УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 пое

Величина: px
Почињати приказ од странице:

Download "УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 пое"

Транскрипт

1 УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ Департман за рачунарске науке Писмени део испита из предмета Увод у рачунарство 1. [7 поена] Методом МакКласкија минимизарити систем прекидачких функција f i (x 1, x 2, x 3 ), i = 1, 2, 3, ако је функција f 1 задата скупом децималних индекса f 1 (0) = {5, 6, 7}, функција f 2 децималним индексом N f2 = 143, а функција f 3 њеним аналитичким обликом f 3 = (x 1 x 2 ) x [7 поена] Пројектовати комбинационо коло које за дати број X на улазу (0 X 10) генерише на излазу вредност израза 3(X mod 6). Добијену мрежу реализовати помоћу НИ кола са четири улаза а за синтезу користити метод Карноових мапа. 3. [7 поена] Нацртати граф који одговара колу са слике. Ј y C K y z 4. [4 поена] Нека рачунарски систем има 16-битну адресу и адресну резолуцију од једног бајта а, поред оперативне меморије, има и четвороструки скупноасоцијативни кеш са 16 линија капацитета 8B. Ако је кеш меморија празна одредити где ће се пресликати блок који садржи локацију са хексадекадном адресом FА73. Шта ће се у том случају уписати у поље tag дотичне линије? Који је број блока који у оперативној меморији садржи наведену локацију?

2 Решења 1. Оно што нам је потребно јесте да добијемо скупове децималних индекса f i (1), i {1, 2, 3}. f 1 (0) = {5, 6, 7} f 1 (1) = {0, 1, 2, 3, 4} Претварањем децималног индекса N f2 у бинарни бројни систем добија се бинарни број што значи да је вектор истинитости ове функције једнак K f2 = (1, 1, 1, 1, 0, 0, 0, 1} а што даје f 2 (1) = {0, 1, 2, 3, 7}. Што се тиче функције f 3, најпре ћемо направити њену истинитосну таблицу: одакле лако следује да је Најзад, i x 3 x 1 x 2 (x 1 x 2 ) x f 3 (1) = {0, 2, 5, 6}. f 1 (1) f 2 (1) f 3 (1) = {0, 1, 2, 3, 4} {0, 1, 2, 3, 7} {0, 2, 5, 6} = {0, 1, 2, 3, 4, 5, 6, 7}. P i f 1 f 2 f * * * * * * * * * * * * a * *

3 i,j P i,j f 1 f 2 f 3 0,1 00x * * 0,2 0x0 * * * b 0,4 x00 * c 1,3 0x1 * * 2,3 01x * * 2,6 x10 * d 3,7 x11 * e Заједничка функција покривања је: i,j,k,l P i,j,k,l f 1 f 2 f 3 0,1,2,3 0xx * f f 1 f 2 f а * b * * * * * * c * * d * * e * * f * * * * * * * * Функције покривања су, редом: Заједничка функција покривања је ψ 1 = (b + c + f)f(b + f)fc = cf ψ 2 = (b + f)f(b + f)(e + f)e = ef ψ 3 = b(b + d)ad = abd ψ = ψ 1 ψ 2 ψ 3 = cfefabd = abcdef Како смо добили јединствен довољан скуп импликаната који је уједно истоветан са простим импликантима, јасно је да ће таблица покривања за поједине функције бити иста као и одговарајући део заједничке таблице покривања. Стога су и функције покривања исте па лако закључујемо f 1min = c + f = x 2x 3 + x 1 f 2min = e + f = x 2 x 3 + x 1 f 3min = a + b + d = x 1 x 2x 3 + x 1x 3 + x 2 x 3

4 2. Комбинациона таблица која описује тражени рад кола је i x 3 x 4 y 1 y 2 y 3 y **** **** **** **** **** На основу комбинационе таблице и одговарајућих Карноових мапа долазимо до оптималних облика функција. y 1 : * 1 y 2 : * 1 y 1 = x 2 x 3 + x 1 x 4 + x 1 x 3 + x 2x 3 x 4 y 2 = x 2 x 3 + x 1 x 4 + x 2x 3 x 4 y 3 : * y 4 : * y 3 = x 1 x 3x 4 + x 2 x 4 + x 1x 3x 4 + x 1x 2x 3 x 4 y 4 = x 4

