Babi}, S., & Kova~i}, Z. (994). Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji. (Verzija rada pripremljena za drugo izdanje Ekonomske i poslovne enciklopedije) Racionalna o~ekivanja - Uloga o~ekivanja u ekonomskoj eoriji Za{o je problem o~ekivanja u ekonomskoj eoriji uop{e va`an? [a se, u svari, krije iza ermina r.o.? Budu}nos je, po samoj definiciji, nedoku~iva. Svaka ekonomska odluka je odluka o budu}nosi koju pojedinac ili grupa donosi u posoje}im okolnosima. Po{o je budu}nos nedoku~iva, ove odluke se mogu donosii jedino na osnovu o~ekivanja o budu}im vrednosima relevannih ekonomskih varijabli. Na primer, firme moraju imai neka predvi anja (o~ekivanja) o budu}im cenama svojih proizvoda (i njihovih poencijalnih konkurenaa) da bi mogle da donesu odluku o obimu proizvodnje u eku}em periodu i odluku o ome da li da {ire svoje proizvodne kapaciee. Sindikalno rukovodsvo mora imai neku ocenu o kreanju inflacije u narednom periodu prilikom pregovaranja o visini nominalnih nadnica. Doma}insva moraju implicino ili eksplicino da ra~unaju sa budu}im kreanjem cena kada donose odluke o kupovini ku}e, auomobila ili elevizora. Pri ome }e ona sa posebnom pa`njom predvi ai cenu novca - visinu kamane sope na poro{a~ke kredie. Ekonomska akivnos mo`e se, dakle, posmarai kao proces koninuelnog dono{enja odluka na osnovu o~ekivanja o budu}im vrednosima ekonomskih veli~ina. U om procesu vr{i se salno sameravanje osvarenih i o~ekivanih rezulaa ranije doneih odluka. Uvek kada do e do odsupanja svarnih od o~ekivanih ishoda, ekonomski subjeki }e, ako su racionalni, korigovai svoja o~ekivanja. Na~in na koji se formiraju o~ekivanja prilikom dono{enja odluka ui~e na njene ishode. Ishodi ui~u na o~ekivanja. Zao se mo`e re}i da proces dono{enja odluka u vremenu predsavlja proces delovanja povrane sprege - preslikavanje o~ekivanja u ishode, povrano preslikavanje ishoda u o~ekivanja, a ime i proces preslikavanja o~ekivanja u o~ekivanja. Krajem 50-ih i po~ekom 60-ih godina ponikle su dve razli~ie {kole u reiranju racionalnosi u ekonomskoj eoriji, obe na univerzieu Karned`i-Meloun (Carnegie-Mellon) u SAD. Herber Sajmon (Herber A. Simon) razvijao je koncep "ograni~ene" racionalnosi, ideju koja isi~e ograni~enos ~ovekovih ra~unskih kapaciea prilikom dono{enja odluka. U iso vreme, njegov kolega D`on Mu (John F. Muh) radio je u drugom pravcu razvijaju}i ideju r.o.. Svojevremeno je ovom problemu posve}ena brojna lieraura, a verovano je naj~e{}e kori{}eni probni balon bio model r`i{a poljoprivrednih proizvoda. Jo{ jedan primer reiranja fenomena inerakcije izme u o~ekivanja i svarnosi u lierauri 50-ih godina predsavlja rad Kagana (P. Cagan, 956) o dinamici
Sojan Babi} i Zlako J. Kova~i} hiperinflacije. U ovom jednosavnom modelu brzina nov~anog opicaja zavisi od o~ekivane inflacije dok je, sa svoje srane, o~ekivana inflacija funkcija inflacije u prehodnim periodima. Auonomni poras o~ekivane inflacije dove{}e do porasa brzine nov~anog opicaja, pa preko oga i do porasa eku}e inflacije. Poras cena ui~e na poras o~ekivane inflacije dovode}i do daljeg porasa brzine nov~anog opicaja. Zavisno od konkrenih parameara modela po~eni auonomni poras inflaornih o~ekivanja dove{e ili do hiperinflacije ili do njenog posepenog si{avanja. U oba slu~aja konkrena dinamika cena direkno zavisi od na~ina na koji se formiraju inflaorna o~ekivanja. Pokazalo se da ovakvi modeli nisu oporni na izmene preposavki o na~inu formiranja o~ekivanja, odnosno da dobijeni rezulai modela na krii~an na~in zavise od ad hoc preposavki o mehanizmu formiranja o~ekivanja. Da je problem manje zamr{en nego {o se nekome, na prvi pogled, mo`e u~inii, ilusrova}emo pomo}u jednosavnog primera uskla ivanja ponude i ra`nje na parcijalnom r`i{u poljoprivrednih proizvoda, koji je pozna u ekonomskoj lierauri kao problem paukove mre`e (v. Kobveb eorema, eorema paukove mre`e). Isi model, vredi imai na umu, uporebljen je u pionirskom radu koji je dao zamajac isra`ivanjima o uicaju na~ina formiranja o~ekivanja na ocenu parameara eorijskog modela (Mu, 96). Riam poljoprivredne proizvodnje odre en je rimom godi{njih doba, pa izme u procesa proizvodnje i procesa prodaje na r`i{u posoji jasan vremenski pomak. Ravnoe`a na r`i{u }e se osvarii jedino kada je ponu ena (proizvedena) koli~ina jednaka ra`enoj. Tada }e i prodajna cena bii jednaka onoj koju su proizvo a~i o~ekivali kada su planirali svoj obim proizvodnje. Ukoliko o nije slu~aj, ada smo suo~eni sa sukcesivnim oscilacijama na r`i{u - ponu ena koli~ina