UNIVERZITET U BEOGRADU MATEMATIČKI FAKULTET MASTER RAD JEDNODIMENZIONO SLUČAJNO LUTANJE I UOPŠTENJA Student Marko Krstić 1113/2013 Mentor Dr Jelena Jo
|
|
- Sinan Vlahović
- пре 6 година
- Прикази:
Транскрипт
1 UNIVERZITET U BEOGRDU MTEMTIČKI FKULTET MSTER RD JEDNODIMENZIONO SLUČJNO LUTNJE I UOPŠTENJ Student Marko Krstić 1113/2013 Mentor Dr Jelena Jocković
2
3 Sadržaj Uvod... 1 Slučajni procesi osnovni pojmovi... 3 Procesi sa nezavisnim priraštajima... 4 Slučajno lutanje kao lanac Markova... 6 Markovljevi lanci... 6 Verovatnoće prelaska u n koraka... 7 Slučajno lutanje kao lanac Markova... 9 Klasifikacija stanja naliza prvog koraka Slučajno lutanje kao martingal Uslovno matematičko očekivanje Slučajno lutanje kao martingal Princip refleksije Problem glasačkih listića i arcsin zakon Problem glasačkih listića Slučajno lutanje u finansijskoj matematici Finansijska sredstva Opcije i njihove osobine Kamatne stope i sadašnja vrednost novca Geometrijsko slučajno lutanje Binomni model sa jednim korakom za kol opcije Binomni model sa više koraka za kol opcije Binomni model za evropske put opcije Literatura... 50
4 Uvod U ovom radu biće razmatrano jednodimenzionalno slučajno lutanje kao specijalan slučaj procesa Markova. Slučajno lutanje je jedan od osnovnih pojmova u teoriji slučajnih procesa. Značaj ovoga modela ogleda se u velikom broju neočekivanih rezultata koje dobijamo prilikom njegovog izučavanja, ali i u činjenici da se slučajno lutanje nalazi u osnovi Braunovog kretanja, difuzne teorije, Itove analize Zbog svega toga slučajno lutanje ima brojne primene u biologiji, fizici, ekonomiji, finansijama Jednodimenzionalno slučajno lutanje je proces koji se može opisati na sledeći način: čestica se kreće po realnoj pravoj sa celobrojnim koordinatama i u jedinici vremena pravi jedinični korak u pozitivnom ili negativnom smeru sa datim verovatnoćama. Postoje brojna uopštenja kao što su višedimenzionalno slučajno lutanje, slučajno lutanje sa pozitivnim verovatnoćama ostajanja u istoj tački, slučajno lutanje po grafu, itd. U prvoj glavi rada, naslovljenoj Slučajni procesi-osnovni pojmovi, biće iznesene neke osnovne definicije vezane za pojam slučajnog procesa, zatim ćemo reći nešto o procesima sa nezavisnim priraštajima, te nešto o podeli ovih procesa, čiji je specijalni slučaj slučajno lutanje. Druga glava počinje uvođenjem Markovljevih lanaca, a zatim i uvođenjem slučajnog lutanja kao lanca Markova. Ovde ćemo navesti neke varijacije prilikom definisanja slučajnog lutanja, reći nešto više o njegovoj primeni i dati nekoliko primera koji za cilj imaju približavanje pojma slučajnog lutanja. Nakon toga biće definisane neke karakteristike koje su nam od značaja prilikom analiziranja slučajnih procesa kao što su povratna i prolazna stanja, dostižnost stanja, period stanja... Nakon definisanja svakog od ovih pojmova pokazaćemo njihovu primenu na primeru slučajnog lutanja, nakon toga pokazaćemo kako se analizom prvog koraka rešavaju problemi vezani za slučajno lutanje kao što je da kockar zaradi novčića pre nego sto izgubi B novčića i očekivano vreme trajanja ovog slučajnog lutanja. Treća glava posmatra slučajno lutanje kao martingal. Na početku glave izložena su neka od osnovnih svojstava uslovnog matematičkog očekivanja, koja su potrebna iz razloga što se uslovno matematičko očekivanje pojavljuje kako u samoj definiciji martingala, tako i u teoremama i primerima koji su vezani za ovaj pojam. Na kraju ovog poglavlja izložen je princip refleksije koji je propraćen nekim važnijim posledicama i jednim primerom primene. U četvrtoj glavi izložena su još neka svojstva slučajnog lutanja. Prvo se bavimo pitanjem koliko puta će u n rundi, igrač koji igra igru na sreću koja se može modelovati slučajnim lutanjem sa jednakim verovatnoćama gubitka i dobitka,,biti u plusu. Ovde dolazimo do, pomalo iznenađujućeg, zaključka da je verovatnoća da igrač skoro nikada ne bude,,u plusu ili da igrač skoro stalno bude,,u plusu veća od verovatnoće da igrač bude,,u plusu u n 2 rundi. U drugom delu ove glave bavimo se problemom 1
5 glasačkih listića. Problem glasačkih listića se može opisati na sledeći način: Neka na izborima učestvuju dva kandidata, i neka nakon prebrojanih n = p + q listića prvi kandidat ima p, a drugi kandidat q glasova, gde je p > q. Kolika je verovatnoća da će prvi kandidat voditi tokom celog prebrojavanja glasova? U petoj glavi bavimo se konkretnom primenom slučajnog lutanja u finansijskoj matematici. Videćemo kako se ovaj pojam može primeniti na modelovanje cena opcija. Kako je za modelovanje cena opcija potrebno određeno poznavanje finansijske matematike, to deo ove glave sadrži i kratak uvod u finansijsku matematiku, gde su izloženi pojmovi i stavovi koji se koriste pri konstrukciji binomnog modela. Prvo ćemo navesti šta su finansijska sredstva i dati neke njihove podele, nakon toga ćemo preći na opcije i njihove osobine. Kamatne stope i vrednosti novca u zavisnosti od vremena su takođe značajni faktori prilikom modelovanja vrednosti opcija, tako da je toj temi posvećeno treće poglavlje ove glave. Najzad prelazimo na sam binomni model, u narednim poglavljima prvo ćemo videti kako se pomoću binomnog modela sa jednim korakom modeluju opcije, a nakon toga i kako izgleda binomni model sa više koraka. 2
6 Slučajni procesi osnovni pojmovi Ova glava ima uvodni karakter. Slučajno lutanje je slučajni proces sa nezavisnim priraštajima. U ovoj glavi nećemo dati definiciju slučajnog lutanja, ali ćemo dati definiciju i primere slučajnog procesa, procesa sa nezavisnim priraštajima i definisati neke druge, osnovne, pojmove vezane za slučajne procese. Mnogi teorijski i praktični problemi nameću potrebu da se razmatraju nizovi ili, opštije, beskonačne familije zavisnih slučajnih veličina, time se upravo bavi teorija slučajnih procesa. Primer 1.1: Neka je (X n ) n 1 niz nezavisnih slučajnih veličina i neka je S n = X 1 + X X n, n 1 niz parcijalnih zbirova. Jasno je da su članovi niza (S n ) zavisne slučajne veličine. U vezi sa ovim nizom primetimo sledeće: ko su s 1 < t 1 s 2 < t 2 prirodni brojevi, onda su slučajne veličine S t1 S s1 i S t2 S s2 nezavisne, tj. priraštaji zbira na intervalima (s 1, t 1 ] i (s 2, t 2 ] su nezavisne slučajne veličine. ko slučajne veličine X 1, X 2, uzimaju, na primer, vrednosti u skupu celih brojeva sa verovatnoćom 1, onda su takvi i svi članovi niza (S n ). ko su slučajne veličine X 1,X 2,... apsolutno neprekidne slučajne veličine, onda su takvi i parcijalni zbirovi. Primer 1.2: Proučava se neka fizička veličina koja se menja tokom vremena, na primer, temperatura vazduha na određenom mestu. Vrednost te veličine u trenutku t je slučajna veličina X(t), pa se ovde prirodno pojavljuje familija slučajnih veličina {X(t), t 0} sa apsolutno neprekidnim raspodelama. Primer 1.3: Broj isplata odšteta koje tokom vremena, počinjući od nekog trenutka, isplaćuje osiguravajuće društvo opisuje se familijom slučajnih veličina {N(t), t 0}, koje zavise od parametra t [0, + ). Pri tome, svaka slučajna veličina X(t), koja predstavlja broj isplaćenih odšteta do trenutka t, uzima vrednosti u skupu nenegativnih celih brojeva. Neka je (Ω,, P) prostor verovatnoća i (S, B) merljiv prostor. Funkcija X: Ω S, koja je merljiva u odnosu na sigma algebre i B, u smislu da za svaki skup B B važi X 1 (B) zove se slučajni element u prostoru S. Raspodela verovatnoća slučajnog elementa X: Ω S je verovatnosna mera P X B R, koja je data sa P X (B) = P(X 1 (B)) za B B. Prostor (S, B) zove se prostor vrednosti slučajnog elementa X ili fazni prostor. U radu ćemo razmatrati familiju slučajnih elemenata {X t, t T}, gde je T beskonačan skup, i pri čemu su svi slučajni elementi ove familije definisani na nekom prostoru verovatnoća (Ω,, P), a za svako t T slučajni element X t uzima vrednosti u nekom merljivom prostoru (S t, B t ). Za svako t T funkcija X t Ω S t je merljiva u odnosu na σ-algebre i B t, u smislu da za skup B B t važi X t 1 (B). Moguće je da za sve vrednosti t merljiv prostor (S t, B t ) bude isti, na primer (R, B). Definicija 1.1: Familija slučajnih elemenata {X t, t T} definisanih na nekom prostoru verovatnoća (Ω,, P), gde je T beskonačan skup, zove se slučajna funkcija. Skup T iz definicije 1.1 zove se parametarski skup. ko je T = R = (, + ), T = [0, + ) ili T = [a, b] R, onda se parameter t T najčešće interpretira kao vreme, a slučajna funkcija {X t, t T} zove se slučajan proces sa neprekidnim vremenom. ko je T Z, gde je Z skup celih brojeva, onda se 3