5 y 1 = x 2 x 3 + x 1 x 4 + x 1 x 3 + x 2x 3 x 4 = x 2 x x 2x 3 4 = x 2 x 3 x 1 x 4 x 1 x 3 x 2x 3 x 4 y 2 = x 2 x 3 + x 1 x 4 + x 2x 3 x 4 = x 2 x x 4 + x 2x 3 x 4 = x 2 x 3 x 1 x 4 x 2x 3 x 4 y 3 = x 1 x 3x x 4 + x 1x 3x 4 + x 1x 2x 3 x 4 = x 1 x 3x x 1x 3x 4 + x 1x 2x 3 x 4 = x 1 x 3x 4 x 2 x 4 x 1x 3x 4 x 1x 2x 3 x 4 y 4 = x 4 x 1 x 2 x 3 x 4 f 1 f 2 f 3 f 4

6 3. Увидом у шему кола лако одређујемо једначине дизајна. J = K = x 1x 2 z = x 1x 2y + y Како код ЈК флип-флопа важи Q(t + 1) = J(t)Q(t) + K (t)q(t), то ће наредно стање бити дефинисано на основу једначине y(t + 1) = y + x 1x 2y. Сада није тешко направити таблицу прелаза излаза и на основу ње одговарајући граф. y(i 1) x(i) y(i)/z(i) /1 1/0 01 0/0 0/0 10 0/0 0/0 11 1/1 0/0 00/1+01/0+10/0 00/0 11/ /0+10/0+11/0

7 4. Како имамо четвороструки скупно-асоцијативни кеш са 16 линија произилази да имамо четири скупа. Ако је формат адресе интерпретиран као на слици s d w таг скуп реч онда је јасно да поље скуп има два бита. Како свака линија има 8 бајтова, ширина поља реч је три бита. То значи да за поље таг остаје 11 битова. Обзиром на задату адресу FA73 = закључујемо да ће се дотични блок пресликати у скуп број 2 у произвољну линију тог скупа (пошто је кеш празан то може да буде управо прва линија тог скупа). У поље таг придружено линији уписаће се поље таг из адресе или , док је број блока у меморији

Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 )

Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 ) Универзитет у Нишу Природно-математички факултет Увод у рачунарство Број индекса 200 II домаћи задатак 1. За прекидачку функцију ff(xx 1, xx 2, xx 3 ) = (xx 1 + xx 2 + xx 3 )(xx 1 + xx 2 + )(xx 3 1 + xx

Више

Орт колоквијум

Орт колоквијум Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат

Више

Орт колоквијум

Орт колоквијум II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу

Више

LAB PRAKTIKUM OR1 _ETR_

LAB PRAKTIKUM OR1 _ETR_ UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET STUDIJSKI PROGRAM: ELEKTRONIKA, TELEKOMUNIKACIJE I RAČUNARI PREDMET: OSNOVE RAČUNARSTVA 1 FOND ČASOVA: 2+1+1 LABORATORIJSKA VJEŽBA BROJ 1 NAZIV: REALIZACIJA

Више

Microsoft Word - SIORT1_2019_K1_resenje.docx

Microsoft Word - SIORT1_2019_K1_resenje.docx I колоквијум из Основа рачунарске технике I СИ- 208/209 (24.03.209.) Р е ш е њ е Задатак f(x, x 2, x 3 ) = (x + x x ) x (x x 2 + x ) + x x 2 x 3 f(x, x 2, x 3 ) = (x + x x ) (x x + (x )) 2 + x + x x 2

Више

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x

I колоквијум из Основа рачунарске технике I СИ- 2017/2018 ( ) Р е ш е њ е Задатак 1 Тачка А Потребно је прво пронаћи вредности функција f(x I колоквијум из Основа рачунарске технике I СИ- / (...) Р е ш е њ е Задатак Тачка А Потребно је прво пронаћи вредности функција f(x, x, x ) и g(x, x, x ) на свим векторима. f(x, x, x ) = x x + x x + x

Више

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећ Испит из Основа рачунарске технике OO - 27/2 (9.6.2.) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИ кола дат је на следећој слици: S Q R Q Асинхрони RS флип флопреализован помоћу НИ

Више

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след

Испит из Основа рачунарске технике OO /2018 ( ) Р е ш е њ е Задатак 5 Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на след Испит из Основа рачунарске технике OO - / (...) Р е ш е њ е Задатак Асинхрони RS флип флопреализован помоћу НИЛИ кола дат је на следећој слици: S R Асинхрони RS флип флопреализован помоћу НИЛИ кола је

Више

Орт колоквијум

Орт колоквијум I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,

Више

Орт колоквијум

Орт колоквијум Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако

Више

Vezbe_AOR1_2014_V1.0

Vezbe_AOR1_2014_V1.0 АРХИТЕКТУРА И ОРГАНИЗАЦИЈА РАЧУНАРА 1 Верзија 2014 1.0 САДРЖАЈ Садржај... 3 Кеш меморија (Cache Memory)... 5 Задатак 1.... 5 Задатак 2.... 6 Задатак 3.... 9 Задатак 4.... 12 Задатак 5.... 15 Задатак 6....

