Динамика крутог тела

Величина: px
Почињати приказ од странице:

Download "Динамика крутог тела"

Транскрипт

1 Динамика крутог тела. Задаци за вежбу 1. Штап масе m и дужине L се крајем А наслања на храпаву хоризонталну раван, док на другом крају дејствује сила F константног интензитета и правца нормалног на штап. Одредити потребан интензитет силе F да би се штап кретао тако да је угао који образује са хоризонталом константан. Колика је промена момента количине кретања за центар штапа током овог кретања? Oдредити кретање центра штапа. Такође, одредити колика је промена кинетичке енергије штапа када се крај А штапа помери за величину d? 2. Хомогени цилиндар полупречника R и масе m се креће низ храпаву стрму раван нагиба. Коефицијент трења клизања је. Одредити растојање h од стрме равни на ком треба да дејствује константна сила F паралелно са стрмом равни, да би се цилиндар кретао тако да правац CD на диску остаје током кретања нормалан на стрму раван. Одредити и кретање центра масе цилиндра. За колико се промени кинетичка енергија цилиндра, када се центар диска C помери за величину b дуж стрме равни. 3. Хомогени штап AB масе m и дужине L се креће у вертикалној равни у хомогеном пољу силе земљине теже. Отпор кретању штапа кроз ваздух занемарити. Кретање штапа се разматра у приказаном Декартовом координатном систему. Ако центар штапа C у почетном тренутку има брзину v 0 и налази се на y оси ( y C L ), док му је почетна угаона брзина једнака нули, одредити за два различита почетна положаја приказана на сликама а и б: а) Кретање штапа у оба случаја; б) За који случај ће центар штапа C пре доспети на x осу? в) Укупну механичку енергију штапа када центар C доспе на x осу.

2 4. Штап масе m и дужине L је крајем А везан за подлогу помоћу непокретног цилиндричног зглоба (Слика 11.4 а). У почетном тренутку штап је у вертикалном положају и започиње кретање из стања мировања. а) Како гласи момент количине кретања за осу цилиндричног зглоба, ако је момент инерције за осу која пролази кроз центар 1 2 масе штапа JC ml? 12 б) Како гласи кинетичка енергија штапа? в) Колика је укупна механичка енергија штапа када дође у хоризонтални положај? г) Одредити реакцију цилиндричног зглоба у функцији угла ; д) Одредити реакцију цилиндричног зглоба (у функцији угла ) у случају да се маса штапа замемари, а на његов крај постави материјална тачка исте масе m. (Слика 11.4 б). Упоредити та два решења (за случај тешког штапа и случај лаког штапа са концентрисаном масом на крају) када штап пролази кроз хоризонтални положај. 5. Штап масе m и дужине L је у тачки O за подлогу везан помоћу непокретног цилиндричног зглобa. За штап је на крају О везана торзиона опруга крутости k. У положају равнотеже штап је хоризонталан, одакле штап започиње кретање са почетном угаоном брзином 0. а) Одредити диференцијалну једначину кретања штапа у односу на приказани (хоризонтални) положај равнотеже. За координату која описује кретање усвојити угао. б) Колика је промена кинетичке енергије штапа између почетног и положаја дефинисаног углом ; в) Одредити закон кретања штапа за случај малих вредности угла. О каквом кретању се ради и колика је сопствена кружна фреквенција овог система. Упоредити добијене резултате са резултатима из задатка 8.4 (лаки штап са масом m на његовом крају, приказан на Слици 11.5 б)

3 6. Терет масе М који је постављен на храпаву хоризонталну раван је везан за крај нерастегљивог ужета које се намотава на цилиндар полупречника R. Са другог цилиндра полупречника r који је аксијално и круто везан са већим цилиндром, намотано је друго уже које се одмотава и на чијем крају је окачен терет масе m. Ова два цилиндра чине једно круто тело (добош) које је у свом средишту везано за подлогу помоћу непокретног цилиндричног зглоба. Момент инерције добоша за осу која пролази кроз цилиндрични зглоб и управна је на раван кретања је познат и износи J. Ако систем започиње кретање из стања мировања, одредити: d а) Момент количине кретања овог материјалног система за осу цилиндричног зглоба; б) Укупну кинетичку енергију овог система; в) угаону брзину терета добоша након што се терет II спусти за висину h. Колике су брзине тела и у том тренутку; г) Силе у ужадима. 7. Штап масе m и дужине L се у приказаном равнотежном положају одржава помоћу непокретног цилиндричног зглоба и вертикалног идеалног ужета везаног за крај B. У једном тренутку је уже пукло. Одредити реакцију цилиндричног зглоба непосредно након пуцања ужета. Упоредити добијени резултат са реакцијом зглоба пре пуцања ужета (у равнотежном положају). а) Диференцијалну једначину кретања; 8. Тело произвољног облика масе m је за подлогу везано само у тачки О помоћу непокретног цилиндричног зглоба. Након извођења из равнотежног положаја (у којем је центар масе C на истој вертикали са тачком О) тело се обрће (клати) око осе цилиндричног зглоба, која је у правцу нормале на раван цртежа. Одредити: б) Једначину кретања у случају да је угао мали ( sin ). Одредити кружну фреквенцију и период;