7 slučajna funkcija {X t, t T} zove slučajni proces sa diskretnim vremenom ili slučajni niz. ko je T R d, gde je d 2, onda se slučajna funkcija {X t, t T} zove slučajno polje. Termin slučajan proces može se koristiti i za proizvoljnu slučajnu funkciju, tj. pri proizvoljnom parametarskom prostoru T. ko je (R, B) prostor vrednosti za sve X t, t T, onda se {X t, t T} zove realan slučajan proces. Svojstva slučajnih procesa bitno zavise od strukture parametarskog skupa T i od prostora (S t, Β t ) t T, u kojima slučajni elementi X t uzimaju vrednosti. Neka je {X t, t T} realan slučajan proces definisan na nekom prostoru verovatnoća (Ω,, P). Za svaki element ω Ω, označimo sa X t (ω) vrednost slučajne veličine X t u tački ω. Definicija 1.2: Pri fiksiranom ω Ω funkcija X t (ω), t T, zove se trajektorija slučajnog procesa {X t, t T}. Prema tome trajektorija X t (ω), t T, realnog slučajnog procesa je konkretna funkcija koja skup T preslikava u skup realnih brojeva, tj. element skupa R T. Moguće je razmatrati i vektorski slučajni proces {X t, t T}. On se određuje familijom slučajnih vektora X t = (X t1,, X tm ): Ω R m, t T, m 2 Koji su definisani na istom prostoru verovatnoća (Ω,, P), pri čemu pretpostavljamo da je T beskonačan skup. U zavisnosti od toga šta je skup T (posebno interesantni slučajevi T R i T Z), uvodi se slična klasifikacija i terminologija za slučajne vektore, kao što je uvedena za slučajne procese. Procesi sa nezavisnim priraštajima Važna klasa slučajnih procesa, koja se kod procesa sa diskretnim parametrom pojavljuje u vezi sa sumiranjem nezavisnih slučajnih veličina, jeste klasa procesa sa nezavisnim priraštajima. Formalna definicija za realne slučajne procese sa neprekidnim parametrom je sledeća: Definicija 1.3: Realan slučajni proces {X t, t T} zove se proces sa nezavisnim priraštajima, ako su za svaki prirodan broj n i proizvoljne t 0, t 1,, t n, pri čemu je 0 = t 0 < t 1 < < t n, slučajne veličine X t0, X t1 X t0,, X tn X tn 1 nezavisne. Definicija procesa sa nezavisnim priraštajima se prirodno može proširiti i na procese sa diskretnim parametrom. Za slučajni niz (X t ) t N0, gde je N 0 = {0, 1, 2, }, kažemo da ima nezavisne priraštaje ako za svaki prirodan broj n i nenegativne cele brojeve 0 = t 0 < t 1 < < t n, slučajne veličine X t0, X t1 X t0,, X tn X tn 1 su nezavisne. 4
8 Dva vrlo važna procesa sa nezavisnim priraštajima, koji se iz mnogih razloga smatraju osnovnim u teoriji slučajnih procesa, jesu Puasonov 1 i Vinerov 2 proces. Puasonov proces koristi se kao osnovni model u teoriji masovnog opsluživanja, aktuarskoj matematici, itd. Vinerov proces se posebno koristi u modeliranju vremenskih serija u finansijskoj matematici. Definicija 1.4: Slučajni proces {N(t), t 0} je Puasonov proces, ako ima sledeća svojstva: 1. N(0) = 0 s.s. 2. Slučajni proces N ima nezavisne priraštaje, tj. za sve prirodne brojeve n i sve realne brojeve t 1,, t n gde je 0 = t 0 < t 1 < < t n, nezavisne su sledeće slučajne veličine: N(t k ) N(t k 1 ), k = 1,2,, n 3. Postoji neopadajuća funkcija μ: [0, + ) [0, + ), koja je neprekidna s desne strane, μ(0) = 0 i takva da za proizvoljne 0 < s < t važi N(t) N(s) Ρ(μ(t) μ(s)). Funkcija μ zove se funkcija srednje vrednosti Puasonovog procesa N. 4. Sa verovatnoćom 1 trajektorije {N(t, ω), t 0} slučajnog procesa N neprekidne su sa desne strane za t 0 i imaju levu graničnu vrednost za t > 0. Definicija 1.5: Slučajni proces {W(t), t 0} definisan na nekom prostoru verovatnoća (Ω,, P) je Vinerov proces ili Braunovo 3 kretanje, ako važi: 1. W(0) = 0 s.s. 2. Slučajan proces W ima nezavisne priraštaje. 3. Za sve realne brojeve 0 s < t < + važi W(t) W(s) N(0, t s), tj. slučajna veličina W(t) W(s) ima normalnu raspodelu sa matematičkim očekivanjem 0 i disperzijom t s. U ovoj glavi predstavili smo neke osnovne pojmove vezane za slučajne procese, sa posebnim osvrtom na slučajne procese sa nezavisnim priraštajima. Cilj ove glave bio je teorijski uvod za definisanje slučajnog lutanja, tako da su pomenute samo osnovni pojmovi vezani za slučajne procese, više o ovoj temi može se naći u literaturi [5], [2]. Za pisanje ove glave korišćena je literatura [5]. 1 Siméon Denis Poisson ( ) francuski matematičar 2 Norbert Wiener ( ) američki matematičar 3 Robert Brown ( ) škotski botaničar 5
9 Slučajno lutanje kao lanac Markova U ovoj glavi opisaćemo slučajno lutanje kao lanac Markova. Nakon prve glave u kojoj smo uveli pojam slučajnog procesa i procesa sa nezavisnim priraštajima, sada nam pre uvođenja slučajnog lutanja kao lanca Markova preostaje definisanje Markovljevih lanaca. U prva dva poglavlja ove glave definisaćemo pojam Markovljevih lanaca i predstaviti neke karakteristike ovih lanaca. Treće poglavlje uvodi pojam slučajnog lutanja kao lanca Markova, pored definicije slučajnog lutanja date su i neke varijacije definicija, jer u zavisnosti od problema koji rešavamo pomoću slučajnog lutanja često se razlikuju i modeli koji te probleme opisuju, pa stoga postoji puno varijacija prilikom definisanja slučajnog lutanja. Prilikom posmatranja nekog slučajnog procesa često se pitamo:,,kolika je verovatnoća da proces koji se sada nalazi u nekom stanju nekada u budućnosti ponovo dođe u to stanje? ;,, da li proces koji se sada nalazi u stanju i može nekada preći u stanje j? Na ova pitanja dali smo odgovor u četvrtom poglavlju ove glave, kako generalno za slučajne procese, tako i kroz primere za slučajno lutanje. Poslednje poglavlje ove glave nosi odgovor na pitanje:,, koja je verovatnoća da igrač koji igra igru na sreću osvoji novčića pre nego što izgubi B novčića? Markovljevi lanci Pretpostavimo da razmatramo fizički sistem koji u diskretnim trenucima vremena, koje ćemo označiti sa 0, 1, 2,, prelazi iz jednog stanja u drugo. Pretpostavimo takođe da je fazni prostor prebrojiv i da su njegovi elementi numerisani celim brojevima, tj. elementima skupa Z. Neka je X t stanje sistema u trenutku t, koje nastaje kao rezultat slučajnih promena stanja X 0 X 1 X t. Homogen lanac Markova 4 je slučajni proces {X t, t N 0 }, koji ima Markovljevo svojstvo: p ij = P(X t+1 = j X t = i) = P(X t+1 = j X 0 = i 0,, X t 1 = i t 1, X t = i) (2.1) Formalna definicija homogenog lanca Markova glasi: Definicija 2.1: Slučajni niz {X t, t N 0 } zove se homogeni Markovljev lanac sa faznim prostorom Z, ako za svako t N 0 i sve i, j, i 0,, i t 1 Z važi jednakost (2.1). Verovatnoća p ij zove se verovatnoća prelaska sistema iz stanja i u stanje j, a matrica P = [p ij ] Z Z zove se matrica verovatnoća prelaska. Matrica verovatnoća prelaska ima sledeći oblik: p 00 p 01 p 02 p 10 p 11 p 12 p 20 p 21 p 22 P = p i0 p i1 p i2 p 03 p 04 p 13 p 14 p 23 p 24 p i3 p i4 Matrica verovatnoće prelaska je stohastička, tj. ima svojstva: 4 Андре й Андре евич Ма рков ( ) ruski matematičar 6
10 p ij 0 za sve i, j Z j p ij = 1 za svako i Z ko verovatnoća prelaska sistema iz stanja i u stanje j zavisi od trenutka t, onda se radi o nehomogenom lancu Markova, tada verovatnoću prelaska obeležavamo sledećom notacijom: p t,t+1 ij = P(X t+1 = j X t = i) (2.2) Mi ćemo u radu, ukoliko se drugačije ne naglasi, koristiti homogene lance Markova i zvati ih kratko lanac Markova. U ovom slučaju p t,t+1 ij = p ij ne zavisi od t, pa p ij predstavlja verovatnoću da proces pređe iz stanja i u stanje j u jednom koraku. Uvedimo još oznake verovatnoća početnih stanja, tj. za verovatnoće događaja da se sistem u početnom trenutku nalazi u nekom od stanja: p i (0) = P(X0 = i), i Z (0) I za ove verovatnoće očigledno važi jednakost i p i = 1. Primer 2.1: Neka je {X t, t N 0 } lanac Markova. Kako izračunati P(X 0 = i 0,, X n = i n )? P(X 0 = i 0,, X n = i n ) = P(X n = i n X 0 = i 0,, X n 1 = i n 1 ) P(X 0 = i 0,, X n 1 = i n 1 ) Pa po definiciji Markovljevog procesa P(X n = i n X 0 = i 0,, X n 1 = i n 1 ) = P(X n = i n X n 1 = i n 1 ) = p in 1 i n Pa zamenom dobijamo P(X 0 = i 0,, X n = i n ) = p in 1 i n P(X 0 = i 0,, X n 1 = i n 1 ) Dalje se indukcijom dobija (0) P(X 0 = i 0,, X n = i n ) = p in 1 i n p in 2 i n 1 p i0 i 1 p i Verovatnoće prelaska u n koraka Pri razmatranju Markovljevih lanaca javlja se potreba i za razmatranjem verovatnoća prelaska iz jednog stanja u neko drugo stanje u većem broju koraka. Kako se potreba za računanjem ove verovatnoće javlja i prilikom izučavanja slučajnog lutanja u ovom poglavlju ćemo se pozabaviti time. Definicija 2.2: Matrica P n = [p ij (n)] Z Z čiji su članovi određeni jednakostima: 7
11 p ij (n) = P{X m+n = j X m = i}, i, j Z zove se matrica verovatnoće prelaska u n koraka. Očigledno je da važi P 1 = P. Za određivanje verovatnoća prelaska u većem broju koraka koristi se sledeća teorema: Teorema 2.1: Za proizvoljne prirodne brojeve m i n važe sledeće jednačine Čepmen-Kolmogorova: p ij (m + n) = p ik (m)p kj (n) k (2.3) Važe i jednakosti P m+n = P m P n i P n = P n, gde je P n oznaka za n-ti stepen matrice P. Dokaz: Za proizvoljne događaje, B, C važi jednakost: P(B C) = P( BC)P(B C). Koristeći ovu jednakost i Markovljevo svojstvo dobijamo da za verovatnoću p ij (m + n) važe jednakosti: p ij (m + n) = P(X m+n = j X 0 = i) = P(X m+n = j, X m = k X 0 = i) k = P(X m+n = j X m = k, X 0 = i) P(X m = k X 0 = i) k = P(X m+n = j X m = k) P(X m = k X 0 = i) k = p ik (m)p kj (n) k Time je dokazana jednakost (2.3), a jednakosti P m+n = P m P n i P n = P n su jednostavne posledice. (n) Označimo p i = P(Xn = i), n N. Tada za proizvoljne prirodne brojeve m i n važi jednakost: (m+n) p j = P(Xm+n = j) = P(X m+n = j, X m = i) P(X m = i) i = p i (m) pij (n) i 8
