Popularna matematika
|
|
- Elizabeta Golob
- пре 5 година
- Прикази:
Транскрипт
1 6. lipnja 2009.
2 Russellov paradoks
3 Russellov paradoks Bertrand Arthur William Russell ( ), engleski filozof, matematičar i društveni reformator.
4 Russellov paradoks Bertrand Arthur William Russell ( ), engleski filozof, matematičar i društveni reformator. Na Trinity Collegeu u Cambridgeu studirao je filozofiju i matematiku, gdje po završetku studija počinje sveučilišnu karijeru. Potomak je ugledne plemićke obitelji, ali ubrzo i sam stječe glas slobodnog mislioca, pacifista, kritičara gra danskog morala i borca za ljudsku jednakost.
5 Russellov paradoks Bertrand Arthur William Russell ( ), engleski filozof, matematičar i društveni reformator. Na Trinity Collegeu u Cambridgeu studirao je filozofiju i matematiku, gdje po završetku studija počinje sveučilišnu karijeru. Potomak je ugledne plemićke obitelji, ali ubrzo i sam stječe glas slobodnog mislioca, pacifista, kritičara gra danskog morala i borca za ljudsku jednakost. Od do predavao je na različitim sveučilištima u SAD-u, a tek je ponovno izabran za profesora na Trinity Collegeu.
6 Russellov paradoks Godine dobio je Nobelovu nagradu za književnost. Njegovo prvo filozofsko zanimanje vezano je uz matematički prilaz filozofije, a iz te faze proizašlo je monumentalno djelo "Principia Mathematica", nastalo u suradnji s A. N. Whiteheadom, koje je obojici autora donijelo svjetsku slavu i postalo ishodište novog smjera u filozofiji i matematici.
7 Russellov paradoks Godine dobio je Nobelovu nagradu za književnost. Njegovo prvo filozofsko zanimanje vezano je uz matematički prilaz filozofije, a iz te faze proizašlo je monumentalno djelo "Principia Mathematica", nastalo u suradnji s A. N. Whiteheadom, koje je obojici autora donijelo svjetsku slavu i postalo ishodište novog smjera u filozofiji i matematici. Vec istaknuo se kao briljantan logičar, uočivši paradoks koji je proizlazio iz petog aksioma Fregeove logicke analize aritmetike (Russellov paradoks).
8 Russellov paradoks Russellov Paradoks Cantorova teorija skupova sa kraja 19. vijeka nije bila zasnovana aksiomatski pa se zato nazivala naivna teorija skupova. Medutim ona je implicitno u sebi sadržala nekoliko aksioma od kojih je jedna bila da za svako svojstvo možemo formirati skup svih elemenata koji imaju to svojstvo.
9 Russellov paradoks Russellov Paradoks Cantorova teorija skupova sa kraja 19. vijeka nije bila zasnovana aksiomatski pa se zato nazivala naivna teorija skupova. Medutim ona je implicitno u sebi sadržala nekoliko aksioma od kojih je jedna bila da za svako svojstvo možemo formirati skup svih elemenata koji imaju to svojstvo. Polazeci od ove aksiome je konstruisao paradoks, po njemu nazvan Russelov paradoks koji je oborio naivnu teoriju skupova.
10 Russellov paradoks Russellov Paradoks Ako za svako svojstvo postoji skup svih objekata koji zadovoljavaju to svojstvo onda to isto važi i za svojstvo skup ne pripada sam sebi.
11 Russellov paradoks Russellov Paradoks Ako za svako svojstvo postoji skup svih objekata koji zadovoljavaju to svojstvo onda to isto važi i za svojstvo skup ne pripada sam sebi. Oznacimo sa X skup objekata za koje važi ovo svojstvo. Da li X pripada sam sebi? Ako pripada onda znaci da zadovoljava svojstvo skup ne pripada sam seb što je kontradikcija.
12 Russellov paradoks Russellov Paradoks Ako za svako svojstvo postoji skup svih objekata koji zadovoljavaju to svojstvo onda to isto važi i za svojstvo skup ne pripada sam sebi. Oznacimo sa X skup objekata za koje važi ovo svojstvo. Da li X pripada sam sebi? Ako pripada onda znaci da zadovoljava svojstvo skup ne pripada sam seb što je kontradikcija. Ako pak ne pripada sam sebi onda će da zadovolji traženo svojstvo pa će baš da pripada sebi, što je opet kontradikcija. V = {X X / X}
13 Russellov paradoks Russellov Paradoks Jedna varijanta iskazivanja Russelovog paradoksa je: Postoje katalozi knjiga iz biblioteke. Ti katalozi se tako der smatraju za knjige. Neki katalozi sadrže sebe, a neki ne. Možemo posmatrati jedan novi katalog u koji su popisani svi katalozi koji ne sadrže sebe.