4 в) положај lr на којем је потребно поставити материјалну тачку исте масе као и тело, тако да период осциловања (математичког клатна) буде исти као у случају кретања тела које је одређено под б) (Слика 11.8 б). 9. Штап масе m и дужине L се креће у вертикалној равни у хомогеном пољу силе земљине теже. Потребно је одредити кретање штапа у задатом декартовом координатном систему xoy. Познато је да је у почетном тренутку штап на y оси ( y C L ) и да је интензитет v0 почетне брзине његовог средишта C. Такође је познато да је почетна угаона брзина штапа Штап масе m и дужине L се одржава у приказаном равнотежном положају (угао између штапа и равни је познат и износи ) тако што се крајем А ослања на глатку хоризонталну раван, док је помоћу ужета закачен за непокретну тачку. Ако уже у једном тренутку пукне, одредити колика је у том тренутку реакција подлоге. 11. Штап масе m и дужине L је у тачки C везан зглобно за лаки клизач. Лаки клизач се може кретати по храпавој хоризонталној вођици. На штап дејствује сила F чији је правац увек нормалан на осу штапа. Одредити кретање штапа. 12. Одредити кинетичку енергију у случају кретања тела на Слици 4 а и б, ако је познат интензитет брзине средишта тела v 0 a) диска масе m и полупречника R који се котрља без клизања по непокретној хоризонталној равни б) штапа AB којем крајеви клизе по непокретној хоризонталној, односно вертикалној подлози.

5 13. Одредити силу трења између диска и хоризонталне равни, уколико се ради о котрљању без клизања, за два различита начина дејства силе F, како је приказано на сликама а) и б). 14. Диск масе m и полупречника R, започиње кретање по хоризонталној равни котрљањем без клизања из стања мировања. На центар диска дејствује хоризонтална сила, сталног смера, чији се интензитет током времена мења по закону F k t, где је k const 0. Одредити тренутак t 1 у коме ће диск почети да проклизава и пут S који ће центар диска прећи до тог тренутка. 15 Диск масе m и полупречника r се креће по хоризонталној равни. У почетном тренутку је свим тачкама диска саопштена у хоризонталном правцу иста брзина, интензитета v 0. Одредити тренутак t1 у коме ће диск почети да се котрља без клизања. Колики пут S пређе центар диска до тог тренутка. Коефицијент трења између диска и пода је. 16. Диск масе m и полупречника R започиње кретање из стања мировања низ стрму раван нагибног угла. Одредити како се у функцији положаја мења брзина центра диска, ако се он котрља без клизања. Који услов треба да задовољава коефицијент трења између диска и стрме равни да би котрљање без клизања било остварено.

6 17. Штап масе m и дужине L се у приказаном равнотежном положају одржава помоћу два покретна лежишта и вертикалног идеалног ужета везаног за крај B. У једном тренутку је уже пукло. Одредити реакцију лежишта А непосредно након пуцања ужета. Упоредити добијени резултат са реакцијом зглоба пре пуцања ужета (у равнотежном положају). 18. За обод диска масе m и полупречника R је обмотано уже чији је други крај непокретан. Слободан део ужета је паралелан стрмој равни на којој је постављен диск. Ако се диск пусти из стања мировања да се слободно креће низ стрму раван, одредити а) убрзање центра диска; б) силу у ужету; в) угаону брзину диска када се центар диска током кретања нађе у положају који је на растојању b од почетног. 19. На диск масе m и полупречника R дејствује спрег константног интензитета и приказаног смера. Диск је постављен на хоризонталну храпаву раван. За центар диска је зглобно везан лаки крути штап CD чији је други крај везан за непокретни зид. Ако су познати статички и динамички коефицијент трења и d, одредити: а) Силу у штапу у случају да се диск не обрће око свог центра; б) Силу у штапу у случају да се диск обрће око свог центра. У том случају одредити закон промене угаоне брзине диска са временом. s 20 Хомогена крута греда (штап) AB масе m и дужине L је за непокретну подлогу везана зглобно у тачки D ( BD L/ 4 ). У приказаном равнотежном положају се одржава помоћу вертикалног лаког и крутог штапа ЕК. У тренутку када се штап уклони, греда започиње кретање. а) Одредити угаоно убрзање греде непосредно након уклањања штапа. Како угао α утиче на вредност тог убрзања? б) Одредити у том тренутку реакцију у зглобу D; в) Колика је кинетичка енергија греде када доспе у вертикални положај?