12 Slučajno lutanje kao lanac Markova Razmotrimo slučajno lutanje čestice koja polazi iz tačke 0 i u jedinici vremena pravi jedinični korak u pozitivnom smeru sa verovatnoćom p i u negativnom smeru sa verovatnoćom 1 p. Koraci u lutanju predstavljaju niz nezavisnih slučajnih veličina X 1, X 2, sa istom raspodelom verovatnoća: P(X k = 1) = p, P(X k = 1) = 1 p Položaj čestice posle n koraka je slučajna veličina S n = X 1 + X X n, pri čemu je S 0 = 0 sa verovatnoćom 1. Niz S 0, S 1, S 2, je homogen Markovljev lanac. Verovatnoće prelaska određene su jednakostima: p ako je j = i + 1 p ij = { 1 p ako je j = i 1 0 ako je j {i 1, i + 1} Početna raspodela verovatnoće po stanjima je data sa p 0 (0) = 1, pi (0) = 0 za i 0. Verovatnoća p ij (n) prelaska iz tačke i u tačku j u n koraka lako se određuje. Neka je čestica pri kretanju iz i do j napravila x koraka u pozitivnom smeru i y koraka u negativnom smeru. Tada je x + y = n i x y = j i, odakle dobijamo da je x = (n + j i)/2, y = (n j + i)/2. Dakle broj n + j i mora biti paran. Za p ij (n) dobijamo: p ij (n) = 0 ako je n + j i neparan broj, ako je n + j i paran: n p ij (n) = ( (n + j i)/2 ) p(n+j i)/2 (1 p) (n j+i)/2 Postoje brojne varijacije definicija slučajnog lutanja koje se često koriste za definisanje modela pri opisivanju nekog prirodnog fenomena. Možemo na primer promeniti korak slučajnog lutanja pa reći da je: P(X k = u) = p, P(X k = u) = 1 p u 0,1 (2.4) Ovo slučajno lutanje se lako transformiše u slučajno lutanje kako smo ga mi definisali i zadržava većinu osobina koje naše slučajno lutanje ima. Još jedna od mogućnosti je da slučajno lutanje ima ograničen fazni prostor, tada govorimo o slučajnom lutanju sa jednom ili dve barijere. Barijere mogu biti, reflektujuće, apsorbujuće i delimično reflektujuće (kasnije će biti objašnjeno šta svaki od ovih termina predstavlja). Takođe možemo pretpostaviti da je Markovljev lanac S n nehomogen, tada su verovatnoće prelaska date sa: P(X k = 1) = p k, P(X k = 1) = 1 p k = q k Specijalan slučaj slučajnog lutanja je i slučajno lutanje sa pozitivnom verovatnoćom ostajanja u istom stanju. ko se proces u trenutku n nalazi u stanju i, u trenutku n + 1 proces se može naći u stanju i 1, i + 1 ili ostati u stanju i. 9
13 Primer 2.2: Moguće je kombinovati ove osobine. ko uzmemo da fazni prostor čine samo nenegativni prirodni brojevi, matrica verovatnoće prelaska nehomogenog slučajnog lutanja sa pozitivnom verovatnoćom ostajanja u istom stanju ima formu: r 0 p q 1 r 1 p 1 0 P = 0 q 2 r 2 p q i r i p i (2.5) Gde je p i > 0, q i > 0, r i > 0 i p i + q i + r i = 1, i = 1,2, p 0 0, r 0 0, r 0 + p 0 = 1. ko je S n = i, tada za i 1 važi: P(S n+1 = i + 1 S n = i) = p i ; P(S n+1 = i 1 S n = i) = q i ; P(S n+1 = i S n = i) = r i Termin slučajno lutanje dobio je to ime jer podseća na kretanje čoveka koji se slučajno kreće jedan korak napred, odnosno jedan korak nazad. Primer 2.3: Ovim procesom može se opisati bogatstvo igrača koji igra igru protiv beskonačno bogatog protivnika (kuće). Pretpostavimo da igrač u početku ima bogatstvo k novčića, i neka je verovatnoća da u sledećem koraku osvaja novčić p k, a verovatnoća da izgubi novčić q k = 1 p k (k 1) (izbor igre može zavisiti od njegovog bogatstva u tom trenutku, pa zbog toga verovatnoće nisu jednake u svakom trenutku). Ovde je r 0 = 1 jer igrač kada izgubi sav novac ne može preći ni u jedno drugo stanje. Dakle proces {S t, t N 0 }, gde S t predstavlja bogatstvo igrača u trenutku t je slučajno lutanje. Ovaj proces je takođe poznat i kao propast kockara. Najčešće se posmatra slučaj p k = p, q k = 1 p = q, za sve k 1 i r 0 = 1, odnosno kada igrač svaki put igra istu igru. ko je p > q kažemo da igrač ima prednost. ko je p < q tada prednost ima kuća. ko je p k = q k = 1 kažemo da je igra fer. 2 ko kuća (igrač B) takođe startuje sa ograničenim bogatstvom Y, dok igrač ima ograničeno startno bogatstvo X (neka je X + Y = a), tada ponovo možemo razmatrati bogatstvo igrača pomoću slučajnog lutanja S n. Sada su moguća stanja u kojima se slučajni proces može naći 0,1,, a. Bogatstvo igrača B u trenutku n je a S n. ko ostavimo mogućnost nerešenog ishoda, odnosno da u nekoj igri ni jedan igrač ne pobedi, tada matrica verovatnoće prelaska ima oblik: q 1 r 1 p 1 0 P = 0 q 2 r 2 p 2 0 q a 1 r a 1 p a (2.6) 10
14 Dakle p i predstavlja verovatnoću uvećanja bogatstva igrača za 1 novčić, q i predstavlja verovatnoću smanjenja bogatstva igrača za jedan novčić, odnosno verovatnoću povećanja bogatstva igrača B za 1 novčić, dok r i predstavlja verovatnoću nerešenog ishoda. Kažemo da je igrač propao ukoliko je proces došao u stanje 0, odnosno da je igrač B propao ukoliko je proces došao u stanje a. Slučajna lutanja nisu korisna samo prilikom simulacije kockanja, ona se, između ostalog, mogu primeniti i u fizičkim procesima, prilikom opisivanja difuznog kretanja čestice. Prilikom kretanja, čestice se sudaraju i tako dobijaju slučajne impulse, koji menjaju pravac njihovog kretanja, međutim ovde se radi o procesima sa neprekidnim vremenom, koji se mogu aproksimirati slučajnim lutanjem, ukoliko buduća pozicija zavisi samo od trenutne pozicije, odnosno ako je proces lanac Markova. Diskretna verzija Braunovog kretanja je simetrično slučajno lutanje. Pod simetričnim slučajnim lutanjem podrazumevamo slučajno lutanje na skupu celih brojeva sa verovatnoćom prelaska definisanom na sledeći način: p ako j = i + 1 p ako j = i 1 p ij = { r ako j = i 0 inače Gde je p > 0, r 0 i 2p + r = 1. Po konvenciji, simetrično slučajno lutanje podrazumeva slučaj kada je r = 0, p = 1 2. Vratimo se sada na nehomogeno slučajno lutanje sa pozitivnom verovatnoćom ostajanja u istom stanju čiji fazni prostor čine nenegativni celi brojevi (primer 2.2). ko u matrici (2.5) stavimo da je p 0 = 1, a time i r 0 = 0 imamo slučaj gde se nula ponaša kao reflektivna barijera. Kada čestica dostigne stanje nula, u sledećem koraku se automatski vraća u stanje 1. Ovo odgovara fizičkim procesima sa elastičnim zidom u nuli, od koga se čestice odbijaju. ko je p 0 = 0 u r 0 = 1 tada se stanje nula ponaša kao apsorbujuća barijera, jednom kada čestica dostigne stanje nula, ona u tom stanju ostaje zauvek. ko je p 0 > 0 i r 0 > 0, tada je 0 delimično reflektivna barijera. Kada se slučajno lutanje može naći u konačnom broju stanja 0,1,..., a, tada svako od stanja 0 i a može biti reflektujuće, apsorbujuće ili delimično reflektujuće. U slučaju kada posmatramo bogatstvo kockara gde kuća ima ograničeno bogatstvo, govorimo o slučajnom lutanju sa dve apsorbujuće barijere (0 i a). 11
15 Primer 2.4: Klasičan matematički model difuznog kretanja je čuveni Ehranfetsov 5 model, slučajno lutanje sa konačnim brojem stanja i reflektujućim barijerama. Skup stanja je i = a, a + 1,..., a, a verovatnoće prelaska određene su jednakostima: a i ako j = i + 1 2a p ij = a + i ako j = i 1 2a { 0 inače Fizička interpretacija ovog modela je sledeća. Zamislimo da dve kutije sadrže ukupno 2a loptica. Pretpostavimo da prva kutija označena sa sadrži k loptica, a da druga kutija, označena sa B sadrži 2a k loptica. Biramo lopticu na slučajan način, tako da svaka od 2a loptica ima podjednaku verovatnoću izbora i premeštamo je iz kutije u kojoj se nalazi u drugu kutiju. Napomenimo još da pored jednodimenzionalnih postoje i slučajna lutanja u više dimenzija. Simetrično slučajno lutanje u n dimenzija, definisano na prostoru E n, ima za skup stanja n-torke k = (k 1, k 2,..., k n ), gde su k 1, k 2,..., k n prirodni brojevi. Verovatnoće prelaska određene su jednakostima: 1 p kl = { 2n n ako l i k i = 1 i=1 0 inače Ovakva slučajna lutanja nisu tema ovog rada, pa stoga dalje o njima neće biti govora. Primer 2.5: Neka je S n slučajno lutanje, tako da važi P(S n+1 = i + 1 S n = i) = p ; P(S n+1 = i 1 S n = i) = q, 0 < p q < 1, p + q = 1. Pronađimo verovatnoću v 0i = P(S n = i za bar jedno n N S 0 = 0), i N. U skladu sa notacijom iz primera je v 01 = P(S n = 1 za bar jedno n N S 0 = 0), važi: v 01 = p + qv 02 (2.7) Za prethodnu jednakost koristili smo svojstvo homogenosti lanca Markova: v 11 = P(S n = 1 za bar jedno n N S 0 = 1) = P(S n = 2 za bar jedno n N S 0 = 0) = v 02 Takođe zbog homogenosti važi: Važi: v 12 = P(S n = 2 za bar jedno n N S 0 = 1) = P(S n = 1 za bar jedno n N S 0 = 0) = v 01 v 02 = v 01 v 01 (2.8) 5 Paul Ehrenfest ( ) austrijski fizičar 12