Више

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste

PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)

Више

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi

23. siječnja od 13:00 do 14:00 Školsko natjecanje / Osnove informatike Srednje škole RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovi 3. siječnja 0. od 3:00 do 4:00 RJEŠENJA ZADATAKA S OBJAŠNJENJIMA Sponzori Medijski pokrovitelji Sadržaj Zadaci. 4.... Zadaci 5. 0.... 3 od 8 Zadaci. 4. U sljedećim pitanjima na pitanja odgovaraš upisivanjem

Више

Електротехнички факултет Универзитета у Београду Катедра за рачунарску технику и информатику Kолоквијум из Интелигентних система Колоквију

Електротехнички факултет Универзитета у Београду Катедра за рачунарску технику и информатику Kолоквијум из Интелигентних система Колоквију Електротехнички факултет Универзитета у Београду 19.11.017. Катедра за рачунарску технику и информатику Kолоквијум из Интелигентних система Колоквијум траје h. Напуштање сале дозвољено је након 1h. Употреба

Више

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр

РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена ) Прва година: ПРВА ГОДИНА - сви сем информатике Име пр РАСПОРЕД ИСПИТА У ИСПИТНОМ РОКУ ЈАНУАР 1 ШКОЛСКЕ 2016/2017. ГОДИНЕ (последња измена 23.01.2017.) Прва година: ПРВА ГОДИНА - сви сем информатике Име предмета Датум и термин одржавања писменог дела испита

Више

Ravno kretanje krutog tela

Ravno kretanje krutog tela Ravno kretanje krutog tela Brzine tačaka tela u reprezentativnom preseku Ubrzanja tačaka u reprezentativnom preseku Primer određivanja brzina i ubrzanja kod ravnog mehanizma Ravno kretanje krutog tela

Више

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc

Microsoft Word - NULE FUNKCIJE I ZNAK FUNKCIJE.doc NULE FUNKCIJE I ZNAK FUNKCIJE NULE FUNKCIJE su mesta gde grafik seče osu a dobijaju se kao rešenja jednačine y= 0 ( to jest f ( ) = 0 ) Mnogi profesori vole da se u okviru ove tačke nadje i presek sa y

Више

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10

Microsoft Word - 4.Ee1.AC-DC_pretvaraci.10 AC-DC ПРЕТВАРАЧИ (ИСПРАВЉАЧИ) Задатак 1. Једнофазни исправљач са повратном диодом, са слике 1, прикључен на напон 1 V, 5 Hz напаја потрошач велике индуктивности струјом од 1 А. Нацртати таласне облике

Више

Algoritmi i arhitekture DSP I

Algoritmi i arhitekture DSP I Univerzitet u Novom Sadu Fakultet Tehničkih Nauka Katedra za računarsku tehniku i međuračunarske komunikacije Algoritmi i arhitekture DSP I INTERNA ORGANIACIJA DIGITALNOG PROCESORA A OBRADU SIGNALA INTERNA

Више

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK

DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 4.travnja-6.travnja razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK RŽVNO NTJENJE IZ MTEMTIKE Primošten, 4travnja-6travnja 016 7 razred-rješenja OVJE SU NI NEKI NČINI RJEŠVNJ ZTK UKOLIKO UČENIK IM RUGČIJI POSTUPK RJEŠVNJ, ČLN POVJERENSTV UŽN JE I TJ POSTUPK OOVTI I OIJENITI

Више

TEORIJA SIGNALA I INFORMACIJA

TEORIJA SIGNALA I INFORMACIJA Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)

Више

ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати и

ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати и ИСПИТНА ПИТАЊА (ОКВИРНИ СПИСАК) УОАР2 2018/19 ПРВИ ДЕО ГРАДИВА 1. Написати истинитоносне таблице основних логичких везника (НЕ, И, ИЛИ). 2. Написати истинитоносне таблице изведених логичких везника (НИ,

Више

13E114PAR, 13S113PAR DOMAĆI ZADATAK 2018/2019. Cilj domaćeg zadatka je formiranje petlje softverske protočnosti za minimalni broj ciklusa.