7 21 Хомогена крута греда (штап) AB масе m и дужине L је за непокретну подлогу везана зглобно у тачки D ( BD L/ 3). Штап започиње кретање из приказаног равнотежног положаја из стања мировања. Одредити брзину краја А у положају када штап са хоризонталним правцем образује угао од 30º. Одредити и компоненту реакције зглоба D у правцу осе штапа, у том положају. 22 Диск масе M и полупречника R је својим центром B везан зглобно за лаки штап BD. Лаки штап BD је такође зглобно везан крајем D за непокретну подлогу. По ободу диска је обмотано уже на чијем је другом крају окачен терет масе m. Осим тога, диск се ослања на глатку вертикалну раван, како је приказано на слици. Систем започиње кретање из стања мировања. Одредити убрзање терета a m 0 у почетном тренутку. Колико то убрзање износи уколико се занемари маса диска? 23 Диск масе m и полупречника R котрља се без клизања по хоризонталној конзоли која је уклештена за зид. На диск дејствује спрег константног интензитета M и приказаног смера. Одредити реакцију уклештења А (тј., одредити одговарајуће компоненте реакције уклештења) током кретања (у функцији од времена). Положај центра диска је дефинисан координатом x. У почетном тренутку је диск мировао, а почетна вредност x 0 b. координате x је била. 24 ЗАДАТАК Тешка греда масе m и дужине L је за подлогу везана лаким штапом ОА. Греда се у вертикалној равни креће транслаторно под дејством силе F чији је правац увек под углом од 60 у осносу на правац греде. Одредити колико износи убрзање центра масе греде у функцији од угла φ којег лаки штап (дужине l) образује са вертикалом. Интензитет силе F сматрати познатим. 25 ЗАДАТАК Штап AB масе m и дужине l се својим крајевима наслања на хоризоналну и

8 вертикалну раван, како је приказано на слици. Претпоставити да нема трења између крајева штапа и равни. На слици а) је приказан равнотежни положај. Одредити, у том положају деформацију опруге за коју је позната крутост која износи k. Слика б) приказује положај током кретања које се одвија под дејством константне силе F. Одредити промену кинетичке енергије штапа када се крај B помери за величину x. Колика је брзина центра масе штапа при проласку кроз тај положај?.

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o

PRIMER 1 ISPITNI ZADACI 1. ZADATAK Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o PRIMER 1 ISPITNI ZADACI Teret težine G = 2 [kn] vezan je užadima DB i DC. Za ravnotežni položaj odrediti sile u užadima. = 60 o, β = 120 o Homogena pločica ACBD, težine G, sa težištem u tački C, dobijena

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Microsoft PowerPoint - predavanje_sile_primena_2013

Microsoft PowerPoint - predavanje_sile_primena_2013 Примене Њутнових закона Претпоставке Објекти представљени материјалном тачком занемарите ротацију (за сада) Масе конопаца су занемариве Заинтересовани смо само за силе које делују на објекат можемо да

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср

48. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 2009/2010. ГОДИНЕ I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Ср I РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР 7.0.00.. На слици је приказана шема електричног кола. Електромоторна сила извора је ε = 50

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn

M e h a n i k a 1 v e ž b e 4 / 2 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Pozn M e h a n i k a 1 v e ž b e 4 / 9 Primer 3.5 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. Poznata su opterećenja F 1 = kn, F = 1kN, M 1 = knm, q =

Више

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što

Pismeni ispit iz MEHANIKE MATERIJALA I - grupa A 1. Kruta poluga AB, oslonjena na oprugu BC i okačena o uže BD, nosi kontinuirano opterećenje, kao što Pismeni ispit iz MEHNIKE MTERIJL I - grupa 1. Kruta poluga, oslonjena na oprugu i okačena o uže D, nosi kontinuirano opterećenje, kao što je prikazano na slici desno. Odrediti: a) silu i napon u užetu

Више

PowerPoint Presentation

PowerPoint Presentation МОБИЛНЕ МАШИНЕ II предавање 4.2 \ ослоно-кретни механизми на точковима, кинематика и динамика точка Кинематика точка обимна брзини точка: = t транслаторна брзина точка: = t Услов котрљања точка без проклизавања:

Више

Proracun strukture letelica - Vežbe 6

Proracun strukture letelica - Vežbe 6 University of Belgrade Faculty of Mechanical Engineering Proračun strukture letelica Vežbe 6 15.4.2019. Mašinski fakultet Univerziteta u Beogradu Danilo M. Petrašinović Jelena M. Svorcan Miloš D. Petrašinović

Више

Otpornost materijala

Otpornost materijala Prethodno predavanje Statika je deo mehanike koji se bavi: OdreĎivanjem uslova ravnoteţe krutih tela koja su izloţena mehaničkom dejstvu Slaganjem sila i svoďenjem sistema na prostiji Korišćeni i definisani

Више

M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0

M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0 M e h a n i k a 1 v e ž b e 4 /1 1 Primer 3.1 Za prostu gredu prikazanu na slici odrediti otpore oslonaca i nacrtati osnovne statičke dijagrame. q = 0.8 kn m, L=4m. 1. Z i = Z A = 0. Y i = Y A L q + F

Више

Microsoft PowerPoint - ravno kretanje [Compatibility Mode]