16 Iz jednačina (2.7) i (2.8) dobijamo: Rešavanjem ove kvadratne jednačine dobijamo: Dalje je: v 01 = p + qv 2 01 = v 01 p + q ± (p q) 2q i v 0i = v 01 = { (p q ) i p p < q = { q 1 p = q p < q 1 p = q Klasifikacija stanja Definicija 2.3: Neka je X 0, X 1, X 2, Markovljev lanac. Stanje i je povratno, ako je: P(X n = i, za neko n 1 X 0 = i) = 1 tj. ako verovatnoća povratka sistema u stanje i pri uslovu da je on u početnom trenutku u tom stanju, jednaka 1. Stanje i je prolazno ako važi stroga nejednakost P(X n = i, za neko n 1 X 0 = i) < 1. Prirodno se postavlja pitanje određivanja potrebnog i dovoljnog uslova da je neko stanje i povratno. U tom cilju uvešćemo još neke oznake i dokazati jednu pomoćnu teoremu. Neka je v ij (n) verovatnoća događaja da sistem prvi put dođe u stanje j u trenutku n, ako je u početnom trenutku bio u stanju i, tj. v ij (n) = P(X 1 j,, X n 1 j, X n = j X 0 = i) Tada je verovatnoća događaja da će sistem bilo kada doći u stanje j, ako je i početno stanje data sa v ij = v ij (n) Po definiciji smatramo da je v ij (0) = 0 za sve i i j. Definišemo generatorne funkcije n=1 P ij (s) = p ij (n)s n n=0 V ij (s) = v ij (n)s n = v ij (n)s n n=0 n=1 (2.9) (2.10) 13
17 gde je Teorema 2.2: Važe sledeće jednakosti p ij (0) = δ ij = { 1, ako je i = j 0, ako je i j P ii (s) = 1 + V ii (s)p ii (s) (2.11) P ij (s) = V ij (s)p jj (s), ako je i j (2.12) Dokaz: Neka su i i j fiksirana stanja. Za svako n N označimo n = {X n = j}, B n = {X 1 j,, X n 1 j, X n = j} Tada važi n = n B 1 n B n, pri čemu su n B 1,, n B n međusobno disjunktni događaji, pa dobijamo p ij (n) = P(X n = j X 0 = i) = P( n B k X 0 = i) n n k=1 = P(B k X 0 = i) P( n B k, X 0 = i) k=1 pa koristeći Markovljevo svojstvo, dobijamo: pa je: n = P(B k X 0 = i) P( n X k = j) k=1 Pa koristeći (2.9), (2.10) i (2.13): n p ij (n) = v ij (k)p jj (n k) k=1 (2.13) V ij (s)p jj (s) = v ij (n)s n p jj (n)s n n=1 n=0 = (v ij (1)p jj (n 1) + + v ij (n 1)p jj (1) + v ij (n)p jj (0)) n=1 = p ij (n) s n P ij (s), ako je i j = { P ii (s) 1, ako je i = j n=1 s n 14
18 Posledica 2.1: Stanje i je povratno ako i samo ako je p ii (n) = + n=1 (2.14) Dokaz: Jednakost (2.11) može se zapisati u obliku P ii (s)(1 V ii (s)) = 1. Neka je i povratno stanje. Tada je n=1 v ii = v ii (n) = 1. Koristeći belovu teoremu dobijamo da je V ii (1) = lim V ii (s) = v ii (n) = 1 s 1 Sada iz jednakosti P ii (s)(1 V ii (s)) = 1 pri s 1 dobijamo da P ii (s), tj. se dokazuje i obrnuto tvrđenje. Posledica 2.2: (1.) ko je n=1 p jj (n) = i v ij > 0 za neko i, onda je p ij (n) = (2.) ko je n=1 p jj (n) <, onda za svako i važi n=1 p ij (n) <. n=1 n=1. n=1 p ii (n) =. Slično n=1 n=1, Dokaz: Na osnovu belove teoreme iz jednakosti (2.12) dobijamo da je v ij p jj (n) = p ij (n) pa navedena tvrđenja lako slede. Napomena: belova teorema koja se ovde pominje glasi: ko je a n 0 za n N 0 i ako red G(s) = n=0 a n s n konvergira za s < 1, onda važi lim G(s) = n=0 a n, nezavisno od toga da li je zbir n=0 a n s 1 konačan ili beskonačan. Označimo sa τ j trenutak prvog dolaska sistema u stanje j, tj. τ j = min {n 1, X n = j} Po definiciji smatramo da je τ j =, ako sistem nikada ne dostigne stanje j. Pri tome P(τ i = X 0 = i) > 0 važi ako i samo ako je stanje i prolazno i u tom slučaju smatramo da je E(τ i X 0 = i) =. Definicija 2.4: Srednje vreme čekanja povratka stanja i definiše se sledećim jednakostima: m i = E(τ i X 0 = i) = nv ii (n) ako je i povratno stanje, n=1 (2.15) m i = E(τ i X 0 = i) = ako je i prolazno stanje. (2.16) 15
19 Primetimo da zbir koji figuriše na desnoj strani u jednakosti (2.15) može biti i konačan i beskonačan. Definicija 2.5: Neka je {X t, t N 0 } Markovljev lanac sa skupom stanja Z. Stanje j Z je dostižno iz stanja i Z, ako je v ij > 0. U tom slučaju kažemo da i komunicira sa j. ko je v ij > 0 i v ji > 0 onda kažemo da stanja i i j međusobno komuniciraju. Dakle, stanje j je dostižno iz stanja i ukoliko je verovatnoća da se iz stanja i može preći u stanje j u konačnom broju promena stanja veća od nule. Dok stanja i i j komuniciraju, ukoliko je svako od ovih stanja dostižno iz onog drugog, tada pišemo i j. ko stanja i i j ne komuniciraju, tada važi bar jedna od sledećih jednakosti: p ij (n) = 0 za svako n 0 p ji (n) = 0 za svako n 0 Definicija 2.6: Neka je E podskup skupa svih stanja. Skup E je zatvoren ako je p ij = 0, za svako i E i j E, tj. ako je verovatnoća nula da se iz stanja koje pripada skupu E pređe u stanje koje nije u skupu E. ko zatvoren skup sadrži samo jedno stanje, onda se taj skup i to stanje zovu apsorbujućim. Skup E je nerazloživ ako proizvoljna stanja i, j E međusobno komuniciraju. Relacija i j je relacija ekvivalencije. Sva stanja možemo podeliti u klase ekvivalencije, tako da sva stanja koja komuniciraju međusobno pripadaju istoj klasi ekvivalencije. ko je verovatnoća da iz jedne klase pređemo u drugu veća od nule, tada je verovatnoća da iz te druge klase pređemo u prvu jednaka 0, u suprotnom bi ove dve klase zajedno činile jednu. Kažemo da je lanac Markova nesvodljiv ukoliko sva stanja pripadaju istoj klasi. Primer 2.6: Posmatrajmo slučajno lutanje sa dve apsorbujuće barijere i sledećom matricom prelaska: q 0 p q 0 p 0 P = 0 0 q 0 p Imamo tri klase {0}, {1,2,, a 1} i {a}. U ovom slučaju, moguće je dostići prvu klasu i treću klasu iz druge klase, ali se iz prve klase i treće klase nije moguće vratiti u drugu klasu. Definicija 2.7: Povratno stanje i je nulto ako je m i =, tj. ako je beskonačno vreme čekanja povratka stanja i pri uslovu da se u početnom trenutku sistem nalazi u tom stanju. Povratno stanje i je nenulto ako je m i <. Definicija 2.8: Najveći zajednički delilac d(i) brojeva koraka posle kojih je moguć povratak u stanje i zove se period stanja i: 16
20 d(i) = NZD{n: p ii (n) > 0} Stanje i je periodično ako je d(i) > 1, odnosno neperiodično ako je d(i) = 1. Primer 2.7: ko ne govorimo o slučajnom lutanju sa pozitivnom verovatnoćom ostajanja u istom stanju (odnosno ako je r = 0), tada svako stanje ima period 2. Jer je p ii (2n + 1) = 0, p ii (2n) = ( 2n n ) pn q n = (2n)! n!n! pn q n >0. Kod slučajnog lutanja sa pozitivnom verovatnoćom ostajanja u istom stanju, važi r > 0, pa svako stanje ima period 1. Primer 2.8: Posmatrajmo slučajno lutanje sa skupom stanja Z, gde je p i,i+1 = p, p i,i 1 = q = 1 p Ovde je p ii (2n + 1) = 0, n = 0,1,2,, i p ii (2n) = ( 2n n ) pn q n = (2n)! n! n! pn q n (2.17) Pozivamo se sada na Stirlingovu formulu n! ~n n+1 2e n 2π, n (2.18) Pa iz (2.17) i (2.18) imamo: p ii (2n)~ (pq)n 2 2n πn = (4pq)n πn, n Kako je pq = p(1 p) 1 4, gde jednakost važi ako je p = q = 1 2, to je za p = q = 1 2 p ii(2n)~ 1 n=1 n=1 p ii (2n) =. Dakle u ovom slučaju su sva stanja povratna. ko je p 1 onda je 4pq < 1 pa je 2 p ii (2n) <, a sva stanja su prolazna. Napomenimo da ako svaki element nekog skupa stanja ima neko svojstvo, onda kažemo da taj skup stanja ima to svojstvo. Na primer, skup povratnih stanja E je nulti, ako su sva stanja iz E nulta, skup stanja E je periodičan, ako su sva stanja iz E priodična, itd. ko je čitav skup stanja Z nerazloživ, onda kažemo da je Markovljev lanac nerazloživ. Teorema 2.3: Neka stanja i i j međusobno komuniciraju. Stanje i je prolazno (povratno) ako i samo ako je stanje j prolazno (povratno). πn pa je 17
21 Dokaz: ko stanja i i j međusobno komuniciraju, onda postoje prirodni brojevi m i n, takvi da važi p ij (m) = α > 0 i p ji (n) = β > 0. Na osnovu jednačina Čepmen-Kolmogorov dobijamo da je p ii (m + k + n) p ij (m)p jj (k)p ji (n) = αβp jj (k) (2.19) p jj (m + k + n) p ji (m)p ii (k)p ij (n) = αβp ii (k) (2.20) ko sumiramo nejednakosti (2.19) i (2.20) po k, dobijamo da redovi k p ii (k) i k p ii (k) istovremeno konvergiraju ili divergiraju. Tvrđenje teoreme sada jednostavno dobijamo ako primenimo posledicu 2.1. Teorema 2.4: Skup stanja Z može se jednoznačno predstaviti u obliku Z = E 0 E 1 E 2 Gde je E 0 skup prolaznih stanja, a E 1, E 2,... su nerazloživi zatvoreni skupovi povratnih stanja. Dokaz: Relacija razbija skup svih povratnih stanja na međusobno disjunktne klase ekvivalencije E 1, E 2... Dovoljno je dokazati da su ove klase zatvorene u smislu definicije 2.6. Pretpostavimo suprotno: neka za neko k i stanje i E k i j E k važi p ij > 0. Pošto i i j nisu u istoj klasi, to ova stanja ne komuniciraju i j nije dostižno iz i. Zato je: P ( {X n i} X 0 = i) P{X 1 = j X 0 = i} = p ii > 0 n=1 Što protivreči pretpostavci da je stanje i povratno. naliza prvog koraka Posmatrajmo slučajno lutanje za koje je P(X k = 1) = P(X k = 1) = 1 2, S 0 = 0. ko se vratimo na primer bogatstva igrača, u ovom slučaju igrač igra fer igru, sa istom verovatnoćom dobitka i gubitka. Sada hoćemo da izračunamo verovatnoću da igrač osvoji novčića pre nego što izgubi B novčića. Početno bogatstvo igrača je 0 novčića, igrač se može zadužiti, odnosno njegovo bogatstvo može otići,,u minus. Neka je τ prvi trenutak u kojem slučajno lutanje S n dostigne ili B: τ = min{n 0: S n = ili S n = B} Dakle, u trenutku τ je S τ = ili je S τ = B, hoćemo da izračunamo verovatnoću P(S τ = S 0 = 0). Do rešenja ovog problema možemo doći na nekoliko načina, jedan od osnovnih je analiza prvog koraka. Prednost ovog načina je činjenica da je sasvim elementaran, u smislu da ne zahteva nikakvu naprednu matematiku, pored toga, analiza prvog koraka je jedan od osnovnih metoda za rešavanje problema računanja verovatnoća kod slučajnih lutanja. naliza prvog koraka zasniva se na posmatranju bogatstva 18