je u jednom periodu ve}a, a u narednom manja od ra`ene. Analogno, r`i{na cena u jednom periodu bi}e ni`a, a u narednom vi{a od ravnoe`ne. Grafi~ki prikaz ovakvih oscilacija podse}a na grafiku paukove mre`e. Sisem mo`e oscilirai ka ravnoe`noj ceni, ali se mo`e od nje i udaljavai (mogu}e je i salno jednako odsupanje navi{e i nani`e u odnosu na ravnoe`nu cenu). d Neka je ra`nja u momenu ( q ) linearna funkcija r`i{ne cene ( p ) u momenu : d q = α + β p () s gde su α i β konsane. Ponuda na r`i{u u momenu ( q ) zavisi}e od cene koju su proizvo a~i o~ekivali da }e va`ii u momenu. Ako je i funkcija ponude linearna, onda je njen oblik: s q = γ + δ p (2) gde su γ i δ konsane. 2
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji Tr`i{na ravnoe`a zaheva jednakos ponude i ra`nje: q = q = q (3) s d Kako }e se formirai svarna r`i{na cena p? Kori{}enjem jedna~ina ()-(3) lako se dolazi do odgovora: α γ δ p = p (4) β β Sada je jasno za{o su o~ekivanja klju~na za ocenu parameara eorijskog modela. Zavisno od oga kako }e proizvo a~i formirai svoja o~ekivanja o visini r`i{ne cene (kakav je oblik funkcije o~ekivane cene p ) ima}emo i razli~ia re{enja za visinu svarne r`i{ne cene p. Kada bi poljoprivredni proizvo a~i bili sasvim naivni, onda bi bilo mogu}e da uvek predvi aju da }e cena koja je va`ila u jednom periodu va`ii i u narednom: p p = (5) i ada bi sledilo da je dinamika r`i{ne cene odre ena jedna~inom: α γ δ p = p (6) β β Za svaki zadai skup konkrenih vrednosi parameara modela ( α, βγδ),, i po~enu visinu r`i{ne cene ( p ) lako je uverii se da }e oscilacije r`i{ne ravnoe`e iscrai paukovu mre`u. Da je preposavka o "naivnom" formiranju o~ekivanja (5) suvi{e veliko pojednosavljenje modela, davno su povrdila i odgovaraju}a empirijska isra`ivanja (Koas i Flauer (Coase i Flower, 935). Jednosavno, ~ak i poljoprivredni proizvo a~i znaju pone{o o karakerisikama r`i{a na kojima prodaju svoje proizvode. Osim oga, znaju ne{o i o njegovoj isoriji - oni su sposobni da "u~e". Krajnja naivnos prehodnog modela mo`e se bino smanjii ako se preposavi da proizvo a~i znaju da posle perioda hiperprodukcije (niskih cena) dolazi period nedovoljne proizvodnje (visokih cena). Oni mogu formirai eksrapolaivna o~ekivanja (Mecler (Mezler), 94): p = p + ε ( p p ) (7) 2 gde je koeficijen o~ekivanja ε < 0. Za ise po~ene uslove, preposavka (7) o formiranju o~ekivanja o visini r`i{ne cene dove{}e sisem u sanje ravnoe`e u manjem broju ieracija nego "naivna" preposavka (5). Mada nam jedna~ina (7) govori da su proizvo a~i svesni cikli~nog kreanja cena, ona nam ni{a ne govori o ome kojom brzinom oni u~e na sopsvenim 3
Sojan Babi} i Zlako J. Kova~i} gre{kama. Zao je predlo`eno (Kagan, 956) da se proces u~enja formalizuje pomo}u adapivnih o~ekivanja: p = p + η( p p ) (8) gde η predsavlja koeficijen adapacije. On odre uje brzinu sa kojom se predvi anja prilago avaju u~injenim gre{kama. Da bi jedna~ina (8) imala smisla, mora se preposavii da koeficijen adapacije η uzima vrednos u inervalu izme u nule i jedan. U supronom slu~aju, o~ekivana cena ne mo`e bii odre ena na osnovu isorije nivoa r`i{nih cena, odnosno kao njihova ponderisana sredina. To }e bii jasno kada, polaze}i od jedna~ine (8), re{avanjem vrednosi p k i rekurzivnim smenama do jedna~ine za p dobijemo: odnosno ( ) k = η η p k (9) k = p = k k k = p w p gde je w = ( ) k k η η. Vidimo da koeficijen adapacije mora le`ai u navedenom inervalu jer u supronom slu~aju nije obezbe ena konvergennos desne srane jedna~ine (9). [a nam govori jedna~ina (9) o formiranju adapivnih o~ekivanja? Da se o~ekivanja formiraju na osnovu poznavanja ~iave "isorije" visine r`i{ne cene ( p k) ali i o da je vrednovanje ( wk ) informacije o visini r`i{ne cene uoliko manje, ukoliko je ona udaljenija u vremenu. Ako je o vrlina adapivnih o~ekivanja, onda reba re}i i o da je na isom mesu posejana i klica njihovih ozbiljnih mana. Da bi o i pokazali, zamislimo slu~aj da na{ model uklju~uje i promenljivu op{eg nivoa cena i da je neophodno re{ii problem adapivnih o~ekivanja eku}e sope inflacije. Ako je sopa inflacije konsanna i umerena, dobijeni rezulai bi}e zadovoljavaju}i - o~ekivana sopa inflacije bi}e neznano razli~ia od svarne. Ali, ako je inflacija visoka i uz o salno rasu}a? Adapivna o~ekivanja sisemaski }e davai pogre{ne ocene - sopa inflacije bi}e salno podcenjena. To je o~igledno i kada pogledamo ~emu je jednaka suma pondera jedna~ine (9): k η( η) = (0) k = O~ekivana vrednos nivoa cena predsavlja linearnu kombinaciju svih prehodno zabele`enih nivoa cena, pa ne mo`e bii ve}a od najve}e zabele`ene pojedina~ne vrednosi. Dakle, ma koliko dugo bilo iskusvo ekonomskih subjekaa, oni p k 4
