а ваздух загрејан у том размењивачу топлоте користити за загревање просторија у згради електроенергетског постројења; вода охлађена у размењивачу топлоте вода - ваздух се цевима враћа на улаз хладњака уље - вода Израчунавање промене напона За понашање трансформатора као дела електроенергетске мреже је битна промена напона који се на њему јавља као резултат протицања струје. Најчешћи случај је да струја на секундару трансформатора има индуктивни карактер и тада на трансформатору долази до пада напона (напон на секундару сведен на примар је мањи од напона примара). Уколико струја има капацитивни карактер, сведена вредност напона секундара може да буде већа од напона примара. 17

18 18

19 На основу фазорског дијаграма приказаног на слици 4.13 може се написати следеће: u r = R k I 2 u x = X k I 2 Пошто су вредности u r и u x релативно мале (у односу на вредност U 2 '), и вредност угла је мала, па се може извршити следећи развој у ред 1 sin 2 θ = 1 sin2 θ 2 Из (4.17) се добија: u = u 1 u 1 [1 1 2 ( b 2 ) ] + a = a + 1 b 2 u 1 2 u 1 (4.18) У великом броју практичних случајева (поготову код већих трансформатора, код којих је импеданса кратког споја јако индуктивна (u x доста веће од u r ), као за индуктивно оптерећење - sin > 0) b 2 / (2 u 1 ) је много мање од a, па се може занемарити, односно израз (4.18) свести на 19

20 Изрази (4.18) и (4.21) се могу написати и у процентуалним вредностима, тако што се поделе са номиналном вредношћу напона и помноже са 100. Израз (4.18) исказан у процентуалним вредностима (и то за случај да је вредност напона на примару једнак номиналном, u 1 = u 1n ) гласи Испитно питање: Написати изразе, укључујући и једначине по првом и другом Кирхофовом закону, чијим се решавањем може доћи до вредности пада напона на трансформатору без да се врши било какво занемарење у заменској шеми трансформатора. Импеданса оптерећења секундара је позната и износи Z. Z1=R1+jX1 Z2'=R2'+jX2' I1 I2' U1 Im Zm U2' Z' Слика 4.14 Систем три комплексне једначине са три непознате (I 1, I 2 и I m ): U 1 = Z 1 I 1 + Z m I m U 1 = Z 1 I 1 + Z 2 I 2 + Z I 2 I 1 = I m + I 2 Једноставно се решава у Mathcad-у (MathCAD фајл). 20

21 Вредност напона на секундару: U 2 = Z I 2 Пад напона: u % = 100 U 1 U 2 = U 1 U 2 U 1 U 1 21

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Фебруар 8. Трофазни уљни енергетски трансформатор са номиналним подацима: S =

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 0. год.. Потрошач чија је привидна снага S =500kVA и фактор снаге cosφ=0.8 (индуктивно) прикључен је на мрежу 3x380V, 50Hz. У циљу компензације реактивне снаге, паралелно са

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 фебруар 1. год. 1. Пећ сачињена од три грејача отпорности R=6Ω, везана у звезду, напаја се са мреже xv, 5Hz, преко три фазна регулатора, као на слици. Угао "паљења" тиристора је

Више

Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић октобар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфор

Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић октобар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати инфор Школска година 2018 / 2019 Припремио: Проф. Зоран Радаковић октобар 2018 Испит спремати по овом тексту. Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања

Више

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ септембар 2005 ЕНЕРГЕТСКИ ПРЕТВАРАЧИ јануар 00. год.. Пећ сачињена од три грејача отпорности =0Ω, везана у звезду, напаја се са мреже 3x380V, 50Hz, преко три фазна регулатора, као на слици. Угао паљења тиристора је α=90,

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Делове текста између маркера прочитати информативно (из тог дела градива се неће постављати питања на испиту) и 10. Специјални трансформатори ПР

Делове текста између маркера прочитати информативно (из тог дела градива се неће постављати питања на испиту) и 10. Специјални трансформатори ПР Делове текста између маркера прочитати информативно (из тог дела градива се неће постављати питања на испиту) и 0. Специјални трансформатори 0.. ПРЕТВАРАЧИ БРОЈА ФАЗА У различитим инжењерским применама

Више

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna

Energetski pretvarači 1 Februar zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne sna 1. zadatak (18 poena) Kondenzator C priključen je paralelno faznom regulatoru u cilju kompenzacije reaktivne snage osnovnog harmonika. Induktivnost prigušnice jednaka je L = 10 mh, frekvencija mrežnog