14 Russellov paradoks Russellov Paradoks Jedna varijanta iskazivanja Russelovog paradoksa je: Postoje katalozi knjiga iz biblioteke. Ti katalozi se tako der smatraju za knjige. Neki katalozi sadrže sebe, a neki ne. Možemo posmatrati jedan novi katalog u koji su popisani svi katalozi koji ne sadrže sebe. Da li ovaj katalog sadrži sam sebe? Ponovo će oba slučaja analiziranja dovesti do kontradikcije.
15 Russellov paradoks Russellov Paradoks Jedna varijanta iskazivanja Russelovog paradoksa je: Postoje katalozi knjiga iz biblioteke. Ti katalozi se tako der smatraju za knjige. Neki katalozi sadrže sebe, a neki ne. Možemo posmatrati jedan novi katalog u koji su popisani svi katalozi koji ne sadrže sebe. Da li ovaj katalog sadrži sam sebe? Ponovo će oba slučaja analiziranja dovesti do kontradikcije. Do pojave ovog paradoksa verovalo se u nepobitnost matematičke istine i neprotivrječnost Cantorove teorije skupova. Posle Russelovog paradoksa uslijedila je i serija drugih paradoksa.
16 u magične kvadrate Definicija U rekreacionalnoj matematici, magični kvadrat reda n je skup n brojeva, uobičajeno različitih cijelih brojeva, unutar jednog kvadrata, takav da je zbir svih n brojeva u svim redovima i svim kolonama kvadrata, te po obje dijagonale kvadrata jednak istoj konstanti.
17 u magične kvadrate Definicija U rekreacionalnoj matematici, magični kvadrat reda n je skup n brojeva, uobičajeno različitih cijelih brojeva, unutar jednog kvadrata, takav da je zbir svih n brojeva u svim redovima i svim kolonama kvadrata, te po obje dijagonale kvadrata jednak istoj konstanti. Normalni magični kvadrat zadrži cjele brojeve od 1 do n.
18 u magične kvadrate Definicija U rekreacionalnoj matematici, magični kvadrat reda n je skup n brojeva, uobičajeno različitih cijelih brojeva, unutar jednog kvadrata, takav da je zbir svih n brojeva u svim redovima i svim kolonama kvadrata, te po obje dijagonale kvadrata jednak istoj konstanti. Normalni magični kvadrat zadrži cjele brojeve od 1 do n. Normalni magični kvadrati postoje za sve redove n 1, osim za red n = 2, iako je kvadrat reda 1 trivijalan. Najmanji netrivijalni primjer je reda 3.
19
20 Konstantna suma u svakom redu, koloni i dijagonali se zove magčna konstanta ili magična suma M.
21 Konstantna suma u svakom redu, koloni i dijagonali se zove magčna konstanta ili magična suma M. Magčna konstanta zavisi samo od reda kvadrata n i ima vrijednost: n(n + 1) M(n) = 2
22 Konstantna suma u svakom redu, koloni i dijagonali se zove magčna konstanta ili magična suma M. Magčna konstanta zavisi samo od reda kvadrata n i ima vrijednost: n(n + 1) M(n) = 2 Niz suma magičnih kvadrata je 15, 34, 65, 111, 175,
23 Historija Magičnih kvadrata su bili poznati kineskim matematičarima čak 650 p.n.e. te arapskim matematičarima u 7. vijeku n.e. nakon arapskih osvajanja sjeveroistočnih dijelova indijskog podkontinenta kada Arapi dolaze u dodir sa indijskom matematikom i astronomijom i drugim aspektima kombinatorike.
24 Historija Magičnih kvadrata su bili poznati kineskim matematičarima čak 650 p.n.e. te arapskim matematičarima u 7. vijeku n.e. nakon arapskih osvajanja sjeveroistočnih dijelova indijskog podkontinenta kada Arapi dolaze u dodir sa indijskom matematikom i astronomijom i drugim aspektima kombinatorike. Prvi m.k. reda 5 i 6 se pojavljuju u eniklopediji iz Bagdada oko 983g.n.e. - Enciklopedija Braće od Čistoće (Rasa il Ihkwan al-safa).