Microsoft PowerPoint - ravno kretanje [Compatibility Mode] КИНЕМАТИКА КРУТОГ ТЕЛ (наставак) 1. транслаторно кретање. обртање тела око непокретне осе 3. сферно кретање 4. опште кретање 5. раванско (равно) кретање 1 Opšte kretanje krutog tela = ( t) y = y( t) y

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

Predavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt

Predavanje 8-TEMELJI I POTPORNI ZIDOVI.ppt 1 BETONSKE KONSTRUKCIJE TEMELJI OBJEKATA Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Temelji objekata 2 1.1. Podela 1.2. Temelji samci 1.3. Temeljne trake 1.4. Temeljne grede

Више

RG_V_05_Transformacije 3D

RG_V_05_Transformacije 3D Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli

Више

Microsoft PowerPoint - fizika 9-oscilacije

Microsoft PowerPoint - fizika 9-oscilacije Предиспитне обавезе Шема прикупљања поена - измене Активност у току предавања = 5 поена (са више од 3 одсуствовања са предавања се не могу добити) Лабораторијске вежбе = 10 поена обавезни сви поени односно

Више

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач Београд, 30.01.2016. а) одредити дужине извијања свих штапова носача, ако на носач делују само концентрисане силе, б) ако је P = 0.8P cr, и на носач делује расподељено оптерећење f, одредити моменат савијања

Више

Microsoft Word - Elektrijada_V2_2014_final.doc

Microsoft Word - Elektrijada_V2_2014_final.doc I област. У колу сталне струје са слике када је и = V, амперметар показује I =. Одредити показивање амперметра I када је = 3V и = 4,5V. Решење: а) I = ) I =,5 c) I =,5 d) I = 7,5 3 3 Слика. I област. Дата

Више

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит

Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредит Испитни задаци - Задатак 1 Задатак 1 (23. септембар 2012.) а) Статичком методом конструисати утицајне линије за силе у штаповима V b и D 4. б) Одредити max D 4 услед задатог покретног система концентрисаних

Више

Microsoft PowerPoint - fizika2-kinematika2012

Microsoft PowerPoint - fizika2-kinematika2012 ФИЗИКА 1. Понедељак, 8. октобар, 1. Кинематика тачке у једној димензији Кинематикакретањаудведимензије 1 Кинематика кретање свејеустањукретања кретање промена положаја тела (уодносу на друга тела) три

Више

3.11. Судари

3.11. Судари 3.1. Судари Под сударом два тела подразумева се нагла промена стања кретања ти У првој фази, тела се релативно приближавају и сударају уз еластичну или нееластичну деформацију, док им брзине опадају до

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Одређивање коефицијента пригушења у ваздуху Одређивање коефицијента пригушења у ваздуху помоћу линеарног хармонијског осцилатора Соња Ковачевић 1, Милан С. Ковачевић 2 1 Прва крагујевачка гимназија, Крагујевац, Србија 2 Природно-математички факултет,

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура,

ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, ТЕСТ ИЗ ФИЗИКЕ ИМЕ И ПРЕЗИМЕ 1. У основне величине у физици, по Међународном систему јединица, спадају и следеће три величине : а) маса, температура, електрични отпор б) сила, запремина, дужина г) маса,

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 3.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање. гусенична возила, површински притисак ослањања, гусеница на подлогу ослањања G=mg p p гусеница на подлогу ослањања G=mg средњи стварни p тврда подлога средњи стварни p

Више

Прегријавање електромотора

Прегријавање електромотора 1. Електрична тестера када се обрће нормалном брзином повлачи релативно малу јачину струје. Али ако се тестера заглави док сијече комад дрвета, осовина мотора је спријечена да се обрће па долази до драматичног

Више

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc

Microsoft Word - Domacii zadatak Vektori i analiticka geometrija OK.doc задатак. Вектор написати као линеарну комбинацију вектора.. }. } } }. }. } } }. }. } } }. }. } } 9}. }. } } }. }. } } }. }. } } } 9 8. }. } } } 9. }. } } }. }. } } }. }. } } }. }. } } }. }. } } }. }. }

Више

mfb_april_2018_res.dvi

mfb_april_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Напомене: Испит траjе 80 минута. Коришћење литературе ниjе дозвољено!

Више

Microsoft Word - TPLJ-januar 2017.doc

Microsoft Word - TPLJ-januar 2017.doc Београд, 21. јануар 2017. 1. За дату кружну плочу која је еластично укљештена у кружни прстен и оптерећења према слици одредити максимални напон у кружном прстену. М = 150 knm/m p = 30 kn/m 2 2. За зидни

Више

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 4.1.ppt

Microsoft PowerPoint - Teorija kretanja vozila-predavanje 4.1.ppt ТЕОРИЈА КРЕТАЊА ВОЗИЛА Предавање 4.1 гусенична возила, отпори кретања, Код дефинисања параметара функција кретања возила на гусеницама разматрају се следећи случајеви кретања: а) праволиниjско кретање