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

Slide 1

Slide 1 Анализа електроенергетских система -Прорачун кратких спојева- Кратак спој представља поремећено стање мреже, односно поремећено стање система. За време трајања кратког споја напони и струје се мењају са

Више

PowerPoint Presentation

PowerPoint Presentation Анализа електроенергетских система -основни прорачуни- Падови напона и губици преноса δu, попречна компонента пада напона Δ U, попречна компонента пада напона U 1 U = Z I = R + jx Icosφ jisinφ = RIcosφ

Више

Broj indeksa:

Broj indeksa: putstvo za 5. laboratorijsku vežbu Napomena: svakoj brojnoj vrednosti fizičkih veličina koje se nalaze u izveštaju obavezno pridružiti odgovarajuće jedinice, uključujući i oznake na graficima u tabelama

Више

Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 6. Прелазне појаве Током рада трансфор

Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 6. Прелазне појаве Током рада трансфор Делове текста између маркера и прочитати информативно (из тог дела градива се неће постављати питања на испиту) 6. Прелазне појаве Током рада трансформатора постоје устаљена радна стања, о којима је до

Више

Mikroelektronske tehnologije

Mikroelektronske tehnologije 2019 Predavanje 6 II semestar (2+2+0) Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs http://mikro.elfak.ni.ac.rs Pogledaj interesantno predavanje http://www.allaboutcircuits.com/videolectures/inductors-part-1/

Више

3_Elektromagnetizam_09.03

3_Elektromagnetizam_09.03 Elektromagnetizam Tehnička fizika 2 14/03/2019 Tehnološki fakultet Elektromagnetizam Elektromagnetizam je grana klasične fizike koja istražuje uzroke i uzajamnu povezanost električnih i magnetnih pojava,

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Microsoft Word - oae-09-dom.doc

Microsoft Word - oae-09-dom.doc ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić Osnovi analogne elektronike domaći zadaci - 2009 Osnovi analogne elektronike 3 1. Domaći zadatak 1.1. a) [5] Nacrtati direktno spregnut

Више

PowerPoint Presentation

PowerPoint Presentation Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика

Више

Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 27. februar 2019.

Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 27. februar 2019. Sinhrone mašine Namotaji sinhronih mašina, reakcija indukta, reaktansa namotaja 7. februar 019. Podsetnik osnovne veličine namotaja Nomenklatura: Q....................... p........................ q........................

Више

untitled

untitled С А Д Р Ж А Ј Предговор...1 I II ОСНОВНИ ПОЈМОВИ И ДЕФИНИЦИЈЕ...3 1. Предмет и метод термодинамике... 3 2. Термодинамички систем... 4 3. Величине (параметри) стања... 6 3.1. Специфична запремина и густина...

Више

CRNOGORSKI KOMITET CIGRE Fuštić Željko doc. dr Martin Ćalasan Elektrotehnički fakultet,ucg Simulacione i eksperim

CRNOGORSKI KOMITET CIGRE Fuštić Željko doc. dr Martin Ćalasan Elektrotehnički fakultet,ucg Simulacione i eksperim CRNOGORSKI KOMITET CIGRE Fuštić Željko zeljkofustic@gmail.com doc. dr Martin Ćalasan Elektrotehnički fakultet,ucg martinc@ac.me Simulacione i eksperimentalne karakteristike asinhronog generatora KRATAK

Више

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић

Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Техничко решење: Метода мерења ефективне вредности сложенопериодичног сигнала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Драган Пејић, Бојан Вујичић, Небојша Пјевалица,

Више

Elektrotehnički fakultet Univerziteta u Beogradu Relejna zaštita laboratorijske vežbe Vežba 4: ISPITIVANJE STATIČKE GENERATORSKE ZAŠTITE Cilj vežbe je

Elektrotehnički fakultet Univerziteta u Beogradu Relejna zaštita laboratorijske vežbe Vežba 4: ISPITIVANJE STATIČKE GENERATORSKE ZAŠTITE Cilj vežbe je Vežba 4: ISPITIVANJE STATIČKE GENERATORSKE ZAŠTITE Cilj vežbe je ispitivanje sledećih zaštitnih releja: (1) zemljospojnog za zaštitu statora generatora (RUWA 117 E), (2) podnaponskog releja (RUVA 116 E),