25 Historija Magičnih kvadrata su bili poznati kineskim matematičarima čak 650 p.n.e. te arapskim matematičarima u 7. vijeku n.e. nakon arapskih osvajanja sjeveroistočnih dijelova indijskog podkontinenta kada Arapi dolaze u dodir sa indijskom matematikom i astronomijom i drugim aspektima kombinatorike. Prvi m.k. reda 5 i 6 se pojavljuju u eniklopediji iz Bagdada oko 983g.n.e. - Enciklopedija Braće od Čistoće (Rasa il Ihkwan al-safa). Originalni m.k. se pojavljuje u kineskoj legendi o Lo Shu-u 650. g.p.n.e. - i ima brojeve 4, 9, 2, 3, 5, 7, 8, 1, 6.
26 Historija Magičnih kvadrata su fascinirali razne kulture tokom duge historije njihovog postojanja, uključujući Kinu, Egipat i Indiju. Smatralo se da imaju magičnu i božju moć i često su se nalazili na talismanima.
27 Historija Magičnih kvadrata su fascinirali razne kulture tokom duge historije njihovog postojanja, uključujući Kinu, Egipat i Indiju. Smatralo se da imaju magičnu i božju moć i često su se nalazili na talismanima. Oko 1300 godine, nastavljajući rad arapskog matematičara Al Bunija, grčki bizantijski naučnik Manuel Moschopoulos je napisao tretizu na temu m.k. isključujući misticizam svojih prethodnika. On je bio prvi zapadnjak koji je pisao o ovoj temi.
28 Historija Magičnih kvadrata su fascinirali razne kulture tokom duge historije njihovog postojanja, uključujući Kinu, Egipat i Indiju. Smatralo se da imaju magičnu i božju moć i često su se nalazili na talismanima. Oko 1300 godine, nastavljajući rad arapskog matematičara Al Bunija, grčki bizantijski naučnik Manuel Moschopoulos je napisao tretizu na temu m.k. isključujući misticizam svojih prethodnika. On je bio prvi zapadnjak koji je pisao o ovoj temi. Najpoznatiji zapadni magični kvadrati su tzv. Agrippini magični kvadrati iz djela De Occulta Philosophia koji se i dan danas koriste u magijskim ceremonijama kao magični.
29 Magični kvadrat Albrecht D urer
30 Tipovi magičnih kvadrata se mogu klasificirati u tri tipa: neparne, dvostruko parne i jednostruko parne.
31 Tipovi magičnih kvadrata se mogu klasificirati u tri tipa: neparne, dvostruko parne i jednostruko parne. Neparne i dvostruko parne m.k. je lako generisati; Konstrukcija jednostruko parnih magičnih kvadrata je teža ali postoji nekoliko metoda.
32 Tipovi magičnih kvadrata se mogu klasificirati u tri tipa: neparne, dvostruko parne i jednostruko parne. Neparne i dvostruko parne m.k. je lako generisati; Konstrukcija jednostruko parnih magičnih kvadrata je teža ali postoji nekoliko metoda. Broj različitih magičnih kvadrata je (po redovima)ž 1, 0, 1, 880,
Matematika kroz igru domino
29. travnja 2007. Uvod Domino pločice pojavile su se u Kini davne 1120. godine. Smatra se da su pločice izvedene iz igraće kocke, koja je u Kinu donešena iz Indije u dalekoj prošlosti. Svaka domino pločica
ВишеZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
ВишеŽUPANIJSKO NATJECANJE IZ MATEMATIKE 28. veljače razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI
ŽUANIJSKO NATJECANJE IZ MATEMATIKE 8. veljače 09. 8. razred - rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI OSTUAK RJEŠAVANJA, ČLAN OVJERENSTVA DUŽAN JE I TAJ OSTUAK
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
ВишеМАТЕМАТИЧКА ГИМНАЗИЈА У БЕОГРАДУ МАТУРСКИ РАД из математике ТЕОРИЈА СКУПОВА ментор: Славко Моцоња ученик: Матија Срећковић, IVБ Београд, јун 2015.