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji nikada ne}e bii u sanju da realno procene nivo cena u narednom periodu i bi}e uvek iznena eni njihovim visokim rasom! Ugra ena gre{ka u modelu predvi anja veoma je ozbiljna. Sindikai, na primer, u uslovima visoke inflacije nikada ne bi bili u sanju da predvide adekvaan nivo cena i prisajali bi, praki~no, na sisemaski ni`e realne najamnine od onih koje su u pregovorima zahevali. Kao {o je rekao Fridman (M. Friedman), radnici bi salno bili namagar~eni (Fridman, 968). Zar je o realna preposavka? Ne}e li prilikom formiranja svojih o~ekivanja o budu}im cenama ekonomski subjeki, u ovom slu~aju sindikai, korisii svu raspolo`ivu informaciju (a ne samo informaciju o kreanju cena u prehodnom periodu,..., ), uklju~uju}i i informaciju o svarnoj srukuri ekonomskog modela? Ako se prihvai poziivan odgovor na ovo pianje, onda se prihvaaju i osnovne meodolo{ke preposavke eorije racionalnih o~ekivanja. Ravnoe`a r.o. predsavlja fiksnu a~ku preslikavanja o~ekivanja - o~ekivanja u kojoj o~ekivanja generi{u ishode koji su ideni~ni sa o~ekivanim. Ravnoe`a r.o. predsavlja koncep prirodnog re{enja u modelima u kojima je prisuno formiranje o~ekivanja. Inuiivno obja{njenje za{o se mora preposavii da ekonomski subjeki formiraju r.o. polazi od ~injenice da u alernaivnim modelima oni ~ine sisemaske gre{ke - predvi anja nisu povr ena ishodima u smislu da ona nisu a~na kao prosek (na primer, prosek o~ekivanja individualnih poro{a~a koji se odslikava preko njihove agregane funkcije ra`nje). Prema ome, ekonomski subjeki koji formiraju o~ekivanja uo~avaju svoje sisemaske gre{ke i poku{avaju da koriguju na~in njihovog formiranja kako bi uklonili izvor sisemaskih gre{aka. Tako dolazimo do zaklju~ka da oni ne}e bii u ravnoe`i sve dok ne nau~e da formiraju r.o.. Mo`da je najbolje da na ovom mesu ciiramo originalni izvor gde je hipoeza o formiranju r.o. prvobino i formulisana: "@eleo bih da uka`em da su o~ekivanja, budu}i da predsavljaju na informacijama zasnovana predvi anja budu}ih doga aja, su{inski jednaka sa predvi anjima odgovaraju}e ekonomske eorije... Na{a hipoeza vrdi ri svari: (i) informacije su reke i ekonomski sisem ih uglavnom ne razbacuje; (ii) obrazac formiranja o~ekivanja na poseban na~in zavisi od srukure sisema kojim se opisuje privreda; (iii) "javna predvi anja"...nemaju su{inskog uicaja na funkcionisanje ekonomskog sisema (ukoliko nisu zasnovana na skrivenim informacijama)". (Mu, 96, sr. 36) Prema hipoezi r.o. informacije predsavljaju samo jo{ jedan ograni~en resurs koji reba uporebii na najbolji na~in. Ekonomski subjeki koji maksimiziraju svoj uilie korisi}e sve informacije koje im u om cilju soje na raspolaganju, uklju~uju}i i sopsveno znanje o srukuri ekonomskog sisema. A ono je, u principu, jednako ukupnoj raspolo`ivoj informaciji u momenu dono{enja odluke. 5
Sojan Babi} i Zlako J. Kova~i} Sada mo`emo da se vraimo na{em po~enom modelu paukove mre`e i da poka`emo kako se dolazi do re{enja ako se u njemu formiraju racionalna o~ekivanja. Po~eni model sada glasi: d q = α β p () s q = γ + δ p + u (2) q = q = q (3) s d Pomalo hiaju}i ka re{enju uka`imo da je, barem inuiivno, jasno da ukoliko ekonomski subjeki korise svu raspolo`ivu informaciju, uklju~uju}i i onu o srukuri "isiniog" modela privrede, onda njima mora bii poznaa i ravnoe`na cena. U na{em modelu, ponuda }e se planirai uz o~ekivanje da }e cena bii r jednaka ravnoe`noj ( p = p ). Ako bi o auomaski zna~ilo da }e proizvedena koli~ina zaisa i bii jednaka planiranoj, ada budu}nos vi{e ne bi bila nedoku~iva - formiranje r.o. vrailo bi nas u sve deerminizma i salne nepomu}ene op{e ravnoe`e. O~ekivani ishodi odluka svih subjekaa uvek bi se poklapali sa osvarenim! U na{em modelu na puu u akav sve deerminizma soji samo jedan ~lan - sohasi~ki ~lan u u jedna~ini ponude (2). Mada proizvo a~i znaju kakva je ravnoe`na cena oni ne mogu znai kakve }e bii }udi prirode u periodu proizvodnje. Planirana proizvodnja uvek }e se razlikovai od osvarene upravo za njihov uicaj (u). Sada je lako re{ii na{ sisem ()-(3) za vrednos r`i{ne cene u nekom momenu : α γ δ p = p u (4) β β β Svarna cena u nekom periodu zavisi od o~ekivne cene (p) ali i od uicaja vremena na prinos ( u ). Da bi dobili kona~no re{enje i ovoga pua moramo eksplicino odredii kako se formiraju o~ekivanja. I u dolazimo na klju~nu a~ku. Muova inovacija sasoji se u ome da se o~ekivana cena posmara kao endogena u odnosu na ~iav model, da se posmara kao promenljiva ~iju vrednos generi{e sam model. Preposavlja se da je ekonomskim subjekima poznaa srukura modela koja je predsavljena sisemom jedna~ina ()-(3) i da oni korise u informaciju da bi formirali svoja o~ekivanja. Formalno, formiranje r.o. predsavljeno je jedna~inom: p ( ) = E p (5) gde E () i predsavlja maemai~ko o~ekivanje, uslovljeno raspolo`ivom informacijom u periodu. Ali, u periodu ekonomskim subjekima poznaa je i jedna~ina (4) jer im je poznaa i srukura modela ()-(3) iz koga je ona i 6