22 igrača nakon jedne runde igre. Nakon jedne runde bogatstvo igrača može se povećati ili smanjiti za 1 novčić, u našem slučaju verovatnoća oba ishoda je jednaka 1. Posmatrajmo sledeću rekurzivnu funkciju: 2 f(k) = P(S τ = S 0 = k), gde je B k U ovoj notaciji f(0) je verovatnoća dobijanja novčića, pre nego što izgubimo B novčića. Važi sledeća rekurzivna jednačina: f(k) = 1 2 f(k 1) f(k + 1) za B < k < (2.21) Sa vrednostima u krajnjim tačkama f() = 1 i f( B) = 0. ko stavimo f( B + 1) = a, zamenom vrednosti za f( B) i f( B + 1) u jednačinu (2.21) dobijamo f( B + 2) = 2a, pa daljim ubacivanjem f( B + 1) i f( B + 2) u jednačinu (2.21) dobijamo f( B + 3) = 3a, ovim postupkom dobijamo f( B + k) = ka za sve 0 k + B. Iz f() = 1, dobijamo a = 1/( + B). Time dobijamo: P(S n dostiže pre nego B S 0 = 0) = B + B Prilikom računanja prethodne verovatnoće pretpostavili smo da je vreme zaustavljanja, τ konačno. Ovo i nije toliko očigledna činjenica, pa ćemo je stoga sada dokazati. Posmatrajmo slučaj da igrač dobije + B puta zaredom. ko igrač već nije stigao do B ovim nizom će sigurno stići do. Ovakav niz ima pozitivnu verovatnoću p = 2 B. ko E k predstavlja događaj da igrač dobije novčić u svakoj rundi intervala [k( + B), (k + 1)( + B) 1], tada su E k nezavisni događaji, i τ > n( + B) povlači da se E k, 0 k n nijednom nije ostvarilo. Nalazimo: P(τ > n( + B) S 0 = 0) P ( n 1 c E k k=0 ) = (1 p) n (2.22) Kako je: P(τ = S 0 = 0) P(τ > n( + B) S 0 = 0) (2.23) Za sve n, vidimo iz jednačina (2.22) i (2.23) da je P(τ = S 0 = 0) = 0, kao što smo i želeli da pokažemo. Neka je I(D) indikator događaja D, tada za svaku slučajnu veličinu Z, Z 0, Z Z, važi: 19
23 Z = I(Z k) k=1 ko uzmemo očekivanje od obe strane dobijamo jednačinu: E(Z) = P(Z k) U cilju da dokažemo da je E(τ d ) < možemo koristiti sledeće procene: k=1 τ d I[(k 1)( + B) < τ k( + B)] k d ( + B) d I[(k 1)( + B) < τ] ko sumiramo po k imamo: τ d k d ( + B) d I[( + B)(k 1) < τ] k=1 Sada uzimanjem očekivanja od obe strane dobijamo: E(τ d ) k d ( + B) d (1 p) k 1 < k=1 Sada kada znamo da τ ima konačno očekivanje, postavlja se pitanje kako ga izračunati. I ovo možemo izračunati koristeći analizu prvog koraka. Posmatrajmo funkciju: g(k) = E(τ S 0 = k) Nakon jedne runde igre dve stvari će se desiti: bogatstvo igrača će se promeniti i jedinica vremena će se povećati. Rekurzivna jednačina koju sada dobijamo razlikuje se od rekurzivne jednačine za verovatnoću da igrač dobije novčića pre nego što izgubi B novčića samo po tome što se pojavljuje dodatna konstanta: g(k) = 1 2 g(k 1) g(k + 1) + 1 za B < k < (2.24) Dalje, kako je vreme potrebno da se dostigne ili B nula, ukoliko je S 0 = ili je S 0 = B, to su granični uslovi: g( B) = 0 i g() = 0 Da bi rešili ovu rekurzivnu jednačinu uvodimo sledeći operator: primenom ovog operatora dva puta dobijamo: g(k 1) = g(k) g(k 1) 2 g(k 1) = g(k + 1) 2g(k) + g(k 1) 20
24 Rekurzivna jednačina (2.24) može se zapisati kao: g(k 1) = 1 za B < k < (2.25) Dakle funkcija g: N R ima konstantan drugi izvod. Realna funkcija sa konstantnim drugim izvodom je kvadratni polinom. Dalje, jednačina (2.25) nam sugeriše da je koeficijent uz k 2 jednak 1, dok nam granični uslovi sugerišu da su nule ovog polinoma B i. Kada se sve ovo uzme u obzir dobijamo polinom g(k) = (k )(k + B) Zamenom ovog polinoma u jednačinu (2.24) dobijamo da on jeste rešenje rekurzivne jednačine. Najzad računamo očekivanje: E(τ S 0 = 0) = B Šta kada igra nije fer? Prilikom modelovanja igara na sreću uglavnom je verovatnoća dobitka novčića manja od verovatnoće gubitka novčića. Odnosno posmatraćemo uopšteniji problem, kada je P(X k = 1) = p i P(X k = 1) = q = 1 p, gde je p q, S 0 = 0. Da bi odredili verovatnoću da igrač pri ovim uslovima osvoji novčića pre nego što izgubi B novčića ponovo koristimo analizu prvog koraka. Dobijamo sledeću rekurzivnu jednačinu: f(k) = pf(k + 1) + qf(k 1) I ova jednačina se najlakše rešava uvođenjem operatora. Prvo primetimo da je s obzirom na p + q = 1 prethodna jednačina ekvivalentna: 0 = p{f(k + 1) f(k)} q{f(k) f(k 1)} Na osnovu ove jednačine nalazimo rekurzivnu jednačinu za Δf(k): Pa iz jednačine (2.26) važi: Δf(k) = ( q p ) Δf(k 1) (2.26) Δf(k + j) = ( q p ) j Δf(k) ko postavimo α = Δf( B), i iskoristimo činjenicu f( B) = 0 dobijamo: k+b 1 k+b 1 f(k) = Δf(j B) = α ( q p ) j j=0 Zamenom k = u jednačinu (2.27) dobijamo: j=0 ( q p )k+b 1 = α ( q p ) 1 (2.27) 21
25 ( q p )+B 1 1 = f() = α ( q p ) 1 Odatle je: ( q p )B 1 P(S n dođe u pre nego u B S 0 = 0) = ( q p )+B 1 Izračunajmo sada očekivano vreme zaustavljanja, odnosno broj rundi potreban da igračevo bogatstvo dostigne ili da padne do B, za ovaj slučaj kada je p q. Neka je sa g(k) označeno očekivano vreme pre nego što slučajno lutanje dođe do stanja ili B, ako je na početku u stanju k, tada je jednačina dobijena analizom prvog koraka sledeća: Što je ekvivalentno sa: g(k) = pg(k + 1) + qg(k 1) + 1 Δg(k) = ( q p ) Δg(k 1) + 1 (2.28) gde su granične vrednosti iste kao u slučaju p = q = 1 2 : g( B) = 0 i g() = 0 Da bi rešili jednačinu (2.28), prvo tražimo jedno rešenje a zatim rešavamo homogenu jednačinu. Pretpostavimo da postoji rešenje oblika ck, nakon ubacivanja ove vrednosti u jednačinu ispostavlja se da je pretpostavka tačna te da je jedno od rešenja ove jednačine g 0 (k) = k (q p). Prilikom dosadašnjeg rada pokazali smo da je a + b ( q p )k rešenje homogenog sistema (2.24) pa je rešenje sistema (2.28) oblika: g(k) = k q p + α + β (q p ) k Dva granična uslova daju nam par jednačina koje možemo koristiti da izračunamo α i β. Dobijamo: E(τ S 0 = 0) = B q p + B q p 1 ( q p )B 1 ( q p )+B 22
26 U ovoj glavi posmatrali smo slučajno lutanje kao lanac Markova, to je jedan od pristupa problemu slučajnog lutanja. Slučajno lutanje možemo tretirati i na druge načine (kao graf, martingal ). U sledećoj glavi posmatraćemo slučajno lutanje kao martingal. Za ovu glavu korišćena je literatura [2], [3], [5], osim za poslednje poglavlje za koji je korišćena literatura[1]. 23
27 Slučajno lutanje kao martingal U prethodnoj glavi definisali smo slučajno lutanje kao lanac Markova, tada smo pomenuli da to nije jedini način na koji slučajno lutanje možemo posmatrati i da se slučajno lutanje može posmatrati, između ostalog i kao martingal. U ovoj glavi posmatraćemo slučajno lutanje kao martingal. U samoj definiciji martingala javlja se pojam uslovnog matematičkog očekivanja, stoga ćemo u prvom poglavlju uvesti pojam uslovnog matematičkog očekivanja i uslovne verovatnoće u odnosu na neku σ-algebru. U drugom poglavlju opisaćemo slučajno lutanje kao martingal, dok ćemo u trećem poglavlju dokazati još neke osobine slučajnog lutanja posmatrajući ga kao martingal. Uslovno matematičko očekivanje Neka je (Ω,, P) prostor verovatnoća, F σ-podalgebra σ-algebre i X: Ω R slučajna veličina. Pod proširenom slučajnom veličinom podrazumevamo funkciju Y: Ω R { }, takvu da je Y 1 (B) za svaki Borelov skup B B. Definicija 3.1: Uslovno matematičko očekivanje nenegativne slučajne veličine X u odnosu na σ-algebru F je nenegativna proširena slučajna veličina E(X F), koja ima sledeća svojstva: 1. E(X F) je slučajna veličina koja je F-merljiva. 2. Za svaki događaj F važi jednakost: XdP = E(X F)dP Proizvoljnu slučajnu veličinu X možemo predstaviti kao X = X + X, gde su X + i X nenegativne slučajne veličine, definisane na sledeći način: 24 X + = max{x, 0}, X = max { X, 0} Definicija 3.2: Uslovno matematičko očekivanje E(X F) slučajne veličine X u odnosu na σ-algebru F definiše se ako je E(X + F) < + s.s. ili E(X F) < + s.s. formulom: E(X F) = E(X + F) E(X F) pri čemu se na skupu (verovatnoće 0) elementarnih događaja za koje važi jednakost E(X + F) = E(X F) = +, razlika E(X + F) E(X F) definiše na proizvoljan način, na primer, jednaka je 0. Definicija 3.3: Neka je definisano uslovno matematičko očekivanje E(X F). Uslovna disperzija D(X F) slučajne veličine X u odnosu na σ-algebru F je slučajna veličina data sa: D(X F) = E((X E(X F)) 2 F) Definicija 3.4: Neka Β F. Uslovno matematičko očekivanje E(I Β F) zove se uslovna verovatnoća događaja Β u odnosu na σ-algebru F, F, a označava se sa P(Β F).