МАТЕМАТИЧКА ГИМНАЗИЈА У БЕОГРАДУ МАТУРСКИ РАД из математике ТЕОРИЈА СКУПОВА ментор: Славко Моцоња ученик: Матија Срећковић, IVБ Београд, јун 2015. САДРЖАЈ УВОД... 2 УВОД У СКУПОВЕ... 4 ЕЛЕМЕНТАРНЕ АКСИОМЕ...
ВишеMatematika 1 - izborna
3.3. NELINEARNE DIOFANTSKE JEDNADŽBE Navest ćemo sada neke metode rješavanja diofantskih jednadžbi koje su drugog i viših stupnjeva. Sve su te metode zapravo posebni oblici jedne opće metode, koja se naziva
ВишеMicrosoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx
Универзитет у Београду Математички факултет О неким класичним квадратним Диофантовим једначинама Мастер рад ментор: Марко Радовановић студент: Ивана Фируловић Београд, 2017. Садржај Увод...2 1. Линеарне
ВишеTeorija skupova - blog.sake.ba
Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno
ВишеUDŽBENIK 2. dio
UDŽBENIK 2. dio Pročitaj pažljivo Primjer 1. i Primjer 2. Ova dva primjera bi te trebala uvjeriti u potrebu za uvo - denjem još jedne vrste brojeva. Primjer 1. Živa u termometru pokazivala je temperaturu
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеMicrosoft Word Istorija Dinamike Naucnici doc
Iz Istorije DINAMIKE Ko je dao značajne doprinose da se utemelji naučna oblast pod imenom Dinamika? 1* Odgovarajući na pitanje: Ko je dao značajne doprinose da se utemelji naučna oblast pod imenom Dinamika?
ВишеOsnovni pojmovi teorije verovatnoce
Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеTutoring System for Distance Learning of Java Programming Language
Niz (array) Nizovi Niz je lista elemenata istog tipa sa zajedničkim imenom. Redosled elemenata u nizovnoj strukturi je bitan. Konkretnom elementu niza pristupa se preko zajedničkog imena niza i konkretne
ВишеАлгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (
Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)
ВишеMicrosoft Word - 24ms221
Zadatak (Katarina, maturantica) Kružnica dira os apscisa u točki (3, 0) i siječe os ordinata u točki (0, 0). Koliki je polumjer te kružnice? A. 5 B. 5.45 C. 6.5. 7.38 Rješenje Kružnica je skup svih točaka
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеMicrosoft Word - Lekcija 11.doc
Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на
ВишеРЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 39 Бањалука, Тел/факс 051/ , 051/ ; p
РЕПУБЛИКА СРПСКА МИНИСТАРСТВО ПРОСВЈЕТЕ И КУЛТУРЕ РЕПУБЛИЧКИ ПЕДАГОШКИ ЗАВОД Милоша Обилића 9 Бањалука, Тел/факс 01/40-110, 01/40-100; e-mail : pedagoski.zavod@rpz-rs.org Датум: 8.04.018. Републичко такмичење
ВишеMicrosoft Word - 1.Operacije i zakoni operacija
1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеDISKRETNA MATEMATIKA
DISKRETNA MATEMATIKA Kombinatorika Permutacije, kombinacije, varijacije, binomna formula Ivana Milosavljević - 1 - 1. KOMBINATORIKA PRINCIPI PREBROJAVANJA Predmet kombinatorike je raspoređivanje elemenata
Више0255_Uvod.p65
1Skupovi brojeva Skup prirodnih brojeva Zbrajanje prirodnih brojeva Množenje prirodnih brojeva U košari ima 12 jaja. U drugoj košari nedostaju tri jabuke da bi bila puna, a treća je prazna. Pozitivni,
ВишеPROMENLJIVE, TIPOVI PROMENLJIVIH
PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije
ВишеParticije prirodnog broja druga-0.1 verzija: Duxan uki 1 Uvod Particija prirodnog broja n je predstavljanje n u obliku zbira nekoliko prirodn
Particije prirodnog broja druga-0. verzija: 7..03. Duxan uki Uvod Particija prirodnog broja n je predstavljanje n u obliku zbira nekoliko prirodnih brojeva, pri qemu je redosled sabiraka nebitan. Sa p(n)
ВишеРАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр
РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита
ВишеFunkcije predavač: Nadežda Jakšić
Funkcije predavač: Nadežda Jakšić do sada su korišćene "gotove" funkcije iz standardnih biblioteka (cin, cout...) one su pozivane iz main funkcije koja je glavna funkcija u programu jer izvršavanje programa
Више180 година школе
Стојан Богдановић је рођен 1944. године у Великом Боњинцу, Бабушница. Основну школу и гимназију завршио је у Књажевцу. Студирао је у Београду, Паризу и Новом Саду. Доктор је математичких наука. Оснивач
ВишеKonstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun
Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.
ВишеProgramiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan
Programiranje u C-u ili C++-u Pseudo-slučajni brojevi; Dinamička alokacija memorije 1 ZADACI SA ČASA Zadatak 1 Napraviti funkciju koja generišlučajan realan broj od 0 i 1. Na standardni izlaz ispisati
Више(Microsoft Word - Dr\236avna matura - studeni osnovna razina - rje\232enja)
1. C. Imamo redom: I. ZADATCI VIŠESTRUKOGA IZBORA 9 + 7 6 9 + 4 51 = = = 5.1 18 4 18 8 10. B. Pomoću kalkulatora nalazimo 10 1.5 = 63.45553. Četvrta decimala je očito jednaka 5, pa se zaokruživanje vrši
ВишеŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 21. siječnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. siječnja 016. 6. razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE
ВишеMAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА
MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година МАТЕМАТИКА
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
ВишеCIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup priro
CIJELI BROJEVI 1.) Kako još nazivamo pozitivne cijele brojeve? 1.) Za što je oznaka? 2.) Ispiši skup prirodnih brojeva! 3.) Kako označavamo skup prirodnih brojeva? 4.) Pripada li 0 skupu prirodnih brojeva?
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
Вишеknjiga.dvi
1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
ВишеМатематика 1. Посматрај слику и одреди елементе скуупова: а) б) в) средњи ниво А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ }
1. Посматрај слику и одреди елементе скуупова: а) б) в) А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } А={ } B={ } А B={ } А B={ } А B={ } B А={ } 2. Упиши знак
ВишеЕКОНОМСКИ ФАКУЛТЕТ УНИВЕРЗИТЕТА У ПРИШТИНИ КОСОВСКА МИТРОВИЦА
МАТЕМАТИКА ЗАДАЦИ ЗА ПРИЈЕМНИ ИСПИТ 1. Израчунати вредност израза: а) ; б). 2. Израчунати вредност израза:. 3. Израчунати вредност израза:. 4. Израчунати вредност израза: ако је. 5. Израчунати вредност
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеSuradnja knjižničara i nastavnika u informacijskom opismenjavanju: primjer Knjižnice Filozofskog fakulteta u Osijeku Gordana Gašo, Knjižnica,
Suradnja knjižničara i nastavnika u informacijskom opismenjavanju: primjer Knjižnice Filozofskog fakulteta u Osijeku Gordana Gašo, Knjižnica, ggaso@ffos.hr Kornelija Petr Balog, Odsjek za informacijske
ВишеПрограмирај!
Листе Поред појединачних вредности исказаних бројем или ниском карактера, често је потребно забележити већи скуп вредности које су на неки начин повезане, као, на пример, имена у списку путника у неком
ВишеРационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје
Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши
ВишеRASPORED PISMENIH ISPITA ZA ŠK. GODINU 2017./2018. RAZRED: 2.a, 2.c PREDMET IX. X. XI. XII. I. II. III. IV. V. VI. Hrvatski jezik RŠČ Dijelov
RASPORED PISMENIH ISPITA ZA ŠK. GODINU 2017./2018. RAZRED: 2.a, 2.c PREDMET IX. X. XI. XII. I. II. III. IV. V. VI. Hrvatski jezik 26.10 1. RŠČ Dijelovi pjesme 31.1. 3. IZ J Imenice 16.11.2. RŠČ Redoslijed
ВишеRavno kretanje krutog tela
Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 016/017. година ТЕСТ МАТЕМАТИКА
Вишеkolokvijum_resenja.dvi
Геометриjа 2 колоквиjум 2019. Димитриjе Шпадиjер 25. jануар 2019. 1. Важи H(,;K,L) ако постоjи права p коjа не садржи тачку и сече праве,,k,l у неким тачкама X,Y,M,N таквим да важи H(X,Y;M,N). Права сече
ВишеБранислав Поповић Ненад Вуловић Петар Анокић Мирјана Кандић 3.део МАТЕМАТИКА 1 Решења уз уџбеник за први разред основне школе 3. део
Бранислав Поповић Ненад Вуловић Петар Анокић Мирјана Кандић.део МАТЕМАТИКА Решења уз уџбеник за први разред основне школе. део БРОЈЕВИ ДО 0 ПОВЕЗИВАЊЕ САБИРАЊА И ОДУЗИМАЊА. + = + = 9 + = 9 6 + = 9 + =