Више

Tehničko rešenje: Industrijski prototip dvostrukog trofaznog analizatora snage sa funkcijama merenja kvaliteta električne energije tipska oznaka MM2 R

Tehničko rešenje: Industrijski prototip dvostrukog trofaznog analizatora snage sa funkcijama merenja kvaliteta električne energije tipska oznaka MM2 R Tehničko rešenje: Industrijski prototip dvostrukog trofaznog analizatora snage sa funkcijama merenja kvaliteta električne energije tipska oznaka MM2 Rukovodilac projekta: Vladimir Vujičić Odgovorno lice:

Више

El-3-60

El-3-60 СРБИЈА И ЦРНА ГОРА САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 181-668 На основу члана 36. став 1. Закона о мерним

Више

Microsoft PowerPoint - OMT2-razdvajanje-2018

Microsoft PowerPoint - OMT2-razdvajanje-2018 OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja

Више

Microsoft Word - Novi proizvod - Sistem za komunikaciju 720 v1.doc

Microsoft Word - Novi proizvod - Sistem za komunikaciju 720 v1.doc ТЕХНИЧКО РЕШЕЊЕ Нови производ: Једносмерна дистрибуција напона као оптимално решење коришћења енергије алтернативних извора Руководилац пројекта: Живанов Љиљана Одговорно лице: Лазић Мирослав Аутори: Лазић

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

КОНАЧНИ ЗАХТЕВ ЗА ПРИКЉУЧЕЊЕ ЕЛЕКТРОЕНЕРГЕТСКОГ ОБЈЕКТА НА ПРЕНОСНУ МРЕЖУ

КОНАЧНИ ЗАХТЕВ ЗА ПРИКЉУЧЕЊЕ ЕЛЕКТРОЕНЕРГЕТСКОГ ОБЈЕКТА НА ПРЕНОСНУ МРЕЖУ ЗАХТЕВ ЗА ПРИКЉУЧЕЊЕ НА ПРЕНОСНИ СИСТЕМ објекта а електричне енергије Напомена: У случају повлачења, односно одустанка од поднетог захтева, подносилац захтева је дужан да сноси све трошкове који су настали

Више

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva

FTN Novi Sad Katedra za motore i vozila Potrošnja goriva Teorija kretanja drumskih vozila Potrošnja goriva Ključni faktori: 1. ENERGIJA potrebna za kretanje vozila na određenoj deonici puta Povećanje E K pri ubrzavanju, pri penjanju, kompenzacija energetskih gubitaka usled dejstva F f i F W Zavisi od parametara

Више

Анализа електроенергетских система

Анализа електроенергетских система Анализа електроенергетских система -моделовање елемената- Посматрамо погонске параметре: r, подужна отпорност l, подужна индуктивност c, подужна капацитивност g, подужна проводност Водови Геометријска

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

Proracun strukture letelica - Vežbe 6

Proracun strukture letelica - Vežbe 6 University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универзитет у Београду Краљице Марије 16, 11000 Београд mtravica@mas.bg.ac.rs

Више

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 Именовано тело број И

Више

Прикључење објекта произвођача Тачке као и тачке , и у постојећим Правилима о раду дистрибутивно

Прикључење објекта произвођача Тачке као и тачке , и у постојећим Правилима о раду дистрибутивно Прикључење објекта произвођача Тачке 3.5.1. 3.5.6. као и тачке 3.5.7.14.6.1, 3.5.7.14.6.3. и 3.5.7.14.6.5. у постојећим Правилима о раду дистрибутивног система се мењају са оним које су наведене у тексту

Више

20

20 1. Izbor zastakljenja Projektant se odlučio za dvostruko zastakljenje na južnoj strani objekta u Podgorici. Dilema je: da li da koristi obično termo-pan zastakljenje (U=.5 W/m 2 K, g =0.8) ili low E (U=1.2

Више

oae_10_dom

oae_10_dom ETF U BEOGRADU, ODSEK ZA ELEKTRONIKU Milan Prokin Radivoje Đurić domaći zadaci - 2010 1. Domaći zadatak 1.1. a) [4] Nacrtati direktno spregnut pojačavač (bez upotrebe sprežnih kondenzatora) sa NPN tranzistorima

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Динамика крутог тела

Динамика крутог тела Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап.