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji izvedena. Tako dobijamo, korise}i dve poslednje jedna~ine, izraz za formiranje r.o. visine r`i{ne cene: pa re{avanjem po p dobijamo: p ( ) = E p α γ δ = E E p E u β β β α γ δ = p E u β β β ( ) α γ p = E u β + δ β + δ ( ) Podseimo se da re{enje na{eg po~enog "naivnog" deerminisi~kog modela ()-(3) glasi: p r = p = α γ β + δ pa mo`emo konsaovai da je o~ekivana cena p jednaka sumi ravnoe`ne cene i ponderisane o~ekivane vrednosi (uslovljene raspolo`ivom informacijom u periodu ) slu~ajnih varijacija u ponudi p = p E u β + δ ( ) r Jedna~ina (6) nam jasno pokazuje da se r.o. zasnivaju i na informaciji o samoj srukuri sisema (skup parameara α, βγδ).,, Kada su razli~ii ipovi o~ekivanja definisani onda se sa vi{e udobnosi mo`e diskuovai njihova uloga u konsrukciji makroekonomskih eorija. (6) Racionalna o~ekivanja i makroekonomska eorija Kada se razmi{lja o praki~noj relevannosi neke ekonomske eorije vredi se priseii re~i svakako najpoznaijeg i jednog od najve}ih ekonomisa XX veka: "Ideje ekonomisa i polii~kih filozofa, i kada su a~ne i kada su pogre{ne, mo}nije su nego {o se o obi~no shvaa. Zaisa, sveom jedva da upravlja i ne{o drugo." (Kejnz, 936, sr.383) Zaisa, moglo bi se re}i da se i ekonomisi, popu filozofa, dele na one koji bi sve (ekonomskih fenomena) da uma~e, i one koji bi i da ga menjaju. Razvoj 7
Sojan Babi} i Zlako J. Kova~i} ideja o svrsishodnosi i samoj mogu}nosi inervencije u sponane okove ekonomske akivnosi o upe~aljivo povr uje. Teorija r.o. svoj puni zamah dobila je u konroverzi oko sagflacije razvijenih zapadnih privreda okom sedamdeseih godina. Sa makroekonomskom eorijom r.o. kao da se zavara krug koji polazi od Sejovog (v. Say, Jean-Bapise, 767-832) zakona samoregulacije r`i{ne privrede koja obezbe uje punu zaposlenos svih fakora proizvodnje i, samim ime, svaku inervenciju dr`ave u ekonomskom `ivou ~ini izli{nom. Na supronoj srani og kruga je Kejnzova eorija hroni~ne nedovoljne zaposlenosi koja implicira neophodnos dr`avne inervencije preko kreiranja po`eljnog volumena efekivne ra`nje pomo}u insrumenaa ekonomske poliike. Teorija r.o. vra}a se ka Seju, ali preko Kejnza - ona vrdi da nije mogu}e ni rajno, ni krakoro~no, kori{}enjem insrumenaa ekonomske poliike, podi}i nivo ekonomske akivnosi do sanja pune zaposlenosi proizvodnih ~inilaca. Ili, {o je iso, posoji dugoro~na prirodna sopa nezaposlenosi. Ignorisanje posojanja prirodne sope nezaposlenosi i e`nja da se ona rajno smanji mo`e dovesi samo do rajnog porasa inflacije. U om smislu mo`e se re}i da su Kejnzijanci raspolo`eni da menjaju sve dok su prisalice nove makroekonomske eorije, ~ije je upori{e eorija r.o., vi{e nego skepi~ni u odnosu na akav opimizam. Moglo bi se re}i da je eorija r.o., mada je ponikla prilikom reiranja mikoroekonomskih problema racionalnog odlu~ivanja, duboku brazdu zaorala i u domenu makroekonomske eorije. Kao pou~an primer u om pogledu mo`e da poslu`i reiranje problema me usobne uslovljenosi inflacije i nezaposlenosi. Ako je Hiksov LM-IS model (v. LM-IS model) osnovna meafora Kejnzove op{e eorije, onda je, uslovno re~eno, Filipsova kriva (v. Filipsova kriva) krajnja meafora LM-IS modela na erenu empirijskih podaaka. Ekonomisi su dugo verovali da je Filipsova kriva ono analii~ko sredsvo koje mo`e da poslu`i kao a~ka oslonca za praki~nu primenu kejnzijanske akivisi~ke ekonomske poliike. Na osnovu ekonomerijske analize saisi~kih serija sope nezaposlenosi i sope inflacije u Velikoj Brianiji u periodu 86-957 Filips (A. W. Phillips) je do{ao do praki~nog zaklju~ka: svaki poras zaposlenosi ima svoju cenu - poras inflacije. Mislilo se da je o empirijska povrda LM-IS modela. Debaa je zapo~ela sa radovima Fridmana (968) i Felpsa (E. S. Phelps, 970). Sa uvo enjem hipoeze o posojanju prirodne sope nezaposlenosi Filipsova kriva posaje iluzija - ne posoji "rade-off" izme u nezaposlenosi i inflacije ve} samo "rade-off" izme u nezaposlenosi i nepredvi ene inflacije. Ako je inflacija nepredvi ena, ada se firme br`e prilago avaju (porasom cena svojih proizvoda) nego r`i{e radne snage. Rezula je privremeni poras zaposlenosi jer }e proces "u~enja" doprinei da radnici ra`e vi{e nominalne (pa ime i realne) najamnine kako bi kompenzirali inflaorne gubike. Nova ravnoe`a na r`i{u radne snage usposavlja se uz manju zaposlenos i vi{e realne nadnice. Prema ome, hipoeza 8