28 Iz definicije uslovnog matematičkog očekivanja i uslovne verovatnoće događaja u odnosu na σ-algebru sledi da je za svaki fiksirani događaj Β F uslovna verovatnoća P(Β F) slučajna veličina koja ima sledeća dva svojstva: 1. P(Β F) je F-merljiva. 2. Za svaki događaj Α F važi P(B) = P(Β F)dP. Α Definicija 3.5: Neka je X slučajna veličina i F Y σ-algebra generisana slučajnom veličinom Y. ko je definisano uslovno matematičko očekivanje E(X F Y ), onda se ono označava sa E(X Y) i zove se uslovno matematičko očekivanje slučajne veličine X u odnosu na Y. Uslovna verovatnoća P(Β F Y ) označava se sa P(B Y) i zove uslovna verovatnoća događaja B u odnosu na Y. Teorema 3.1: Neka je D = {D 1, D 2, } konačno ili prebrojivo razbijanje sigurnog događaja Ω sa atomima D i, P(D i ) > 0, i = 1,2, i neka je F = σ(d) σ-algebra generisana razbijanjem D. 1. ko je X slučajna veličina za koju je definisano matematičko očekivanje E(X), onda važi jednakost: E(X F) = E(XI D i ) skoro sigurno na D P(D i ) i. n 2. ko je X = j=1 x j I j, diskretna slučajna veličina koja uzima konačno mnogo vrednosti, pri čemu je { 1, 2,, n } takođe razbijanje sigurnog događaja onda važi jednakost: n E(X F)(ω) = j=1 x j P( j D i ) skoro sigurno na D i. Dokaz ove teoreme moguće je pronaći u knjizi: Pavle Mladenović, Verovatnoća i statistika, koja se u spisku literature nalazi pod brojem [5]. Neka je (Ω,, P) prostor verovatnoća, F σ-podalgebra σ-algebre, a X i Y slučajne veličine za koje postoje E(X) i E(Y). Sledeće teoreme daju svojstva uslovnog matematičkog očekivanja. Teorema 3.2: Dokaz: 1. ko je C konstanta i X = C skoro sigurno, onda je E(X F) = C skoro sigurno. 2. ko je X Y skoro sigurno, onda je E(X F) E(Y F) skoro sigurno. 3. E(X F) E( X F) skoro sigurno. 4. E(aX + by F) = ae(x F) + be(y F) skoro sigurno, gde a, b R. 5. Neka je F 0 = {, Ω} trivijalna σ-algebra. Tada je E(X F 0 ) = E(X) skoro sigurno. 1. Konstanta je merljiva u odnosu na σ-algebru F, a jednakost: Važi za sve F, jer je X = C skoro svuda. XdP = CdP 2. ko je X Y skoro svuda, onda za svaki F važi. 25
29 XdP YdP pa sledi da je: E(X F) dp E(Y F) dp, F Neka je B = {ω X(ω) > Y(ω)}. Tada je: B E(Y F)dP B E(X F) dp B E(Y F)dP odatle sledi da je P(B) = S obzirom da je X X X, svojstvo sledi iz svojstva ko F, onda važi: odakle sledi navedeno svojstvo. (ax + by)dp = axdp = ae(x F) + bydp dp + be(y F) dp = (ae(x F) + be(x F))dP 5. Svojstvo sledi iz činjenice da je E(X) merljiva funkcija u odnosu na trivijalnu σ-algebru i činjenice da za {Ω, } važi jednakost XdP = E(X)dP. Teorema 3.3: Dokaz: 1. E(X ) = X skoro sigurno. 2. Teleskopsko svojstvo: ko su F 1 i F 2 σ-algebre za koje važi F 1 F 2, onda skoro sigurno važi jednakost: 3. E(E(X F)) = E(X). E(E(X F 1 ) F 2 ) = E(E(X F 2 ) F 1 ) = E(X F 1 ) 4. Neka slučajna veličina X ne zavisi od σ-algebre F, tj. ne zavisi od indikatora I B za svaki B F. Tada skoro sigurno važi jednakost: 1. Pošto je X -merljiva funkcija i E(X F) = E(X) 26
30 to sledi da je E(X ) = X skoro sigurno. 2. Neka je F 1. Tada važi: kako je F 1 F 2, to važi F 2 i XdP = XdP za sve F, E(X F 1 )dp = XdP Iz ovih jednakosti sledi da za svaki F 1 važi: E(E(X F 2 ) F 1 )dp = E(X F 2 )dp = XdP odakle sledi: E(X F 1 )dp = E(E(X F 2 ) F 1 )dp E(X F 1 ) = E(E(X F 2 ) F 1 ) s. s. ko F 2, onda na osnovu definicije uslovnog matematičkog očekivanja dobijamo: E(E(X F 2 ) F 1 )dp = E(X F 2 )dp Kako je slučajna veličina E(X F 1 ) F 1 -merljiva i F 1 F 2, to je E(X F 1 ) i F 2 -merljiva. Odatle sledi da je: E(X F 1 ) = E(E(X F 1 ) F 2 ) s. s. 3. Svojstvo direktno sledi iz teoreme 3.2, svojstvo 5. i jednakosti: E(E(X F 2 ) F 1 ) = E(X F 1 ) ako u toj jednakosti stavimo da je F 1 = {, Ω} i F 2 =. 4. Pošto je E(X) F-merljiva funkcija (u pitanju je konstanta funkcija) i za svaki događaj F važi: jer je E(XI ) = E(X)E(I ), to tvrđenje sledi. XdP = E(X)dP 27
31 Slučajno lutanje kao martingal Teorija martingala pojavila se kao sredstvo za dokazivanje da ne postoji siguran način zarade kockanjem ukoliko je opklada fer. Uspeh ove teorije nadmašio je korene i sada ona zauzima važno mesto u izučavanju slučajnih procesa. U ovom delu upoznaćemo se sa teorijom martingala, pokazati vezu između slučajnog lutanja i martingala i dokazati neka svojstva vezana za slučajno lutanje tretirajući ga kao martingal. Definicija 3.6: Kažemo da je niz slučajnih promenljivih {M n : 0 n < } martingal niza slučajnih promenljivih {X n : 1 n < }, ukoliko {M n } zadovoljava sledeća dva svojstva: 1. Za svako n 1 postoji funkcija f n : R n R takva da važi M n = f n (X 1, X 2,, X n ). 2. {M n } zadovoljava sledeću jednakost E(M n X 1, X 2,, X n 1 ) = M n 1 za n 1 (3.1) Pored ova dva svojstva zahtevaćemo da M n ima konačno očekivanje za svako n 1 i da je M 0 konstanta. Da bismo približili martingal intuiciji, ovu definiciju možemo posmatrati na sledeći način: X i možemo posmatrati kao ishod i-te runde fer igre, dok je M n bogatstvo igrača u trenutku n. Formula (3.1) nam govori da očekivano bogatstvo igrača u trenutku n, koji ima sve informacije o ishodu igre u prethodnih n 1 koraka iznosi M n 1, dakle da se neće promeniti. Primer 3.1: ko je X n niz nezavisnih slučajnih promenljivih koje zadovoljavaju E(X n ) = 0 za n 1, onda je niz S 0 = 0, S n = X X n za n 1 martingal za niz {X n : 1 n < }. Primer 3.2: ko je X n niz nezavisnih slučajnih promenljivih koje zadovoljavaju E(X n ) = 0 i D(X n ) = σ 2 za sve n 1, onda je niz M 0 = 0, M n = S n 2 nσ 2 za n 1 martingal za niz {X n : 1 n < }. Dokaz: Dokažimo da važi svojstvo 2. Iz definicije 3.6, odnosno da je: E(M n X 1, X 2,, X n 1 ) 2 = E(S n 1 + 2S n 1 X n + X 2 n nσ 2 X 1, X 2,, X n 1 ) 2 2 Kako je S n 1 funkcija od {X 1, X 2,, X n 1 }, to je uslovno očekivanje prvog sabirka S n 1. Za drugi sabirak važi: E(S n 1 X n X 1, X 2,, X n 1 ) = S n 1 E(X n X 1, X 2,, X n 1 ) Dalje je E(X n X 1, X 2,, X n 1 ) = E(X n ) = 0 jer X n ne zavisi od X 1,, X n 1. Očekivanje trećeg sabirka računamo slično: 28
32 E(X n 2 X 1, X 2,, X n 1 ) = E(X n 2 ) = σ 2 Pa je E(M n X 1, X 2,, X n 1 ) 2 = S n 1 + σ 2 nσ 2 2 = S n 1 (n 1)nσ 2 Kako bismo pojednostavili zapis uvešćemo neka pravila. Pišemo E(Z F n ) umesto E(Z X 1, X 2, X n ) kada je {M n : 1 n < } martingal niza {X n : 1 n < } kažemo {M n } je martingal niza {F n }. Dalje koristimo notaciju Y F n ako je Y = f(x 1, X 2, X n ). Definicija 3.7: Kažemo da niz {F n } sadrži sve informacije o nizu slučajnih promenljivih { n : 1 n < } ako za sve 1 n <, imamo n F n 1. Definicija 3.8: Proces {M n: 0 n < } definisan kao M 0 = M 0, M n = M (M 1 M 0 ) + 2 (M 2 M 1 ) + + n (M n M n 1 ) za n 1 naziva se transformacija martingala {M n } po { n }. Sledeća teorema daje nam uslove pod kojima je niz {M n} martingal. Teorema 3.4: (Teorema o transformaciji martingala) ko je {M n } martingal niza {F n } i ako {F n } sadrži sve informacije o nizu ograničenih slučajnih promenljivih { n : 1 n < }, tada je transformisani niz {M n} martingal niza {F n }. Dokaz: Jasno je da važi {M n F n }, dok nam ograničenost niza k garantuje da M n ima konačno očekivanje za svako n. Primećujemo da važi: pa važi: E(M n M n 1 F n 1 ) = E( n (M n M n 1 ) F n 1 ) = n E(M n M n 1 F n 1 ) = 0 Čime je dokaz završen. E(M n F n 1 ) = M n 1 Definicija 3.9: Slučajna promenljiva τ koja uzima vrednosti {0,1, } { } naziva se vreme zaustavljanja niza {F n } ako: {τ n} F n za sve 0 n < Često posmatramo svojstva slučajnog procesa Y n u trenutku zaustavljanja τ. ko je τ <, možemo definisati proces u trenutku zaustavljanja Y τ kao: 29
Osnovni pojmovi teorije verovatnoce
Osnovni pojmovi teorije verovatnoće Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2019 Milan Merkle Osnovni pojmovi ETF Beograd 1 / 13 Verovatnoća i statistika:
ВишеCelobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica
Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: min c T x Ax = b x 0 x Z n Gde pretpostavljamo da je A celobrojna matrica dimenzije m n, b Z m, c Z n. Takođe, očekuje se da
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL 2. kolokvij 29. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1. (
MJERA I INTEGRAL. kolokvij 9. lipnja 018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni! 1. (ukupno 6 bodova Neka je (, F, µ prostor s mjerom, neka je (f n n1 niz F-izmjerivih funkcija
Више6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe
6-8. ČAS Celobrojno programiranje Rešavamo sledeći poblem celobrojnog programiranja: Gde pretpostavljamo da je A celobrojna matrica dimenzije,. Takođe, očekuje se da su koordinate celobrojne. U slučaju
ВишеVerovatnoća - kolokvijum 17. decembar Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je
Verovatnoća - kolokvijum 17. decembar 2016. 1. Profesor daje dva tipa ispita,,,težak ispit i,,lak ispit. Verovatnoća da student dobije težak ispit je 0.8. Ako je ispit težak, verovatnoća da se prvo pitanje
ВишеФАКУЛТЕТ ОРГАНИЗАЦИОНИХ НАУКА
Питања за усмени део испита из Математике 3 I. ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ 1. Појам диференцијалне једначине. Пикарова теорема. - Написати општи и нормални облик диференцијалне једначине првог реда. - Дефинисати:
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivana Šore REKURZIVNOST REALNIH FUNKCIJA Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, rujan, 2015. Ovaj diplomski
ВишеУниверзитет у Нишу Природно-математички факултет Департман за математику Процеси обнављања и нека њихова уопштења Мастер рад Ментор: Проф. др Марија М
Универзитет у Нишу Природно-математички факултет Департман за математику Процеси обнављања и нека њихова уопштења Мастер рад Ментор: Проф. др Марија Милошевић Студент: Јелена Милошевић Ниш, 218. Садржај
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja (Knjige, bilježnice, dodatni papiri i kalkulatori n
1. (ukupno 6 bodova) MJERA I INTEGRAL 1. kolokvij 4. svibnja 2018. (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) (a) (2 boda) Definirajte (općenitu) vanjsku mjeru. (b) (2 boda) Definirajte
Више1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K.