Више

1_Elektricna_struja_02.03

1_Elektricna_struja_02.03 Elektrostatika i električna struja Tehnička fizika 2 01-08/03/19 Tehnološki fakultet Prisustvo na predavanjima 5 bod Laboratorijske vježbe 10 bod Test zadaci 1 10 bod Test zadaci 2 10 bod Test teorija

Више

Električne mreže i kola 5. oktobar Osnovni pojmovi Električna mreža je kolekcija povezanih elemenata. Zatvoren sistem obrazovan od elemenata iz

Električne mreže i kola 5. oktobar Osnovni pojmovi Električna mreža je kolekcija povezanih elemenata. Zatvoren sistem obrazovan od elemenata iz Električne mreže i kola 5. oktobar 2016 1 Osnovni pojmovi Električna mreža je kolekcija povezanih elemenata. Zatvoren sistem obrazovan od elemenata izmedu kojih se vrši razmjena energije putem električne

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

mfb_jun_2018_res.dvi

mfb_jun_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Смена:... Напомене: Испит траjе 80 минута. Коришћење литературе

Више

My_P_Red_Bin_Zbir_Free

My_P_Red_Bin_Zbir_Free БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 136. став

Више

F-6-158

F-6-158 РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ЕКОНОМИЈЕ И РЕГИОНАЛНОГ РАЗВОЈА ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 2181-668 На

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Sinhrone mašine (13E013SIM) Računske vežbe I deo Namotaji SM

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Sinhrone mašine (13E013SIM) Računske vežbe I deo Namotaji SM Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Sinhrone mašine (13E013SIM) Računske vežbe I deo Namotaji SM, indukovana ems, polje pobudnog namotaja, reakcija

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен

Више

EMC doc

EMC doc ИСПИТ ИЗ ЕЛЕКТРОМАГНЕТСКЕ КОМПАТИБИЛНОСТИ 28. мај 2018. Напомена. Испит траје 120 минута. Дозвољена је употреба литературе и рачунара. Коначне одговоре уписати у одговарајуће кућице, уцртати у дате дијаграме

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 192. став

Више

Z-16-48

Z-16-48 СРБИЈА И ЦРНА ГОРА МИНИСТАРСТВО ЗА УНУТРАШЊЕ ЕКОНОМСКЕ ОДНОСЕ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 3282-736, телефакс: (011) 181-668 На основу

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

Z-16-66

Z-16-66 РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ЕКОНОМИЈЕ И РЕГИОНАЛНОГ РАЗВОЈА ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 328-2736, телефакс: (011) 2181-668 На

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 192. ст.

Више

Z-16-45

Z-16-45 СРБИЈА И ЦРНА ГОРА МИНИСТАРСТВО ЗА УНУТРАШЊЕ ЕКОНОМСКЕ ОДНОСЕ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански фах 384 телефон: (011) 3282-736, телефакс: (011) 181-668 На основу

Више

Z-18-61

Z-18-61 РЕПУБЛИКА СРБИЈА ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, пошт.фах 384 тел. (011) 32-82-736, телефакс: (011) 2181-668 На основу члана 12. Закона о метрологији ("Службени лист СЦГ",

Више

Microsoft Word - ETF-journal- Vujicic-Calasan

Microsoft Word - ETF-journal- Vujicic-Calasan SIMULACIJA RADA ELEKTROSTATIČKOG V-C GENERATORA U PRAZNOM HODU I KRATKOM SPOJU Vladan Vujičić, Martin Ćalasan Ključne riječi: Elektrostatički generator, HVDC prenos energije, Prazan hod, Kratak spoj Sažetak:

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 136. став

Више

Републичко такмичење

Републичко такмичење 1 РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ОСНОВА ЕКОНОМИЈЕ БЕОГРАД, МАРТ 2015. Питања саставио: доцент др Ђорђе Митровић, Универзитет у Београду, Економски факултет 1. Монетаристи су Питања 1 поен а. сматрали да је незапосленост

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

Katalog propisa Registar i precisceni tekstovi propisa Crne Gore

Katalog propisa Registar i precisceni tekstovi propisa Crne Gore 535. Na osnovu člana 14 stav 4 Zakona o metrologiji ("Službeni list CG", broj 79/08) i člana 6 Zakona o tehničkim zahtjevima za proizvode i ocjenjivanju usaglašenosti ("Službeni list CG", broj 53/11),

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Microsoft Word - TPLJ-januar 2017.doc