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji o prirodnoj sopi nezaposlenosi implicira da posoji samo "rade-off" izme u privremenog pove}anja zaposlenosi i rajnog pove}anja inflacije. Teorija prirodne sope nezaposlenosi Fridmana i Felpsa izvedena je na preposavci adapivnih o~ekivanja. A sa om preposavkom ovara se prosor i za vo enje akivisi~ke ekonomske poliike u du`em vremenskom inervalu. Da bi se sopa zaposlenosi odr`avala na rajno vi{em nivou od "prirodnog" porebno je salno pove}avai nivo inflacije. Sam Fridman je vrdio da proces prilago avanja inflaornih o~ekivanja mo`e da raje veoma dugo, ~ak i vi{e decenija, dozvoljavaju}i ako mogu}nos inflaornih korisi za nivo op{e zaposlenosi. Teorei~ari r.o. ako e polaze od hipoeze o posojanju prirodne sope nezaposlenosi, ali posavljaju klju~no pianje: da li se preposavka da ekonomski subjeki mogu pravii sisemaske gre{ke mo`e prihvaii kao korekna? za{o imamo pravo da preposavimo da su u~esnici u ekonomskoj akivnosi salno obmanjivani odvijanjem inflacije? To bi zna~ilo da oni nisu racionalni, da nisu sposobni da u~e na svojim gre{kama, odnosno da korise svu raspolo`ivu informaciju (uklju~uju}i i informacije o predlaganoj monearnoj i fiskalnoj poliici) koja im soji na raspolaganju prilikom dono{enja odluka. To su razlozi da se mora prihvaii hipoeza da ekonomski akeri u svojim predvi anjima budu}ih doga aja gre{e, ali da e gre{ke nisu sisemaske nego slu~ajne prirode. Kao {o su isakli Sard`en i Valas (T. Sargen i N. Wallace) (976), implikacije ovakvog meodolo{kog sava za ocenu delovornosi monearne poliike su prili~no zapanjuju}e. Po{o ekonomski akeri more na monearne vlasi i u sanju su da pove`u posledice monearne poliike za kreanje nivoa cena, samo nepredvi eni monearni ras mo`e ih dovesi u zabludu i ime uicai na pomeranje a~ke ekonomske ravnoe`e. Prema ovoj analizi sledi da samo nenajavljena i/ili nepredvi ena monearna poliika mo`e imai privremeni uicaj na odsupanje sope nezaposlenosi od njenog "prirodnog" nivoa. Uvo enjem koncepa r.o. u makroekonomsku eoriju ovaraju se brojna pianja. Na primer, da li je navedeni eorijski sav o nemo}i predvidive monearne poliike oporan na blage modifikacije modela? Da li isklju~ivo slu~ajne gre{ke u predvi anju inflacije mogu vodii u posojanos privrednih ciklusa koji su karakerisi~ni i za savremene privrede? Da li posoji pouzdana empirijska povrda da se funkcija agregane ponude formira na osnovu r.o.? Da li je sraegija izgradnje ekonomerijskih modela koja ne polazi od r.o. korekna, pa samim ime da li je korekna procena alernaivnih sraegija ekonomske poliike koja se oslanja na uporebu ovakvih modela (v. Lukasova kriika). Svako od navedenih pianja predsavlja posebne eme koje su bogao zasupljene u lierauri. Na ovom mesu ukaza}emo samo na neke probleme uklju~ivanja r.o. u ekonomerijske modele. 9
Sojan Babi} i Zlako J. Kova~i} Racionalna o~ekivanja u ekonomerijskim modelima Ukazali smo na o da je revolucija r.o. u ekonomiji vodila ka preispiivanju osnovnih rezulaa Kejnzijanske makroekonomske poliike. Paralelno sa ime eklo je i meodolo{ko preispiivanje makroekonomerijskih modela koji su se oslanjali uglavnom na Kejnzijansku radiciju. To je isovremeno dovelo u ozbiljnu sumnju eorijsku osnovu svake od eapa ekonomerijskog modeliranja. [avi{e, pod znak pianja je savljena i cela, do ada vladaju}a paradigma u ekonomeriji, koja je od 50-ih godina ovog veka bila zasnovana na linearnom regresionom modelu i analizi pogre{ne specifikacije, kao i modelu simulanih jedna~ina, njegovoj idenifikaciji i ocenjivanju (v. Ekonomerijski modeli). ^ine se poku{aji da se, po~ev{i od podele varijabli na endogene i egzogene, preko formiranja uzro~nih veza (v. Uzro~nos), idenifikacije i ocenjivanja radicionalnih modela, pa do kori{}enja modela u svrhe vrednovanja alernaivnih mera ekonomske poliike (v. Lukasova kriika), svaka eapa meodolo{ki ako uobli~i da se u {o manjoj meri uzima kao definiivno o {o smo apriori preposavili, nego se sve podvrgava formalnoj saisi~koj