Више

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м

ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам м ИСПИТНА ПИТАЊА ЗА ПРВИ КОЛОКВИЈУМ 1. Шта проучава биофизика и навести бар 3 области биофизике 2. Основне физичке величине и њихове јединице 3. Појам материјалне тачке 4. Појам механичког система 5. Појам

Више

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc

Microsoft Word - Dopunski_zadaci_iz_MFII_uz_III_kolokvij.doc Dopunski zadaci za vježbu iz MFII Za treći kolokvij 1. U paralelno strujanje fluida gustoće ρ = 999.8 kg/m viskoznosti μ = 1.1 1 Pa s brzinom v = 1.6 m/s postavljana je ravna ploča duljine =.7 m (u smjeru

Више

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к

Romanian Master of Physics 2013 Теоријски задатак 1 (10 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са к Теоријски задатак 1 (1 поена) Каменобил Фред и Барни су направили аутомобил чији су точкови две идентичне призме са квадратном основом (слика 1). Аутомобил се креће по путу који се састоји од идентичних

Више

Microsoft Word - Elektrijada 2011

Microsoft Word - Elektrijada 2011 Тест из Физике 1. Жица дужине L причвршћена је са оба краја за плафон. На жицу су окачена 4 метална лептира једнаких маса m и на једнаким међусобним растојањима l (Слика З-1.). Ако је угао који крајеви

Више

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д)

ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = 2х; б) у = 4х; в) у = 2х 7; г) у = 2 5 x; д) ЛИНЕАРНА ФУНКЦИЈА ЛИНЕАРНА ФУНКЦИЈА у = kх + n А утврди 1. Које од наведених функција су линеарне: а) у = х; б) у = 4х; в) у = х 7; г) у = 5 x; д) у = 5x ; ђ) у = х + х; е) у = x + 5; ж) у = 5 x ; з) у

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 8 Vektori u prostoru. Skalarni proizvod vektora Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 8 1 / 11 Vektori u prostoru i pravougli koordinatni

Више

Microsoft Word - Elektrijada_2008.doc

Microsoft Word - Elektrijada_2008.doc I област. У колу сталне струје са слике познато је: а) када је E, E = и E = укупна снага 3 отпорника је P = W, б) када је E =, E и E = укупна снага отпорника је P = 4 W и 3 в) када је E =, E = и E укупна

Више

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче

Зборник радова 6. Међународне конференције о настави физике у средњим школама, Алексинац, март Нелинеарно еластично клатно Милан С. Коваче Нелинеарно еластично клатно Милан С. Ковачевић 1, Мирослав Јовановић 2 1 Природно-математички факултет, Крагујевац, Србија 2 Гимназија Јосиф Панчић Бајина Башта, Србија Апстракт. У овом раду је описан

Више

Теориjска механика приредио Jован Марков контакт: 17. април Физика 2, пролећни семинар, Истраживачка станица Петница

Теориjска механика приредио Jован Марков контакт: 17. април Физика 2, пролећни семинар, Истраживачка станица Петница Теориjска механика приредио Jован Марков контакт: jocin.meil@gmail.com 17. април 2019. Физика 2, пролећни семинар, Истраживачка станица Петница 1.1 Генералисане координате Jедан од основних поjмова у класичноj

Више

III разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв

III разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв ЗАДАЦИ ФЕРМИОНСКА КАТЕГОРИJА 1. Маjа се пење уз покретне степенице под углом од θ = 30 и дужине L = 10m. Ако jе линеарна брзина степеница v S = m s, а она се у односу на њих креће брзином v M = 1, m s,

Више

III разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв

III разред ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКА 2018/19. ГОДИНА Друштво физичара Србиjе и Министарство просвете, науке и технолошког разв ЗАДАЦИ БОЗОНСКА КАТЕГОРИJА 1. Деjан и Jован играjу кошарку за два различита кошаркашка клуба. У току утакмице, Деjан шутира троjку са удаљености D = 7,5 m. Након што подигне руке при избачаjу, лопта jе

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak

Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak Zadaci iz Nacrtne geometrije za pripremu apsolvenata Srdjan Vukmirović 27. novembar 2005. 1 Projektivna geometrija 1.1 Koordinatni pristup 1. (Zadatak 2.1) Tačke A 1 (2 : 1), A 2 (3 : 1) i B(4 : 1) date

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Microsoft Word - 7. cas za studente.doc

Microsoft Word - 7. cas za studente.doc VII Диферeнцни поступак Користи се за решавање диференцијалних једначина. Интервал на коме је дефинисана тражена функција се издели на делова. Усвоји се да се непозната функција између сваке три тачке

Више

untitled

untitled ОСНА СИМЕТРИЈА 1. Заокружи слово испред цртежа на коме су приказане две фигуре које су осносиметричне у односу на одговарајућу праву. 2. Нацртај фигуре које су осносиметричне датим фигурама у односу на

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

Microsoft PowerPoint - ME_P1-Uvodno predavanje [Compatibility Mode]