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеNAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka
NAČINI, POSTUPCI I ELEMENTI VREDNOVANJA UČENIČKIH KOMPETENCIJA IZ NASTAVNOG PREDMETA: MATEMATIKA Na osnovu članka 3., stavka II, te članka 12., stavka II i III, Pravilnika o načinima, postupcima i elementima
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 01/01. година ТЕСТ МАТЕМАТИКА
ВишеМатематика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје
1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX
ВишеБрој: 768/2-3 Датум: На основу члана 64. став 11. и члана 65. став 7. Закона о високом образовању ( Сл. гл. РС бр. 76/05, 100/07, 97/08,
Број: 768/2-3 Датум: 22. 6. 2015. На основу члана 64. став 11. и члана 65. став 7. Закона о високом образовању ( Сл. гл. РС бр. 76/05, 100/07, 97/08, 44/10, 93/12, 89/13, 99/14 и 45/15 аутентично тумачење)
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
ВишеProgramiranje 2 popravni kolokvij, 15. lipnja Ime i prezime: JMBAG: Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanj
Upute: Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i brisanje, te službeni šalabahter. Kalkulatori, mobiteli, razne neslužbene tablice, papiri i sl., nisu dozvoljeni! Sva rješenja napišite
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеUAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević
Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja
ВишеFunkcije predavač: Nadežda Jakšić
Funkcije predavač: Nadežda Jakšić funkcije delovi programa koji izvršavaju neki zadatak, celinu; dele na ugrađene, korisničke i main funkciju ugrađene funkcije printf,scanf... da bi se one izvršile potrebno
ВишеАутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег
Аутор овог документа је Петар Аврамовић. Слободно га можете читати, размењивати, копирати, штампати али само као цео документ. у циљу сазнавања нечег новог или подсећања нечег што сте заборавили. Немојте
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеOSNOVNA ŠKOLA, VI RAZRED MATEMATIKA
OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
ВишеVISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, E
VISOKA TEHNI^KA [KOLA STRUKOVNIH STUDIJA PO@AREVAC MILORADOVI] MIROLJUB M A T E M A T I K A NERE[ENI ZADACI ZA PRIJEMNI ISPIT AGRONOMIJA, EKOLOGIJA, ELEKTROTEHNIKA, MA[INSTVO PO@AREVAC 007 OBAVEZNO PRO^ITATI!
ВишеVjezbe 1.dvi
Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva
ВишеProgramiranje 1 IEEE prikaz brojeva sažetak Saša Singer web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog1 2018, IEEE p
Programiranje IEEE prikaz brojeva sažetak Saša Singer singer@math.hr web.math.pmf.unizg.hr/~singer PMF Matematički odsjek, Zagreb Prog 208, IEEE prikaz brojeva sažetak p. /4 Sadržaj predavanja IEEE standard
ВишеMATEMATIKA IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god Planirala: Višnja Špicar, učitelj RN
IZVEDBENI GODIŠNJI NASTAVNI PLAN I PROGRAM MATEMATIKE OSNOVNA ŠKOLA, 2. razred šk. god. 2014.-15. Uvodni sat (1 sat) Ponavljanje: Rujan 14 sati Tijela u prostoru, Geometrijski likovi (1 sat) Točka, ravna
ВишеPage 1 of 5 U 2002. izdano je 4 298 naslova knjiga i brošura što je za 12,2 % više u odnosu na prethodnu godinu. Najviše izdanih knjiga i brošura pripada skupini UDK "Jezici. Književnost" (25,5%) potom
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеNAUČNO-STRUČNA KONFERENCIJA LOGOPEDA SRBIJE INOVATIVNI PRISTUPI U LOGOPEDIJI Nacionalni skup sa međunarodnim učešćem Organizator: Udruženje logopeda S