13E114PAR, 13S113PAR DOMAĆI ZADATAK 2018/2019. Cilj domaćeg zadatka je formiranje petlje softverske protočnosti za minimalni broj ciklusa. 13E114PAR, 13S113PAR 29.04.2019. DOMAĆI ZADATAK 2018/2019. Cilj domaćeg zadatka je formiranje petlje softverske protočnosti za minimalni broj ciklusa. U okviru svake grupe data je doall ili doacross petlja

Више

Увод у организацију и архитектуру рачунара 1

Увод у организацију и архитектуру рачунара 1 Увод у организацију и архитектуру рачунара 2 Александар Картељ kartelj@matf.bg.ac.rs Напомена: садржај ових слајдова је преузет од проф. Саше Малкова Увод у организацију и архитектуру рачунара 2 1 Секвенцијалне

Више

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt

Microsoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна

Више

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као

EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар Трофазни једнострани исправљач прикључен је на круту мрежу 3x380V, 50Hz преко трансформатора у спрези Dy, као EНЕРГЕТСКИ ПРЕТВАРАЧИ 1 јануар 017. 1. Трофазни једнострани исправљач прикључен је на круту мрежу x80, 50Hz преко трансформатора у спрези Dy, као на слици 1. У циљу компензације реактивне снаге, паралелно

Више

9. : , ( )

9.  :  ,    ( ) 9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе

Више

8. ( )

8.    ( ) 8. Кинематика тачке (криволиниjско кретање) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити 1. Криволиниjско кретање Преглед

Више

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc

Microsoft Word - AIDA2kolokvijumRsmerResenja.doc Konstrukcija i analiza algoritama 2 (prvi kolokvijum, smer R) 1. a) Konstruisati AVL stablo od brojeva 100, 132, 134, 170, 180, 112, 188, 184, 181, 165 (2 poena) b) Konkatenacija je operacija nad dva skupa

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду Електротехнички факултет Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (ЕЕНТ) Фебруар 8. Трофазни уљни енергетски трансформатор са номиналним подацима: S =

Више

Microsoft Word - tumacenje rezultata za sajt - Lektorisan tekst1

Microsoft Word - tumacenje rezultata za sajt -  Lektorisan tekst1 ПРИЛОГ ЗА ТУМАЧЕЊЕ РЕЗУЛТАТА ИСТРАЖИВАЊА TIMSS 2015 У међународном испитивању постигнућа TIMSS 2015 по други пут је у нашој земљи испитивано постигнуће ученика четвртог разреда у области математике и природних

Више

Microsoft Word - 1.Operacije i zakoni operacija

Microsoft Word - 1.Operacije i zakoni operacija 1. Operacije i zakoni operacija Neka je S neprazan skup. Operacija dužine n skupa S jeste svako preslikavanje : n n f S S ( S = S S S... S) Ako je n = 1, onda operaciju nazivamo unarna. ( f : S S ) Ako

Више

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје

Математика основни ниво 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Броје 1. Одреди елементе скупова A, B, C: a) б) A = B = C = 2. Запиши елементе скупова A, B, C на основу слике: A = B = C = 3. Бројеве записане римским цифрама запиши арапским: VIII LI XXVI CDXLIX MDCLXVI XXXIX

Више

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti

PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00

Више

Универзитет у Нишу, Факултет уметности у Нишу Кнегиње Љубице 10, Ниш тел: факс: декан: i

Универзитет у Нишу, Факултет уметности у Нишу Кнегиње Љубице 10, Ниш тел: факс: декан: i Универзитет у Нишу, Факултет уметности у Нишу Кнегиње Љубице 10, 18000 Ниш тел: +381 18 522 396 факс: +381 18 513 272 декан: +381 18 245 379 e-mail: info@artf.ni.ac.rs www.artf.ni.ac.rs ДЕПАРТМАН ЗА ПРИМЕЊЕНЕ

Више

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred

Državno natjecanje / Osnove informatike Srednje škole Zadaci U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred Zadaci. 8. U sljedećim pitanjima na odgovore odgovaraš upisivanjem slova koji se nalazi ispred točnog odgovora, u za to predviđen prostor. Odgovor Ako želimo stvoriti i pohraniti sliku, ali tako da promjenom

Више

EMC doc

EMC doc ИСПИТ ИЗ ЕЛЕКТРОМАГНЕТСКЕ КОМПАТИБИЛНОСТИ 28. мај 2018. Напомена. Испит траје 120 минута. Дозвољена је употреба литературе и рачунара. Коначне одговоре уписати у одговарајуће кућице, уцртати у дате дијаграме

Више

STABILNOST SISTEMA

STABILNOST SISTEMA STABILNOST SISTEMA Najvaznija osobina sistema automatskog upravljanja je stabilnost. Generalni zahtev koji se postavlja pred projektanta jeste da projektovani i realizovani sistem automatskog upravljanja