Microsoft Word - TPLJ-januar 2017.doc Београд, 21. јануар 2017. 1. За дату кружну плочу која је еластично укљештена у кружни прстен и оптерећења према слици одредити максимални напон у кружном прстену. М = 150 knm/m p = 30 kn/m 2 2. За зидни

Више

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode] 6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више

Microsoft Word - Ispitivanje toka i grafik funkcije V deo

Microsoft Word - Ispitivanje toka i grafik funkcije V deo . Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, поштански преградак 34, ПАК телефон:

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, поштански преградак 34, ПАК телефон: РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11 000 Београд, Мике Аласа 14, поштански преградак 34, ПАК 105305 телефон: (011) 32 82 736, телефакс: (011) 21 81 668 На основу

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 Именовано тело број И

Више

Predavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt

Predavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt 1 BETONSKE KONSTRUKCIJE TEMELJI OBJEKATA Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Temelji objekata 2 1.1. Podela 1.2. Temelji samci 1.3. Temeljne trake 1.4. Temeljne grede

Више

Uvod u proceduru sprovođenja energijskog audita

Uvod u proceduru sprovođenja energijskog audita Primeri dobre prakse EE u industrijskim preduzećima rešenje za decentralizovano snabdevanje toplotnom energijom u pogonima procesne industrije prof. dr Goran Jankes Mreža za energetsku efikasnost u industriji

Више

broj 043.indd - show_docs.jsf

broj 043.indd - show_docs.jsf ПРИЛОГ 1. Ширина заштитног појаса зграда, индивидуалних стамбених објеката и индивидуалних стамбено-пословних објеката зависно од притиска и пречника гасовода Пречник гасовода од 16 barа до 50 barа M >

Више

F-6-59

F-6-59 САВЕЗНА РЕПУБЛИКА ЈУГОСЛАВИЈА САВЕЗНО МИНИСТАРСТВО ПРИВРЕДЕ И УНУТРАШЊЕ ТРГОВИНЕ САВЕЗНИ ЗАВОД ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, пошт.фах 384, тел. (011) 32-82-736, телефакс: (011)

Више

zad_6_2.doc

zad_6_2.doc .. S- i S- komunikacioni standardi Zadatak. Pomoću MX i čipa, potrebno je realizovati konvertor S- na S-. MX ima raspored pinova kao na slici..,0μf +V +V ULZ V CC T IN T IN OUT IN T OUT 0 9 OUT IN T OUT

Више

PowerPoint Presentation

PowerPoint Presentation Колоквијум # задатак подељен на 4 питања: теоријска практична пишу се програми, коначно решење се записује на папиру, кодови се архивирају преко сајта Инжењерски оптимизациони алгоритми /3 Проблем: NLP:

Више

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011)

РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ Београд, Мике Аласа 14, ПП: 34, ПАК: телефон: (011) РЕПУБЛИКА СРБИЈА МИНИСТАРСТВО ПРИВРЕДЕ ДИРЕКЦИЈА ЗА МЕРЕ И ДРАГОЦЕНЕ МЕТАЛЕ 11000 Београд, Мике Аласа 14, ПП: 34, ПАК: 105 305 телефон: (011) 32-82-736, телефакс: (011) 21-81-668 На основу члана 192. ст.

Више

Microsoft PowerPoint - ME_P1-Uvodno predavanje [Compatibility Mode]

Microsoft PowerPoint - ME_P1-Uvodno predavanje [Compatibility Mode] MAŠINSKI ELEMENTI dr Miloš Ristić UVOD Mašinski elementi predstavljaju tehničkonaučnu disciplinu. Izučavanjem ove discipline stiču seteorijska i praktična znanja za proračun, izbor i primenu mašinskih

Више

PowerPoint Presentation

PowerPoint Presentation РЕДЕФИНИЦИЈА АМПЕРА Агенда међународне активности 2017-2019 o 20. 10. 2017. - 106. састанак CIPM - усвојена резолуција која препоручује редефиниције основних мерних јединица SI (килограма, ампера, келвина

Више

Microsoft Word - lv2_m_cirilica.doc

Microsoft Word - lv2_m_cirilica.doc lv2_m ИСПИТИВАЊЕ ТАЧНОСТИ СТРУГОВА Ово је друга лабораторијска вежба (PL-2+PL-4) и има ова два дела: PL-2 Упутство за извођење друге лабораторијске вежбе и PL-4 Друга лабораторијска вежба Испитивање тачности

Више