proceduri esiranja. Drugim re~ima, osavlja se da i podaci govore za sebe, ~ime se opo~inje sa uemeljenjem svojevrsne sineze dva prisupa analizi ekonomskih vremenskih serija: ekonomerijskog prisupa i prisupa sa sanovi{a analize vremenskih serija. Da bismo ukazali na neke od problema koji su implicirani uvo enjem hipoeze o r.o. u ekonomerijski model i re{enjima koja su za njih predlo`ena, poslu`i}emo se jednosavnim makromodelom Kejnzijanskog ipa. Upoznaos doma}ih ekonomisa sa modelima og ipa i mogu}nos da se poka`e da r.o. mo`emo ugradii i u Kejnzijanske modele, a ne samo monearisi~ke, kako se o ina~e pogre{no veruje, opredelili su nas da izaberemo ovaj primer. Generalizacija modela simulanih jedna~ina bi nesumnjivo bolje isakla op{e probleme remana r.o. od ovog specifi~nog modela. Me uim, visoki zahevi koji idu uz aj rigorozan reman prevazilaze okvire ovog eseja ~iji je prevashodni cilj da eksplicira osnovne koncepe izgra ene oko r.o.. U cilju izlaganja meoda re{avanja linearnih modela r.o. dajemo slede}i makroekonomski model: C = αy + ε, ( 0 < α < (7) I = ( E Y Y ) (8) β G = G (9) Y = C + I + G (20) 0
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji gde je C, I, G, Y poro{nja, invesicije, bud`e i dohodak, respekivno (svi u realnom izrazu); α, β i G su konsane, E Y je r.o. od Y, a ε je normalno raspore ena gre{ka modela sa sredinom nula i konsannom varijansom. Re~ je, dakle, o sandardnom Kejnzijanskom modelu sa poro{nom funkcijom baziranoj na eoriji apsolunog dohoka i gde je jedna~inom (8) iskazan princip akceleraora prema kome invesicije zavise od o~ekivane promene dohoka, pri ~emu je raspolo`iva informacija u periodu. R.o. formiramo za eku}i period,. Na prehodnim sranama smo, re{avaju}i model paukove mre`e uz r.o., primenili jedan od meoda re{avanja linearnih modela r.o.. Podse}amo da smo prvo odredili redukovanu formu modela (jedna~ina cene je daa izrazom (4)), a zaim smo pora`ili o~ekivanu vrednos dobijenog izraza. Re{avanjem po o~ekivanoj vrednosi dobili smo re{enje za varijablu o~ekivanja, koju smo u re}oj eapi zamenili u redukovanoj formi cenovne jedna~ine. Upravo ova rosepena procedura defini{e zv. meod odre ivanja o~ekivanja na osnovu redukovane forme. Za gornji makromodel zamenom izraza (7), (8) i (9) u jedna~inu (20) dobijamo nakon sre ivanja: G ε Y = γ ( E Y Y ) + + (2) α α β gde je γ =. Time smo dobili redukovanu formu za varijablu dohoka. U α drugoj eapi odre ujemo o~ekivanu vrednos dobijenog izraza u vremenu, uzimaju}i u obzir da je E ε = 0, a da je G konsana: γ G E Y = Y + (22) α ( α)( γ) Nakon {o uvrsimo o~ekivanje dao izrazom (22) u jedna~inu redukovane forme (2), dobijamo posle par koraka re{enje modela za dohodak kod koga je ugra ena hipoeza o r.o.: γ G ε Y = Y + + γ α γ α ( )( ) Pored navedenog ukaza}emo na jo{ jedan meod re{avanja linearnih modela r.o. koji hronolo{ki prehodi osalim meodama. U lierauri se sre}e pod nazivom: meod neodre enih koeficijenaa ili, prema svom auoru, Muov meod. Ovaj meod korisi rezula dobro poznae Voldove (H. Wold) eoreme prema kojoj se ma koji sacionarni proces mo`e jednozna~no izrazii preko beskona~nog pokrenog proseka gre{aka (e) (v. ARIMA modeli) i deerminisi~ke komponene. (23)
Sojan Babi} i Zlako J. Kova~i} Kod Muovog meoda polazimo od redukovane forme dohoka (2) i na osnovu Voldove eoreme pi{emo re{enje jedna~ine (2) kao: Y = Y + π ε (24) i i i= 0 Zadaak je da odredimo vrednosi Y i π i ako da dobijemo za na{ model re{enje u koje je ugra ena hipoeza o r.o.. Posupak je zasnovan na zameni Y na osnovu (24) u redukovanu formu modela G ε Y + πε i i = γ Y πε i i Y πε i i + + i= 0 i= i= 0 α α (25) Da bi va`ila jednakos daa izrazom (25) moraju bii ispunjena dva uslova. Prvi, da je G Y = (26) α (zao {o konsane s leve i desne srane izraza (25) moraju bii jednake) i drugi, po{o ε mo`e bii ma koji broj, da bi jednakos bila zadovoljena svi koeficijeni uz ε, ε,... moraju bii jednaki nuli. Izjedna~avanjem koeficijenaa nalazimo: ε πε 0 = π 0 α α γ πε = γ( π π0) ε π = π 0 (27) γ γ πε 2 = γ( π2 π) ε 2 π 2 = π γ odn. u op{em slu~aju γ π i = π i, za i (28) γ Re{enje je dao jedna~inama (24), (26), (27) i (28). Da se zaisa na osnovu navedenih jedna~ina dobija izraz (23) dovoljno je da od izraza (24) napisanog u razvijenom obliku Y = Y + πε + πε + πε + (24') oduzmemo gde je γ δ =, pa da dobijemo: γ 0 2 2... δy = δy + δπ ε + δπ ε + (29) 0 2... 2