Више

RG_V_05_Transformacije 3D

RG_V_05_Transformacije 3D Računarska grafika - vežbe 5 Transformacije u 3D grafici Transformacije u 3D grafici Slično kao i u D grafici, uz razlike: matrice su 4x4 postoji posebna matrica projekcije Konvencije: desni pravougli

Више

P11.3 Analiza zivotnog veka, Graf smetnji

P11.3 Analiza zivotnog veka, Graf smetnji Поједностављени поглед на задњи део компајлера Међурепрезентација (Међујезик IR) Избор инструкција Додела ресурса Распоређивање инструкција Инструкције циљне архитектуре 1 Поједностављени поглед на задњи

Више

Slide 1

Slide 1 Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 1: Увод и историјски развој теорије система UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES Катедра за управљање системима Наставници:

Више

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu

1. GRUPA Pismeni ispit iz MATEMATIKE Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu 3XB T + XA = B, pri qemu 1. GRUPA Pismeni ispit iz MATEMATIKE 1 0.0.01. Prezime i ime broj indeksa 1. (15 poena) Rexiti matriqnu jednaqinu XB T + XA = B, 1 4 pri qemu je A = 6 9 i B = 1 1 0 1 1. 4 4 4 8 1. Data je prava q : {

Више

Microsoft Word - Lekcija 11.doc

Microsoft Word - Lekcija 11.doc Лекција : Креирање графова Mathcad олакшава креирање x-y графика. Треба само кликнути на нови фајл, откуцати израз који зависи од једне варијабле, например, sin(x), а онда кликнути на дугме X-Y Plot на

Више

ELEKTRONIKA

ELEKTRONIKA МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА РЕПУБЛИКЕ СРБИЈЕ ЗАЈЕДНИЦА ЕЛЕКТРОТЕХНИЧКИХ ШКОЛА РЕПУБЛИКЕ СРБИЈЕ ДВАДЕСЕТ ДРУГО РЕГИОНАЛНО ТАКМИЧЕЊЕ ЗАДАЦИ ИЗ ЕЛЕКТРОНИКЕ ЗА УЧЕНИКЕ ТРЕЋЕГ РАЗРЕДА

Више

untitled

untitled РАЗЛОМЦИ - III ДЕО - РЕШЕЊА МНОЖЕЊЕ И ДЕЉЕЊЕ РАЗЛОМАКА ПРИРОДНИМ БРОЈЕМ. а) + + + + + + = = = ; б) + + + + + + + + + + = = = 8 ; в) 8 + + + + + + + = 8 = = =.. а) = = = ; б) = = = ; 0 0 в) 0 = = = ; г)

Више

Microsoft PowerPoint - Bitovi [Compatibility Mode]

Microsoft PowerPoint - Bitovi [Compatibility Mode] Оператори над битовима (Јаничић, Марић: Програмирање 2, тачка 5.6) Оператори за рад са појединачним битовима Само на целобројне аргументе: ~ битовска негација & битовска конјункција (и) битовска (инклузивна)

Више

Analiticka geometrija

Analiticka geometrija Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike

Више

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr

Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -

Више

Logičke izjave i logičke funkcije

Logičke izjave i logičke funkcije Logičke izjave i logičke funkcije Građa računala, prijenos podataka u računalu Što su logičke izjave? Logička izjava je tvrdnja koja može biti istinita (True) ili lažna (False). Ako je u logičkoj izjavi

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Више

Skripte2013

Skripte2013 Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2017/2018. година ТЕС Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 017/018. година ТЕСТ ФИЗИКА ПРИЈЕМНИ ИСПИТ ЗА УПИС УЧЕНИКА СА ПОСЕБНИМ СПОСОБНОСТИМА

Више

БОСНА И ХЕРЦЕГОВИНА РЕПУБЛИКА СРПСКА СЛОБОМИР П УНИВЕРЗИТЕТ СЛОБОМИР, БИЈЕЉИНА BOSNIA AND HERZEGOVINA REPUBLIC OF SRPSKA SLOBOMIR P UNIVERSITY SLOBOMI

БОСНА И ХЕРЦЕГОВИНА РЕПУБЛИКА СРПСКА СЛОБОМИР П УНИВЕРЗИТЕТ СЛОБОМИР, БИЈЕЉИНА BOSNIA AND HERZEGOVINA REPUBLIC OF SRPSKA SLOBOMIR P UNIVERSITY SLOBOMI БОСНА И ХЕРЦЕГОВИНА РЕПУБЛИКА СРПСКА СЛОБОМИР П УНИВЕРЗИТЕТ СЛОБОМИР, БИЈЕЉИНА BOSNIA AND HERZEGOVINA REPUBLIC OF SRPSKA SLOBOMIR P UNIVERSITY SLOBOMIR, BIJELJINA Slobomir P Univerzitet, PF 70 Slobomir,