1 Polinomi jedne promenljive Neka je K polje. Izraz P (x) = a 0 + a 1 x + + a n x n = n a k x k, x K, naziva se algebarski polinom po x nad poljem K. Elementi a k K su koeficijenti polinoma P (x). Ako
ВишеMatematiqki fakultet Univerzitet u Beogradu Iracionalne jednaqine i nejednaqine Zlatko Lazovi 29. mart 2017.
Matematiqki fakultet Univerzitet u Beogradu 29. mart 2017. Matematiqki fakultet 2 Univerzitet u Beogradu Glava 1 Iracionalne jednaqine i nejednaqine 1.1 Teorijski uvod Pod iracionalnim jednaqinama podrazumevaju
ВишеKonstrukcija i analiza algoritama Nina Radojičić februar Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne fun
Konstrukcija i analiza algoritama Nina Radojičić februar 2018. 1 Analiza algoritama, rekurentne relacije 1 Definicija: Neka su f i g dve pozitivne funkcije od argumenta n iz skupa N prirodnih brojeva.
ВишеSadržaj 1 Diskretan slučajan vektor Definicija slučajnog vektora Diskretan slučajan vektor
Sadržaj Diskretan slučajan vektor Definicija slučajnog vektora 2 Diskretan slučajan vektor Funkcija distribucije slučajnog vektora 2 4 Nezavisnost slučajnih vektora 2 5 Očekivanje slučajnog vektora 6 Kovarijanca
ВишеSkripte2013
Chapter 2 Algebarske strukture Preslikivanje f : A n! A se naziva n-arna operacija na skupu A Ako je n =2, kažemo da je f : A A! A binarna operacija na A Kažemo da je operacija f arnosti n, u oznaci ar
ВишеMy_P_Trigo_Zbir_Free
Штa треба знати пре почетка решавања задатака? ТРИГОНОМЕТРИЈА Ниво - Основне формуле које произилазе из дефиниција тригонометријских функција Тригонометријске функције се дефинишу у правоуглом троуглу
ВишеMicrosoft Word - 15ms261
Zadatak 6 (Mirko, elektrotehnička škola) Rješenje 6 Odredite sup S, inf S, ma S i min S u skupu R ako je S = { R } a b = a a b + b a b, c < 0 a c b c. ( ), : 5. Skratiti razlomak znači brojnik i nazivnik
ВишеJMBAG IME I PREZIME BROJ BODOVA MJERA I INTEGRAL završni ispit 6. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!) 1.
MJERA I INTEGRAL završni ispit 6. srpnja 208. (Knjige bilježnice dodatni papiri i kalkulatori nisu dozvoljeni!). (8 bodova) Kao na predavanjima za d N sa P d : a b ] a d b d ] : a i b i R a i b i za i
ВишеMicrosoft Word - 13pavliskova
ПОДЗЕМНИ РАДОВИ 4 (5) 75-8 UDK 6 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 5494 ИЗВОД Стручни рад УПОТРЕБА ОДВОЈЕНОГ МОДЕЛА РЕГЕНЕРАЦИЈЕ ЗА ОДРЕЂИВАЊЕ ПОУЗДАНОСТИ ТРАНСПОРТНЕ ТРАКЕ Павлисковá Анна, Марасовá
Више9. : , ( )
9. Динамика тачке: Енергиjа, рад и снага (први део) др Ратко Маретић др Дамир Мађаревић Департман за Техничку механику, Факултет техничких наука Нови Сад Садржаj - Шта ћемо научити (1) 1. Преглед литературе
ВишеMy_P_Red_Bin_Zbir_Free
БИНОМНА ФОРМУЛА Шт треба знати пре почетка решавања задатака? I Треба знати биному формулу која даје одговор на питање чему је једнак развој једног бинома када га степенујемо са бројем 0 ( ) или ( ) 0!,
ВишеMy_ST_FTNIspiti_Free
ИСПИТНИ ЗАДАЦИ СУ ГРУПИСАНИ ПО ТЕМАМА: ЛИМЕСИ ИЗВОДИ ФУНКЦИЈЕ ЈЕДНЕ ПРОМЕНЉИВЕ ИСПИТИВАЊЕ ТОКА ФУНКЦИЈЕ ЕКСТРЕМИ ФУНКЦИЈЕ СА ВИШЕ ПРОМЕНЉИВИХ 5 ИНТЕГРАЛИ ДОДАТАК ФТН Испити С т р а н а Лимеси Одредити
ВишеPaper Title (use style: paper title)
Статистичка анализа коришћења електричне енергије која за последицу има примену повољнијег тарифног става Аутор: Марко Пантовић Факултет техничких наука, Чачак ИАС Техника и информатика, 08/09 e-mal адреса:
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 3 Konusni preseci (krive drugog reda, kvadratne krive) Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 3 1 / 22 Ime s obzirom na karakteristike
ВишеP1.1 Analiza efikasnosti algoritama 1
Analiza efikasnosti algoritama I Asimptotske notacije Master metoda (teorema) 1 Asimptotske notacije (1/2) Služe za opis vremena izvršenja algoritma T(n) gde je n N veličina ulaznih podataka npr. br. elemenata
ВишеTeorija skupova - blog.sake.ba
Uvod Matematika je jedan od najomraženijih predmeta kod većine učenika S pravom, dakako! Zapitajmo se šta je uzrok tome? Da li je matematika zaista toliko teška, komplikovana? Odgovor je jednostavan, naravno
ВишеMatematka 1 Zadaci za vežbe Oktobar Uvod 1.1. Izračunati vrednost izraza (bez upotrebe pomoćnih sredstava): ( ) [ a) : b) 3 3
Matematka Zadaci za vežbe Oktobar 5 Uvod.. Izračunati vrednost izraza bez upotrebe pomoćnih sredstava): ) [ a) 98.8.6 : b) : 7 5.5 : 8 : ) : :.. Uprostiti izraze: a) b) ) a b a+b + 6b a 9b + y+z c) a +b
ВишеPRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN Odrediti
PRIRODNO-MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA MATEMATIKU I INFORMATIKU ZADACI SA REŠENJIMA SA PRIJEMNOG ISPITA IZ MATEMATIKE, JUN 0. Odrediti moduo kompleksnog broja Rešenje: Uočimo da važi z = + i00
ВишеТалесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су a и b две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да
Талесова 1 теорема и примене - неки задаци из збирке Дефинициjа 1: Нека су и две дужи чиjе су дужине изражене преко мерне jединице k > 0, тако да jе m k и n k, где су m, n > 0. Тада кажемо да су дужи и
Вишеknjiga.dvi
1. Vjerojatnost 1. lgebra dogadaja......................... 1 2. Vjerojatnost............................. 9 3. Klasični vjerojatnosni prostor................. 14 4. eskonačni vjerojatnosni prostor...............
ВишеСТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за векто
СТРАХИЊА РАДИЋ КЛАСИФИКАЦИJА ИЗОМЕТРИJА И СЛИЧНОСТИ Према књизи [1], свака изометриjа σ се може представити ком позици - jом неке транслациjе за вектор a (коjи може бити и дужине нула) и неке изометриjе
Више1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan
1 Konusni preseci (drugim rečima: kružnica, elipsa, hiperbola i parabola) Definicija 0.1 Algebarska kriva drugog reda u ravni jeste skup tačaka opisan jednačinom oblika: a 11 x 2 + 2a 12 xy + a 22 y 2
ВишеMicrosoft Word - predavanje8
DERIVACIJA KOMPOZICIJE FUNKCIJA Ponekad je potrebno derivirati funkcije koje nisu jednostavne (složene su). Na primjer, funkcija sin2 je kompozicija funkcija sin (vanjska funkcija) i 2 (unutarnja funkcija).