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji Y δy = Y δy + π ε + ( π δπ ) ε + ( π δπ ) ε +... (30) 0 0 2 2 Uz uslove (26), (27) i (28) dobijeni izraz (30) se svodi na izraz (23), {o je re{enje dobijeno kori{}enjem prvog meoda. Oba do sada razmarana modela (model paukove mre`e i makromodel) sadr`e eku}a o~ekivanja. Me uim, ukoliko model r.o. sadr`i o~ekivanja budu}ih vrednosi varijable, ada se njegovo re{avanje dodano komplikuje zbog oga {o model vi{e nema jedinsveno re{enje. To se mo`e pokazai kori{}enjem makromodela u kome smo modifikovali invesicionu funkciju (8) ako {o smo E Y zamenili sa E Y +. Uz ovu izmenu redukovana forma dohoka sadr`i budu}a o~ekivanja, j. Y = γ ( E Y Y + G+ ε (3) + ) Ako pora`imo o~ekivanu vrednos jedna~ine (3) u vremenu dobi}emo nakon sre ivanja γ G E Y = E Y+ + (32) + γ + γ Za razliku od prvobine verzije makromodela, ukoliko uklju~imo o~ekivanje o budu}im vrednosima varijabli nismo u mogu}nosi zamenii jedna~inu (32) u redukovanu formu za dohodak (3) jer je na osnovu (3): Y = γ ( EY Y ) + G+ ε, a odre ivanjem o~ekivane vrednosi u sledi: + + 2 + + E Y γ G = E Y + + γ + γ + + 2 Zna~i da }e kod modela koji uklju~uje o~ekivanja budu}ih vrednosi varijabli, o o~ekivanje bii povezano sa o~ekivanjem svih budu}ih vrednosi e varijable. Na osnovu (32) i (33) imamo u op{em slu~aju za ovaj model: E Y + i + i+ (33) γ G = E Y + + γ + γ, za i 0 (34) Kako je jedna~ina (34) diferencna jedna~ina prvog reda, mo`e se pokazai da je njeno re{enje dao sa: + γ E Y+ i+ = ( E Y+ + G) + G, za i 0 (35) γ Odavde se vidi da inicijalna vrednos E Y + mo`e bii proizvoljno izabrana. Drugim re~ima, na osnovu (34), ukoliko o~ekujemo da Y + i + uzme odre enu vrednos, uvek posoji vrednos E Y + koja }e bii saglasna sa om odre enom i 3
Sojan Babi} i Zlako J. Kova~i} vredno{}u, odn. ne posoji jednozna~no re{enje modela koje generi{e upravo u redukovanu formu za dohodak (3). Posoji bogaa lieraura o meodama re{avanja linearnih modela r.o. sa budu}im o~ekivanjima (Pesaran (987)). Pored Muovog meoda u uporebi su: meod operaora (ili meod z ransformacije), meod rekurzivne zamene unapred, meod maringala i meod razlike maringala. Kao {o je napomenuo, u modelima sa budu}im o~ekivanjima prisuan je problem nejedinsvenog re{enja. Navedene meode re{avanja modela vode ka vi{esrukom re{enju, pa je porebno iz beskona~nog skupa re{enja izabrai jedno. U e svrhe je definisano nekoliko krierijuma izbora koje mo`emo svrsai u slede}e grupe: krierijum ekonomske opimalnosi, krierijum sacionarnosi, krierijum minimalne varijanse i krierijum minimalnog kori{}enja predeerminisanih varijabli. Me uim, oni nevode uvek ka izboru jedinsvenog re{enja, a ~eso nemaju, zbog svoje ad hoc prirode, adekvano ekonomsko obja{njenje. Naredni problem sa kojim se suo~avamo jese idenifikacija linearnih modela r.o.. Sve dok model nije idenifikovan, nije mogu}e dai smislenu inerpreaciju oceni njegovih parameara. Za razliku od idenifikacije klasi~nih ekonomerijskih modela simulanih jedna~ina kod ovih modela poznai uslovi reda i ranga (v. Idenifikacija) nisu primenjivi. Problem idenifikacije mo`emo posmarai kako sa sanovi{a jedne jedna~ine, ako i sa sanovi{a modela simulanih jedna~ina. U prvom slu~aju pokazano je da se, bez apriornih ograni~enja na proces koji je generisao egzogene varijable i gre{ke, odn. poreme}aje modela, javlja problem "observacione ekvivalennosi" modela r.o. i op{eg modela raspore enih docnji. To zna~i da se u op{em slu~aju dva meoda generisanja o~ekivanja: adapivna i racionalna, ne mogu razlu~ii jedan od drugog ukoliko nisu namenua navedena ograni~enja. Uslovi idenifikovanosi modela r.o. od jedne jedna~ine koji sadr`i eku}a o~ekivanja sa nekorelisanim poreme}ajima su: a) u modelu posoje varijable akve da se njihova vrednos u vremenu ne mo`e perfekno anicipirai u renuku -; b) red procesa koji je generisao varijable koje se ne mogu perfekno anicipirai je srikno ve}i od reda raspore enih docnji za predeerminisane varijable modela. Ako u linearni model r.o. uklju~imo budu}e o~ekivanje, ada se zbog problema nejednozna~nosi re{enja i nelinearne prirode ograni~enja koja se name}u u cilju posizanja idenifikovanosi dodano uslo`njava pianje njegove idenifikacije. [avi{e, ehni~ki problemi idenifikacije u ovim modelima jo{ nisu do kraja ras~i{}eni. Problem idenifikacije u linearnim modelima simulanih jedna~ina r.o., odnosno procedura za proveru idenifikovanosi pojedinih jedna~ina i modela u celini je ehni~ki izuzeno slo`en problem. U krajnjoj insanci uslov reda i ranga ukazuje na zna~aj apriorne informacije o maksimalnoj du`ini docnje u 4