Више

Матрична анализа конструкција

Матрична анализа конструкција . 5 ПРИМЕР На слици. је приказан носач који је састављен од три штапа. Хоризонтални штапови су константног попречног пресека b/h=./.5 m, док је коси штап са линеарном променом висине. Одредити силе на

Више

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica

Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da

Више

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ

ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ Универзитет у Београду, Електротехнички факултет, Катедра за енергетске претвараче и погоне ЕНЕРГЕТСКИ ТРАНСФОРМАТОРИ (3Е3ЕНТ) Јул 9. Трофазни уљни енергетски трансформатор са номиналним подацима: 4 V,

Више

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA

OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA OSNOVNA ŠKOLA, VI RAZRED MATEMATIKA UPUTSTVO ZA RAD Drage učenice i učenici, Čestitamo! Uspjeli ste da dođete na državno takmičenje iz matematike i samim tim ste već napravili veliki uspjeh Zato zadatke

Више

Microsoft Word - ASIMPTOTE FUNKCIJE.doc

Microsoft Word - ASIMPTOTE FUNKCIJE.doc ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u

Више

Microsoft PowerPoint - 1. Osnovni pojmovi - prosireno - Compatibility Mode

Microsoft PowerPoint - 1. Osnovni pojmovi - prosireno  -  Compatibility Mode Osnovni pojmovi 1 Sadržaj predavanja Pojam kibernetike, informatike, računara i računarstva Pojam sistema i njegove komponente Informacioni sistem (IS), osnovni cilj i zadaci IS Osnovne komponente strukture

Више

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime

Test ispravio: (1) (2) Ukupan broj bodova: 21. veljače od 13:00 do 14:00 Županijsko natjecanje / Osnove informatike Osnovne škole Ime i prezime Test ispravio: () () Ukupan broj bodova:. veljače 04. od 3:00 do 4:00 Ime i prezime Razred Škola Županija Mentor Sadržaj Upute za natjecatelje... Zadaci... Upute za natjecatelje Vrijeme pisanja: 60 minuta

Више

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач

Београд, МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА ЗАДАТАК 1 За носач приказан на слици: а) одредити дужине извијања свих штапова носача, ако на носач Београд, 30.01.2016. а) одредити дужине извијања свих штапова носача, ако на носач делују само концентрисане силе, б) ако је P = 0.8P cr, и на носач делује расподељено оптерећење f, одредити моменат савијања

Више

Текст конкурса за упис студената у прву годину основних академских студија у школској 2017/2018. години УНИВЕРЗИТЕТ У НОВОМ САДУ АКАДЕМИЈА УМЕТНОСТИ А

Текст конкурса за упис студената у прву годину основних академских студија у школској 2017/2018. години УНИВЕРЗИТЕТ У НОВОМ САДУ АКАДЕМИЈА УМЕТНОСТИ А Текст конкурса за упис студената у прву годину основних академских студија у школској 2017/2018. години УНИВЕРЗИТЕТ У НОВОМ САДУ АКАДЕМИЈА УМЕТНОСТИ Адреса: 21000 Нови Сад, Ђуре Јакшића 7 Телефон: 021/420-187

Више

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan

1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan 1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2

Више

К О Н К У Р С

К О Н К У Р С МАТЕМАТИЧКИ ФАКУЛТЕТ Студентски трг 16 Телефон: 011/2027-801, 2027-811 Факс: 011/2630-151 E-mail: matf@matf.bg.ac.rs Интернет адреса: http://www.matf.bg.ac.rs СТУДИЈСКИ ПРОГРАМИ ЗА КОЈЕ СЕ КОНКУРС РАСПИСУЈЕ

Више

Zbirka resenih zadataka iz arhitekture racunara

Zbirka resenih zadataka iz arhitekture racunara Ј. ЂОРЂЕВИЋ, З. РАДИВОЈЕВИЋ, М. ПУНТ, Б. НИКОЛИЋ, Д. МИЛИЋЕВ, Ј. ПРОТИЋ, А. МИЛЕНКОВИЋ АРХИТЕКТУРА И ОРГАНИЗАЦИЈА РАЧУНАРА ПРЕКИДИ, МАГИСТРАЛА И УЛАЗ/ИЗЛАЗ ЗБИРКА РЕШЕНИХ ЗАДАТАКА Београд 2013. i САДРЖАЈ

Више

Uvod u statistiku

Uvod u statistiku Uvod u statistiku Osnovni pojmovi Statistika nauka o podacima Uključuje prikupljanje, klasifikaciju, prikaz, obradu i interpretaciju podataka Staistička jedinica objekat kome se mjeri neko svojstvo. Svi

Више

1

1 Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N

Више

Архитектура и организациjа рачунара Милан Банковић 10. април 2019.