Microsoft PowerPoint - ME_P1-Uvodno predavanje [Compatibility Mode] MAŠINSKI ELEMENTI dr Miloš Ristić UVOD Mašinski elementi predstavljaju tehničkonaučnu disciplinu. Izučavanjem ove discipline stiču seteorijska i praktična znanja za proračun, izbor i primenu mašinskih

Више

Microsoft PowerPoint - OMT2-razdvajanje-2018

Microsoft PowerPoint - OMT2-razdvajanje-2018 OSNOVE MAŠINSKIH TEHNOLOGIJA 2 TEHNOLOGIJA PLASTIČNOG DEFORMISANJA RAZDVAJANJE (RAZDVOJNO DEFORMISANJE) Razdvajanje (razdvojno deformisanje) je tehnologija kod koje se pomoću mašine i alata u zoni deformisanja

Више

PowerPoint Presentation

PowerPoint Presentation Nedjelja 6 - Lekcija Projiciranje Postupci projiciranja Projiciranje je postupak prikazivanja oblika nekog, u opštem slučaju trodimenzionalnog, predmeta dvodimenzionalnim crtežom. Postupci projiciranja

Више

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n

Microsoft Word - 4.Ucenik razlikuje direktno i obrnuto proporcionalne velicine, zna linearnu funkciju i graficki interpretira n 4. UČENIK RAZLIKUJE DIREKTNO I OBRNUTO PROPORCIONALNE VELIČINE, ZNA LINEARNU FUNKCIJU I GRAFIČKI INTERPRETIRA NJENA SVOJSTVA U fajlu 4. iz srednjeg nivoa smo se upoznali sa postupkom rada kada je u pitanju

Више

U N I V E R Z I T E T U Z E N I C I U N I V E R S I TA S S T U D I O R U M I C A E N S I S Z E N Univerzitet u Zenici Mašinski fakultet Aleksandar Kar

U N I V E R Z I T E T U Z E N I C I U N I V E R S I TA S S T U D I O R U M I C A E N S I S Z E N Univerzitet u Zenici Mašinski fakultet Aleksandar Kar U N I V E R Z I T E T U Z E N I C I U N I V E R S I T S S T U D I O R U M I C E N S I S Z E N Univerzitet u Zenici Mašinski fakultet leksandar Karač Riješeni ispitni zadaci iz Otpornosti materijala Zenica,

Више

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????:

?? ????????? ?????????? ?????? ?? ????????? ??????? ???????? ?? ??????? ??????: РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 003 АСИНХРОНЕ МАШИНЕ Трофазни асинхрони мотор са намотаним ротором има податке: 380V 10A cos ϕ 08 Y 50Hz p отпор статора R s Ω Мотор је испитан

Више

5 - gredni sistemi

5 - gredni sistemi Гредни системи бетонских мостова 1 БЕТОНСКИ МОСТОВИ ГРЕДНИ СИСТЕМИ Типови гредних система бетонских мостова Решетка Проста греда Греда с препустима Герберова греда Континуална греда Укљештена греда 2 Трајекторије

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум: године Тема: Елементи и начин

Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум: године Тема: Елементи и начин Републички педагошки завод Бања Лука Стручни савјетник за машинску групу предмета и практичну наставу Датум:.06.2009. године Тема: Елементи и начин вредновања графичког рада из раванских носачи 1 Увод:

Више

Microsoft Word - TAcKA i PRAVA3.godina.doc

Microsoft Word - TAcKA  i  PRAVA3.godina.doc TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,

Више

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske

Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske Pitanja za pripremu i zadaci za izradu vježbi iz Praktikuma iz fizike 1 ili Praktikuma iz osnova fizike 1, I, A za profesorske smjerove Opće napomene: (i) Sva direktna (neovisna) mjerenja vrijednosti nepoznatih

Више

Mate_Izvodi [Compatibility Mode]

Mate_Izvodi [Compatibility Mode] ИЗВОДИ ФУНКЦИЈЕ ИЗВОДИ ФУНКЦИЈЕ Нека тачке Мо и М чине једну тетиву функције. Нека се тачка М почне приближавати тачки Мо, тј. нека Тачка М постаје тачка Мо, а тетива постаје тангента функције у тачки

Више

Microsoft Word - lv2_m_cirilica.doc

Microsoft Word - lv2_m_cirilica.doc lv2_m ИСПИТИВАЊЕ ТАЧНОСТИ СТРУГОВА Ово је друга лабораторијска вежба (PL-2+PL-4) и има ова два дела: PL-2 Упутство за извођење друге лабораторијске вежбе и PL-4 Друга лабораторијска вежба Испитивање тачности

Више

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt

Microsoft PowerPoint - Opruge kao funkcionalni elementi vezbe2.ppt Deformacija opruge: 8FD Gd n f m 4 8Fwn Gd 1 Broj zavojaka opruge Kod pritisnih opruga sa velikim brojem promena opterećenja preporučuje se da se broj zavojaka završava na 0.5, npr..5, 4.5, 5.5... Ukupan