Racionalna o~ekivanja Uloga o~ekivanja u ekonomskoj eoriji ekonomskim relacijama za idenifikaciju ovih modela, uosalom kao {o je o bio slu~aj i sa idenifikacijom modela od jedne jedna~ine. Ukoliko su ispunjeni uslovi idenifikacije modela mo`e se prisupii njegovom ocenjivanju. Brojni meodi ocenjivanja linearnih modela r.o. mogu se podelii u dve grupe ve} prema ome u kom sepenu korise informaciju o procesu koji je generisao egzogene varijable modela. Prva grupa meoda korisi popuni opis svih sohasi~kih procesa koji su uklju~eni u model, pa se soga ove meode nazivaju meode sa popunom informacijom. Za razliku od njih, meode iz druge grupe predposavljaju da je raspolo`iv dovoljan skup insrumenaa za ocenjivanje, zao za ove ocene ka`emo da su sa "ograni~enom informacijom". Obi~no su ocene iz druge grupe manje efikasne od ocena iz prve grupe. Napokon, {o se esiranja hipoeza u modelima r.o. i~e, hipoezu r.o. mo`emo opisai kao poseban ip ograni~enja izme u jedna~ina. Ova ograni~enja usposavljaju vezu izme u parameara redukovane forme jedna~ina sa r.o. i parameara jedna~ina koje opisuju mehanizam generisanja egzogenih varijabli. Spomenua veza predsavlja osnovu za klasu indireknih esova hipoeze r.o.. Direkni esovi ove hipoeze zasnovani su na direknim observacijama o~ekivanja (v. Tesiranje hipoeze o racionalnim o~ekivanjima). [o se indireknih esova kao esova hipoeze r.o. i~e porebno je napomenui da oni krii~no zavise od valjanosi modela bez ograni~enja. Soga odbacivanje ograni~enja izme u jedna~ina jo{ ne zna~i odbacivanje hipoeze r.o.. Ovo se mo`e objasnii pogre{nom specifikacijom polaznog modela koji predsavlja osnovu indireknih esova. Saisi~ki esovi koji se korise u svrhe esiranja ovih ograni~enja su naj~e{}e LR i W es (v. LR, W i LM esovi). Razvoj eorije racionalnih o~ekivanja je neprekidan. Od poku{aja formulisanja op{e dinami~ke makroekonomske eorije, preko problema ravnoe`e efikasnih (finansijskih) r`i{a, eorije deviznog kursa, eorije ravnoe`e na r`i{u radne snage, privrednih ciklusa, do modela pona{anja oligopolskih r`i{a. ^iava plejada isaknuih ekonomisa, Sard`en, Baro (R. J. Barro), Dornbu{ (R. Dornbusch), Lukas (R. E. Lucas), Grosman (S. Grossman), Kreps (D. Kreps) - da pomenemo samo neka od najisaknuijih imena - svojom produkivno{}u posavljaju visoke zaheve svima onima koji `ele da prae razvoj discipline. Ako ome dodamo i ekonomerijske probleme koji su nerazdvojni sklop reiranja problema o~ekivanja u ekonomskoj eoriji, jasno je da se zaineresovanom isra`iva~u nude velike {anse ali mu se, na sre}u ili na `alos, vredni rezulai unapred ne garanuju. Ekonomska misao se definiivno i nepovrano odvojila od publicisike i ime sebi izborila saus posebne nauke. 5
Sojan Babi} i Zlako J. Kova~i} LITERATURA Begg D. K. H., The Raional Expecaions Revoluion in Macroeconomics, Oxford: Philip Allan, 982. Cagan P., "The Moneary Dynamics og Hyperinflaion", Sudies in he Quaniy Theory of Money, M.Friedman (ur.), Chicago: Universiy of Chicago Press, 956. Coase R. i R. Fowler, "Bacon Producion and he Pig-cycle in Grea Briain", Economica, maj, 935. Friedman M., "The Role of Moneary Policy", American Economic Review,.58, mar, 968. Holden K., D. A. Peel i J. T. Thompson, Expecaions - Theory and Evidence, London: MacMillan, 985. Keynes J. M., The General Theory of Employmen, Ineres and Money, London: Macmillan, 936. Lucas R. E., "Economeric Policy Evaluaion: A Criique, u K. Brunner i A. H. Melzer (ur.) The Phillips Curve and Labor Markes, Carnegie-Rocheser Conference Series on Public Policy,., Amserdam: Norh-Holland, 976. Lucas R. E. i T. J. Sargen (ur.), Raional Expecaions and Economeric Pracice,., London: George Allen and Unwin, 98. Mezler L., "The Naure and Sabiliy of Invenory Cycles", Review of Economics and Saisics,.23, avgus, 94. Mishkin F. S., Raional Expecaion Approach o Macroeconomics - Tesing Policy Ineffeciveness and Efficien-Markes Models. NBER Monograph, Chicago: Universiy of Chicago Press, 983. Muh J. F., "Raional Expecaions and he Theory of Price Movemens", Economerica,.29, juli, 96. Pesaran M. H., The Limis o Raional Expecaions, Oxford: Basil Blackwell, 987. Phelps E., "The New Microeconomics in Employmen and Inflaion Theory", u Microeconomic Foundaions of Employmen and Inflaion Theory, E.Phelps (ur.), New York: Noron, 970. Sargen T. J., Dynamic Macroeconomic Theory, Cambridge, Mass.: Harvard Universiy Press, 987. Sargen T. J. i N. Wallace, "Raional Expecaions, he Opimal Moneary Insrumen and he Opimal Money Supply Rule", Journal of Poliical Economy,.83, sr. 24-55. 6