Архитектура и организациjа рачунара Милан Банковић 10. април 2019. Архитектура и организациjа рачунара Милан Банковић 10. април 2019. 2 Садржаj I Основи дигиталне логике 5 1 Логичке функциjе и логички изрази 7 1.1 Булова алгебра............................ 7 1.1.1 Аксиоме

Више

Logicko projektovanje racunarskih sistema I

Logicko projektovanje racunarskih sistema I POKAZNA VEŽBA 10 Strukture za računanje Potrebno predznanje Urađena pokazna vežba 8 Poznavanje aritmetičkih digitalnih sistema i aritmetičko-logičkih jedinica Osnovno znanje upravljačkih jedinica digitalnih

Више

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП

Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСП Шифра ученика: Укупан број бодова: Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког РАзвоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година СЕДМИ РАЗРЕД ТЕСТ СПОСОБНОСТИ

Више

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје

Рационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши

Више

PowerPoint Presentation

PowerPoint Presentation УВОД Дa би рaчунaри нa мрежи могли међусобно да кoмуницирaју и рaзмeњују пoдaткe, пoтрeбнo je: дa сe увeду ПРOТOКOЛИ (утврђeна прaвилa и процедуре за комуникацију) да постоје АДРEСE кoje су jeдинствeнe

Више

P1.2 Projektovanje asemblera

P1.2 Projektovanje asemblera ПРОЈЕКТОВАЊЕ АСЕМБЛЕРА Асемблер Модули асемблера 1 Дефинисање новог лингвистичког нивоа превођењем Потребан преводилац алат који преводи програм написан на једном језику (на једном лингвистичком нивоу)

Више

08 RSA1

08 RSA1 Преглед ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције RSA алгоритам Биће објашњено: RSA алгоритам алгоритам прорачунски аспекти ефикасност коришћењем јавног кључа генерисање кључа сигурност проблем

Више

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je

Verovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje

Више

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w)

Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) Konstrukcija linearnih višekoračnih metodi Postoje tri važne familije višekoračnih metoda: Adamsovi metodi Adams-Bashfortovi metodi kod kojih je ρ(w) = w k w k 1 Adams-Moultonovi metodi kod kojih je ρ(w)

Више

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.

ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www. ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело

Више

OPIS RAČUNARSKOG SISTEMA Računarski sistem se sastoji od procesora, operativne memorije, tajmera i terminala. Sve komponente računarskog sistema su me

OPIS RAČUNARSKOG SISTEMA Računarski sistem se sastoji od procesora, operativne memorije, tajmera i terminala. Sve komponente računarskog sistema su me OPIS RAČUNARSKOG SISTEMA Računarski sistem se sastoji od procesora, operativne memorije, tajmera i terminala. Sve komponente računarskog sistema su međusobno povezane preko sistemske magistrale. Tajmer

Више

Slide 1

Slide 1 0(a) 0(b) 0(c) 0(d) 0(e) :: :: Neke fizikalne veličine poput indeksa loma u anizotropnim sredstvima ovise o iznosu i smjeru, a nisu vektori. Stoga se namede potreba poopdavanja. Međutim, fizikalne veličine,

Више

VEŽBE IZ OPERACIONIH ISTRAŽIVANJA

VEŽBE IZ OPERACIONIH ISTRAŽIVANJA VEŽBE IZ OPERACIONIH ISTRAŽIVANJA Glava 4 1. Metoda grananja i odsecanja 2. Metoda grananja i ograničavanja 3. Metoda implicitnog prebrojavanja MARIJA IVANOVIĆ marijai@math.rs Metoda grananja i odsecanja

Више

mfb_jun_2018_res.dvi

mfb_jun_2018_res.dvi Универзитет у Београду Машински факултет Катедра за механику флуида МЕХАНИКА ФЛУИДА Б Писмени део испита Име и презиме:... Броj индекса:... Смена:... Напомене: Испит траjе 80 минута. Коришћење литературе

Више

Microsoft PowerPoint - PRI2014 KORIGOVANO [Compatibility Mode]

Microsoft PowerPoint - PRI2014 KORIGOVANO [Compatibility Mode] 1. Broj bitova koji se jednovremeno prenosi i obrađuje unutar procesora naziva se: a) radni takt b) procesorski kod c) procesorska reč d) procesorski takt 1. Broj bitova koji se jednovremeno prenosi i