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija

Microsoft PowerPoint - fizika 4-rad,snaga,energija ФИЗИКА 2008 Понедељак, 3. Новембар, 2008 1. Рад 2. Кинетичка 3. Потенцијална 1. 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије 5. Снага 1. Енергетика 2. Рад, и снага људи. Ефикасност

Више

Microsoft PowerPoint - KoMoMa -predavanje Definisanje alata masina

Microsoft PowerPoint - KoMoMa -predavanje Definisanje alata masina КОНСТРУИСАЊЕ МОБИЛНИХ МАШИНА Треће предавање дефинисање алата машина, кашике мини багера Кнематички ланци: E z = { L 1,L a) прости, б) разгранати, в) сложени,...,l n } а) L 1 б) L L n L 3 O 1 L o O n L

Више

Slide 1

Slide 1 Грађевински факултет Универзитета у Београду МОСТОВИ Субструктура моста Вежбе 4 Програм предмета Датум бч. Предавања бч. Вежбе 1 22.02. 4 Уводно предавање - 2 01.03. 3 Дефиниције, системи, распони и материјали

Више

PowerPoint Presentation

PowerPoint Presentation Keijsko tehnološki fakultet Sveučilišta u Splitu Stručni studij keijske tehnologije i aterijala Stručni studij prehrabene tehnologije Fizika uditorne vježbe 4 Rad i energija. Sudari. Ivica Sorić (Ivica.Soric@fesb.hr)

Више

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ

АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универ АНАЛИЗА ПРОБЛЕМА ТЕРМИЧКЕ ДИЛАТАЦИЈЕ L КОМПЕНЗАТОРА ПРЕМА СТАНДАРДУ AD 2000 И ДРУГИМ МЕТОДАМА Милан Травица Иновациони центар Машински факултет Универзитет у Београду Краљице Марије 16, 11000 Београд mtravica@mas.bg.ac.rs

Више

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014

Microsoft PowerPoint - fizika 4-rad,snaga,energija2014 ФИЗИКА Понедељак, 3. Новембар, 2014 1. Рад 2. Кинетичка енергија 3. Потенцијална енергија 1. Конзервативне силе и потенцијална енергија 2. Неконзервативне силе. Отворенисистеми 4. Закон одржања енергије

Више

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3

Matematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3 Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b

Више

NASLOV RADA (12 pt, bold, Times New Roman)

NASLOV RADA (12 pt, bold, Times New Roman) 9 th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION PRIMJENA METODE KONAČNIH ELEMENATA U ANALIZI OPTEREĆENJA PLASTIČNE PREKLOPIVE AMBALAŽE Damir

Више

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА

ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 2_18 [Compatibility Mode] 6. STABILNOST KONSTRUKCIJA II čas Marija Nefovska-Danilović 3. Stabilnost konstrukcija 1 6.2 Osnovne jednačine štapa 6.2.1 Linearna teorija štapa Važe pretpostavke o geometrijskoj (1), statičkoj (2) i

Више

Microsoft PowerPoint - GeoInfLEKCIJA2 [Compatibility Mode]

Microsoft PowerPoint - GeoInfLEKCIJA2 [Compatibility Mode] Oblik i veličina Zemlje Datumi, projekcije, koordinatni sistemi Kako definišemo oblik Zemlje? Mi mislimo da je Zemlja sfera U stvari ona je sferoid (elipsoid), koji ima nešto malo veći radijus na ekvatoru

Више

PowerPoint Presentation

PowerPoint Presentation МОБИЛНЕ МАШИНЕ I предавање. \ хидродинамичке трансмисије, компоненте, вучне карактеристике Хидродинамичке трансмисије мобилних машина општа концепција: v v v v - дизел мотор -хидродинамички претварач -

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р

Задатак 4: Центрифугална пумпа познате карактеристике при n = 2900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у р Задатак 4: Центрифугална пумпа познате карактеристике при n = 900 min -1 ради на инсталацији приказаној на слици и потискује воду из резервоара А у резервоар B. Непосредно на излазу из пумпе постављен

Више

mfb_jun_2018_res.dvi

mfb_jun_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Смена:... Напомене: Испит траjе 80 минута. Коришћење литературе

Више

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode]

Microsoft PowerPoint - STABILNOST KONSTRUKCIJA 4_19 [Compatibility Mode] Univerzitet u Beogradu Građevinski fakutet Katedra za tehničku mehaniku i teoriju konstrukcija STABILNOST KONSTRUKCIJA IV ČAS V. PROF. DR MARIJA NEFOVSKA DANILOVIĆ 3. SABILNOST KONSTRUKCIJA 1 Geometrijska

Више

PowerPoint Presentation

PowerPoint Presentation Универзитет у Нишу Електронски факултет у Нишу Катедра за теоријску електротехнику ЛАБОРАТОРИЈСКИ ПРАКТИКУМ ОСНОВИ ЕЛЕКТРОТЕХНИКЕ Примена програмског пакета FEMM у електротехници ВЕЖБЕ 3 И 4. Електростатика