NAUČNO-STRUČNA KONFERENCIJA LOGOPEDA SRBIJE INOVATIVNI PRISTUPI U LOGOPEDIJI Nacionalni skup sa međunarodnim učešćem Organizator: Udruženje logopeda Srbije Kralja Milutina 52, Beograd Datum održavanja:
ВишеZadaci s pismenih ispita iz matematike 2 s rješenjima MATEMATIKA II x 4y xy 2 x y 1. Odredite i skicirajte prirodnu domenu funkcije cos ln
Zadaci s pismenih ispita iz matematike s rješenjima 0004 4 Odredite i skicirajte prirodnu domenu funkcije cos ln f, Arc Izračunajte volumen tijela omeđenog plohama z e, 9 i z 0 Izračunajte ln e d,, ln
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година
Вишеatka 26 (2017./2018.) br. 102 NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati
NEKE VRSTE DOKAZA U ČAROBMATICI Jadranka Delač-Klepac, Zagreb jednoj smo priči spomenuli kako je važno znati postavljati prava pitanja. U Jednako je važno znati pronaći odgovore na postavljena pitanja,
ВишеNaziv studija Dvopredmetni diplomski sveučilišni studij filozofije Naziv kolegija Moderna logika Status kolegija Obvezni Godina Prva Semestar Prvi /zi
Naziv studija Dvopredmetni diplomski sveučilišni studij filozofije Naziv kolegija Moderna Status kolegija Obvezni Godina Prva Semestar Prvi /zimski ECTS bodovi 3 Nastavnik Doc.dr.sc. Marko Vučetić e-mail
ВишеPRAVAC
Nives Baranović nives@ffst.hr Odsjek za učiteljski studij Filozofski fakultet u Splitu Razvoj geometrijskog mišljenja kroz tangram aktivnosti Radionica za učitelje i nastavnike matematike VII. simpozijum
ВишеSlide 1
ЕЛЕКТРОНСКЕ ИЗЛОЖБЕ БИБЛИОТЕКЕ МАТИЦЕ СРПСКЕ БИБЛИОТЕКА МАТИЦЕ СРПСКЕ БИБЛИОТЕКА МАТИЦЕ СРПСКЕ ПРИРЕДИЛА ЈЕ 178 ИЗЛОЖБИ У ВИТРИНАМА. ОД ЈАНУАРА 2011. ГОДИНЕ ИЗЛОЖБЕ СЕ ПРЕЗЕНТУЈУ У ЕЛЕКТРОНСКОМ ОБЛИКУ,
ВишеMathFest 2016 Krapinsko zagorske županije 29. travnja Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje
MathFest 2016 Krapinsko zagorske županije 29. travnja 2016. Terme Tuhelj Ekipno natjecanje učenika osnovnih škola Kategorija math 43 Natjecanje traje 90 minuta. Zadatci (njih 32) podijeljeni su u dvije
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
Вишеuntitled
ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на
ВишеMicrosoft Word - z4Ž2018a
4. razred - osnovna škola 1. Izračunaj: 52328 28 : 2 + (8 5320 + 5320 2) + 4827 5 (145 145) 2. Pomoću 5 kružića prikazano je tijelo gusjenice. Gusjenicu treba obojiti tako da dva kružića budu crvene boje,
Више1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu
1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {
ВишеОбразац - 1 УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ ФАКУЛТЕТ: Филозофски ИЗВЈЕШТАЈ КОМИСИЈЕ о пријављеним кандидатима за избор наставника и сарадника у звање I. ПОДА
Образац - 1 УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ ФАКУЛТЕТ: Филозофски ИЗВЈЕШТАЈ КОМИСИЈЕ о пријављеним кандидатима за избор наставника и сарадника у звање I. ПОДАЦИ О КОНКУРСУ Одлука о расписивању конкурса, орган
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
Вишеcemuxii23.indb
LOGIČKA ISTRAŽIVANJA U KONTEKSTU Slon u prostoriji Gottlob Frege je umro 1925. godine. Michael Dummett, vjerojatno najveći i najpoznatiji istraživač Fregeova djela, procjenjuje kako je Frege umro kao ogorčen
ВишеZadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
ВишеРепублика Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА
Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 018/019. година ТЕСТ МАТЕМАТИКА
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
ВишеMicrosoft PowerPoint - 10-Jednodimenzionalni nizovi.ppt [Compatibility Mode]
Osnove programiranja Nizovi Sadržaj Definicija niza Vrste i elementi nizova Deklarisanje nizova Dodele (početne) vrednosti nizovima Jednodimenzionalni nizovi Primeri dodele vrednosti Petlja foreach Nizovi
Више