Више

` 1.Врсте меморије На основу начина чувања података делимо их на меморије које привремено чувају податке (док је рачунар укључен) и меморије које трај

` 1.Врсте меморије На основу начина чувања података делимо их на меморије које привремено чувају податке (док је рачунар укључен) и меморије које трај 1.Врсте меморије На основу начина чувања података делимо их на меморије које привремено чувају податке (док је рачунар укључен) и меморије које трајно чувају податке. Привремено чување података карактерише

Више

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : (

Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) : ; б) : ( Алгебарски изрази 1. Запиши пет произвољних бројевних израза. 2. Израчунај вредност израза: а) 5 3 4 : 2 1 2 + 1 1 6 2 3 4 ; б) 5 3 4 : ( 2 1 2 + 1 1 6 ) 2 3 4 ; в) ( 5 3 4 : 2 1 2 + 1 1 6 ) 2 3 4 ; г)

Више

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВН Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ и технолошког развоја ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2018/2019. година

Више

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји

Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вуји Техничко решење: Софтвер за симулацију стохастичког ортогоналног мерила сигнала, његовог интеграла и диференцијала Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Велибор

Више

os07zup-rjes.dvi

os07zup-rjes.dvi RJEŠENJA ZA 4. RAZRED OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI

Више

PROMENLJIVE, TIPOVI PROMENLJIVIH

PROMENLJIVE, TIPOVI PROMENLJIVIH PROMENLJIVE, TIPOVI PROMENLJIVIH Šta je promenljiva? To je objekat jezika koji ima ime i kome se mogu dodeljivati vrednosti. Svakoj promenljivoj se dodeljuje registar (memorijska lokacija) operativne memorije

Више

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред

ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако

Више

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun

Konstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.

Више

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o Univerzitet u Beogradu Elektrotehnički akultet Katedra za energetske pretvarače i pogone ISPIT IZ SINHRONIH MAŠINA (13E013SIM) 1. Poznati su podaci o namotaju statora sinhronog motora sa stalnim magnetima

Више

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут

Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аут Техничко решење: Метода мерења реактивне снаге у сложенопериодичном режиму Руководилац пројекта: Владимир Вујичић Одговорно лице: Владимир Вујичић Аутори: Иван Жупунски, Небојша Пјевалица, Марјан Урекар,

Више

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe

6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe 6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju

Више

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1

1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1 1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)

Више

My_ST_FTNIspiti_Free

My_ST_FTNIspiti_Free ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити

Више

Microsoft Word II semestar Procedura april 2017.docx

Microsoft Word II semestar Procedura april 2017.docx II SEMESTAR PRIJAVA, IZRADA I ODBRANA MAGISTARSKOG RADA Nakon upisa II semestra, kandidat prijavljuje temu magistarskog rada. Svaka prijavljena tema prolazi kroz tri faze (tri Vijeća): FAZA 1-Vijeće Fakulteta

Више

Microsoft PowerPoint - 12a PEK EMT VHDL 1 od 4 - Uvod (2011).ppt [Compatibility Mode]

Microsoft PowerPoint - 12a PEK EMT VHDL 1 od 4 - Uvod (2011).ppt [Compatibility Mode] VHDL jezik za opis hardvera VHDL jezik za opis hardvera VHDL jezik za opis hardvera Prof. Dr Predrag Petković Dr Miljana Milić Sadržaj 1. Šta je VHDL? 2. Opis hardvera 3. Signali 4. Osnove VHDL pravopisa

Више

РАСПОРЕД ИСПИТА У ЈУНСКОМ 1 ИСПИТНОМ РОКУ

РАСПОРЕД ИСПИТА У ЈУНСКОМ 1 ИСПИТНОМ РОКУ РАСПОРЕД ИСПИТА У СЕПТЕМБАРСКОМ 1 ИСПИТНОМ РОКУ ШКОЛСКЕ 2018/2019. ГОДИНЕ (радна верзија 08.06.2019.) Прва година: ПРВА ГОДИНА - сви сем инфпрматике Име предмета Датум и термин пдржаваоа писменпг дела

Више

HxD CERT.hr-PUBDOC

HxD CERT.hr-PUBDOC HxD CERT.hr-PUBDOC-2019-3-376 Sadržaj 1 UVOD... 3 2 INSTALACIJA ALATA HXD... 4 3 KORIŠTENJE ALATA HXD... 9 3.1 SUČELJE HXD-A... 9 3.2 PREGLEDAVANJE DATOTEKA... 12 3.3 IZMJENA DATOTEKA... 13 3.4 SIGURNO

Више