Више

Шумска транспортна средства - испитна питања

Шумска транспортна средства - испитна питања I ШУМСКИ ПУТЕВИ (38 питања) 1. Како се врши рекогносцирање терена, утврђивање чворних тачака и просечног нагиба између чворних тачака? 2. Какав значај имају шумска транспортна средстава и који је степен

Више

NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija 1. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradn

NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija 1. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradn NAZIV PREDMETA TEHNIČKA MEHANIKA I Kod SKS003 Godina studija. Nositelj/i predmeta Dr.sc. Ado Matoković, prof.v.š. Bodovna vrijednost (ECTS) 7 Suradnici Vladimir Vetma, predavač Način izvođenja nastave

Више

ПОДЈЕЛА ТЛА ПРЕМА ВЕЛИЧИНИ ЗРНА

ПОДЈЕЛА ТЛА ПРЕМА ВЕЛИЧИНИ ЗРНА -1- СМИЧУЋА ЧВРСТОЋА ТЛА Смичућа чврстоћа представља највећи смичући напон који се може нанијети структури тла у одређеном правцу. Када је достигнут највећи могућ смичући напон, праћен пластичним деформацијама,

Више

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja

Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar Teorijska pitanja Pitanja iz geometrije za pismeni i usmeni (I smer, druga godina) Srdjan Vukmirović, Tijana Šukilovic, Marijana Babić januar 5. Teorijska pitanja definicija vektora, kolinearni i komplanarni vektori, definicija

Више

Microsoft PowerPoint - Masinski elementi-30_Kocnice

Microsoft PowerPoint - Masinski elementi-30_Kocnice Слајд 1 Кoчницe су мaшински eлeмeнти кojи j су нaмeњeни зa зaустaвљaњe тj. прeкид крeтaњa. Кoд мнoгих o мaшинских a кoнструкциja o ср je пoтрeбнo o o брзo прeкинути крeтaњe збoг чeгa сe нa тим мeстимa

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

3_Elektromagnetizam_09.03

3_Elektromagnetizam_09.03 Elektromagnetizam Tehnička fizika 2 14/03/2019 Tehnološki fakultet Elektromagnetizam Elektromagnetizam je grana klasične fizike koja istražuje uzroke i uzajamnu povezanost električnih i magnetnih pojava,

Више

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О

Математика напредни ниво 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. О 1. Посматрај слике, па поред тачног тврђења стави слово Т, а поред нетачног Н. а) A B б) C D в) F E г) G F д) E F ђ) D C 2. Одреди број елемената скупова: а) A = {x x N и x < 5} A = { } n(a) = б) B = {x

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O

1 MATEMATIKA 1 (prva zadaća) Vektori i primjene 1. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. O http://www.fsb.hr/matematika/ (prva zadać Vektori i primjene. U trokutu ABC točke M i N dijele stranicu AB na tri jednaka dijela. Označite CA= a, CB= b i izrazite vektore CM i CN pomoću vektora a i b..

Више

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин

OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзин OБЛАСТ: БЕЗБЕДНОСТ САОБРАЋАЈА ВЕШТАЧЕЊЕ САОБРАЋАЈНИХ НЕЗГОДА 1. Израчунати зауставни пут (Sz) и време заустављања ако су познати следећи подаци: брзина аутомобила пре предузетог кочења Vo = 68 km/, успорење

Више

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да

Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и

Више

Microsoft Word - 7. Janosevic- TIL 08 Nis.doc

Microsoft Word - 7. Janosevic- TIL 08 Nis.doc УНИВЕРЗИТЕТ У НИШУ МАШИНСКИ ФАКУЛТЕТ UNIVERSITY OF NIS FACULTY OF MECHANICAL ENGINEERING ТРЕЋИ СРПСКИ СИМПОЗИЈУМ СА МЕЂУНАРОДНИМ УЧЕШЋЕМ ТРАНСПОРТ И ЛОГИСТИКА THE THIRD SERBIAN SYMPOSIUM WITH INTERNATIONAL

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

Microsoft Word - IZVOD FUNKCIJE.doc

Microsoft Word - IZVOD FUNKCIJE.doc IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera

Више

4.1 The Concepts of Force and Mass

4.1 The Concepts of Force and Mass Kinematika u dvije dimenzije FIZIKA PSS-GRAD 11. listopada 017. PRAVOKUTNI KOORDINATNI SUSTAV U RAVNINI I PROSTORU y Z (,3) 3 ( 3,1) 1 (0,0) 3 1 1 (x,y,z) x 3 1 O ( 1.5,.5) 3 x y z Y X PITANJA ZA PONAVLJANJE

Више

Toplinska i električna vodljivost metala

Toplinska i električna vodljivost metala Električna vodljivost metala Cilj vježbe Određivanje koeficijenta električne vodljivosti bakra i aluminija U-I metodom. Teorijski dio Eksperimentalno je utvrđeno da otpor ne-ohmskog vodiča raste s porastom

Више