ВишеMicrosoft Word - 6ms001
Zadatak 001 (Anela, ekonomska škola) Riješi sustav jednadžbi: 5 z = 0 + + z = 14 4 + + z = 16 Rješenje 001 Sustav rješavamo Gaussovom metodom eliminacije (isključivanja). Gaussova metoda provodi se pomoću
ВишеОрт колоквијум
II колоквијум из Основа рачунарске технике I - 27/28 (.6.28.) Р е ш е њ е Задатак На улазе x, x 2, x 3, x 4 комбинационе мреже, са излазом z, долази четворобитни BCD број. Ако број са улаза при дељењу
ВишеПРИРОДА И ЗНАК РЕШЕЊА 2 b ax bx c 0 x1 x2 2 D b 4ac a ( сви задаци су решени) c b D xx 1 2 x1/2 a 2a УСЛОВИ Решења реална и различита D>0 Решења реалн
ПРИРОДА И ЗНАК РЕШЕЊА ax x c 0 x x D 4ac a ( сви задаци су решени) c D xx x/ a a УСЛОВИ Решења реална и различита D>0 Решења реална D Двоструко решење (реална и једнака решења) D=0 Комплексна решења (нису
Вишеvjezbe-difrfv.dvi
Zadatak 5.1. Neka je L: R n R m linearni operator. Dokažite da je DL(X) = L, X R n. Preslikavanje L je linearno i za ostatak r(h) = L(X + H) L(X) L(H) = 0 vrijedi r(h) lim = 0. (5.1) H 0 Kako je R n je
ВишеДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 2006/2007 године I разред
ДРУШТВО ФИЗИЧАРА СРБИЈЕ МИНИСТАРСТВО ПРОСВЕТЕ И СПОРТА РЕПУБЛИКЕ СРБИЈЕ Задаци за републичко такмичење ученика средњих школа 006/007 године разред. Електрични систем се састоји из отпорника повезаних тако
ВишеРационални Бројеви Скуп рационалних бројева 1. Из скупа { 3 4, 2, 4, 11, 0, , 1 5, 12 3 } издвој подскуп: а) природних бројева; б) целих броје
Рационални Бројеви Скуп рационалних бројева. Из скупа {,,,, 0,,, } издвој подскуп: а) природних бројева; б) целих бројева; в) ненегативних рационалних бројева; г) негативних рационалних бројева.. Запиши
ВишеСТЕПЕН појам и особине
СТЕПЕН појам и особине Степен чији је изложилац природан број N R \ 0 изложилац (експонент) основа степен Особине: m m m m : m m : : Примери. 8 4 7 4 5 4 4 5 6 :5 Важно! 5 5 5 5 5 55 5 Основа је број -5
Више1
Podsetnik: Statističke relacije Matematičko očekivanje (srednja vrednost): E X x p x p x p - Diskretna sl promenljiva 1 1 k k xf ( x) dx E X - Kontinualna sl promenljiva Varijansa: Var X X E X E X 1 N
ВишеHej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. D
Hej hej bojiš se matematike? Ma nema potrebe! Dobra priprema je pola obavljenog posla, a da bi bio izvrsno pripremljen tu uskačemo mi iz Štreberaja. Donosimo ti primjere ispita iz matematike, s rješenjima.
ВишеJMBAG IME I PREZIME BROJ BODOVA 1. (ukupno 20 bodova) MJERA I INTEGRAL Popravni ispit 7. rujna (Knjige, bilježnice, dodatni papiri i kalkulatori
1. (ukuno 20 bodova) MJERA I INTEGRAL Poravni isit 7. rujna 2018. (Knjige, bilježnice, dodatni airi i kalkulatori nisu dozvoljeni!) (a) (4 boda) Neka je nerazan sku. Precizno definirajte ojam σ-rstena
ВишеVEŽBE IZ OPERACIONIH ISTRAŽIVANJA
VEŽBE IZ OPERACIONIH ISTRAŽIVANJA Glava 4 1. Metoda grananja i odsecanja 2. Metoda grananja i ograničavanja 3. Metoda implicitnog prebrojavanja MARIJA IVANOVIĆ marijai@math.rs Metoda grananja i odsecanja
ВишеMatrice. Algebarske operacije s matricama. - Predavanje I
Matrice.. Predavanje I Ines Radošević inesr@math.uniri.hr Odjel za matematiku Sveučilišta u Rijeci Matrice... Matrice... Podsjeti se... skup, element skupa,..., matematička logika skupovi brojeva N,...,
ВишеDISKRETNA MATEMATIKA
DISKRETNA MATEMATIKA Kombinatorika Permutacije, kombinacije, varijacije, binomna formula Ivana Milosavljević - 1 - 1. KOMBINATORIKA PRINCIPI PREBROJAVANJA Predmet kombinatorike je raspoređivanje elemenata
Више1. Vrednost izraza jednaka je: Rexenje Direktnim raqunom dobija se = 4 9, ili kra e S = 1 ( 1 1
1. Vrednost izraza 1 1 + 1 5 + 1 5 7 + 1 7 9 jednaka je: Rexenje Direktnim raqunom dobija se 1 + 1 15 + 1 5 + 1 6 = 4 9, ili kra e S = 1 1 1 2 + 1 1 5 + 1 5 1 7 + 1 7 1 ) = 1 7 2 8 9 = 4 9. 2. Ako je fx)
ВишеSkalarne funkcije više varijabli Parcijalne derivacije Skalarne funkcije više varijabli i parcijalne derivacije Franka Miriam Brückler
i parcijalne derivacije Franka Miriam Brückler Jednadžba stanja idealnog plina uz p = nrt V f (x, y, z) = xy z x = n mol, y = T K, z = V L, f == p Pa. Pritom je kodomena od f skup R, a domena je Jednadžba
ВишеUvod u obične diferencijalne jednadžbe Metoda separacije varijabli Obične diferencijalne jednadžbe Franka Miriam Brückler
Obične diferencijalne jednadžbe Franka Miriam Brückler Primjer Deriviranje po x je linearan operator d dx kojemu recimo kao domenu i kodomenu uzmemo (beskonačnodimenzionalni) vektorski prostor funkcija
ВишеЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА
ЗАДАЦИ ИЗ МАТЕМАТИКЕ ЗА ПРИПРЕМАЊЕ ЗАВРШНОГ ИСПИТА p m m m Дат је полином ) Oдредити параметар m тако да полином p буде дељив са б) Одредити параметар m тако да остатак при дељењу p са буде једнак 7 а)
ВишеТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља www.
ТРОУГАО БРЗИНА и математичка неисправност Лоренцове трансформације у специјалној теорији релативности Александар Вукеља aleksandar@masstheory.org www.masstheory.org Август 2007 О ауторским правима: Дело
ВишеVjezbe 1.dvi
Matematia I Elvis Baraović 0 listopada 08 Prirodno-matematiči faultet Univerziteta u Tuzli, Odsje matematia, Univerzitetsa 75000 Tuzla;http://pmfuntzba/staff/elvisbaraovic/ Sadržaj Sup realnih brojeva
Више(Microsoft Word vje\236ba - LIMES FUNKCIJE.doc)
Zadatak Pokažite, koristeći svojstva esa, da je ( 6 ) 5 Svojstva esa funkcije u točki: Ako je k konstanta, k k c c c f ( ) L i g( ) M, tada vrijedi: c c [ f ( ) ± g( ) ] c c f ( ) ± g( ) L ± M c [ f (
ВишеMicrosoft Word - ETH2_EM_Amperov i generalisani Amperov zakon - za sajt
Полупречник унутрашњег проводника коаксијалног кабла је Спољашњи проводник је коначне дебљине унутрашњег полупречника и спољашњег Проводници кабла су начињени од бакра Кроз кабл протиче стална једносмерна
Више3. КРИВОЛИНИЈСКИ ИНТЕГРАЛ
УНИВЕРЗИТЕТ У БАЊОЈ ЛУЦИ МАШИНСКИ ФАКУЛТЕТ МАТЕМАТИКА 3- ПРЕДАВАЊА Aкадемска 207/208 6. ИНТЕГРАЦИЈА ФУНКЦИЈА КОМПЛЕКСНЕ ПРОМЈЕНЉИВЕ 6.. Интеграл функције комплексне промјенљиве 6.2. Кошијева интегрална
ВишеRealne opcije
UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU MASTER RAD Trinomni model cena opcija Student: Marija Milovanović br. indeksa: 11 Niš, januar 2013. Mentor: dr Miljana Jovanović
ВишеMicrosoft Word - Ispitivanje toka i grafik funkcije V deo
. Ispitati tok i skicirati grafik funkcije y= arcsin + Oblast definisanosti (domen) Podsetimo se grafika elementarnih funkcija i kako izgleda arcsin funkcija: y - y=arcsin Funkcija je definisana za [,]
ВишеОрт колоквијум
I колоквијум из Основа рачунарске технике I - надокнада СИ - 008/009 (10.05.009.) Р е ш е њ е Задатак 1 a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један,
ВишеSVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc.
SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Igor Sušić LOKALNA IZRAČUNLJIVOST Diplomski rad Voditelj rada: doc.dr.sc. Zvonko Iljazović Zagreb, lipanj 015. Ovaj diplomski
ВишеMAT KOL (Banja Luka) ISSN (p), ISSN (o) Vol. XX (2)(2014), PELLOVA JEDNAČINA I PITAGORIN
MAT KOL (Banja Luka) ISSN 0354 6969 (p), ISSN 986 5228 (o) Vol. XX (2)(204), 59 68 http://www.imvibl.org/dmbl/dmbl.htm PELLOVA JEDNAČINA I PITAGORINE TROJKE Amra Duraković Bernadin Ibrahimpašić 2, Sažetak
ВишеОрт колоквијум
Задатак 1 I колоквијум из Основа рачунарске технике I - надокнада - 008/009 (16.05.009.) Р е ш е њ е a) Пошто постоје вектори на којима се функција f не јавља и вектори на којима има вредност један, лако
ВишеSlide 1
Statistička analiza u hidrologiji Uvod Statistička analiza se primenjuje na podatke osmatranja hidroloških veličina (najčešće: protoka i kiša) Cilj: opisivanje veze između veličine i verovatnoće njene
ВишеGrafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odr
Grafovi 1. Posmatrajmo graf prikazan na slici sa desne strane. a) Odrediti skup čvorova V i skup grana E posmatranog grafa. Za svaku granu posebno odrediti njene krajeve. b) Odrediti sledeće skupove: -
Више7. predavanje Vladimir Dananić 14. studenoga Vladimir Dananić () 7. predavanje 14. studenoga / 16
7. predavanje Vladimir Dananić 14. studenoga 2011. Vladimir Dananić () 7. predavanje 14. studenoga 2011. 1 / 16 Sadržaj 1 Operator kutne količine gibanja 2 3 Zadatci Vladimir Dananić () 7. predavanje 14.
ВишеПрограмирај!
Листе Поред појединачних вредности исказаних бројем или ниском карактера, често је потребно забележити већи скуп вредности које су на неки начин повезане, као, на пример, имена у списку путника у неком
ВишеУНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ МАСТЕР РАД Доношење одлука у условима неодређености Студент: Јелена Матић бр.
УНИВЕРЗИТЕТ У НИШУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ МАСТЕР РАД Доношење одлука у условима неодређености Студент: Јелена Матић бр. индекса 179 Ментор: Проф. др Драган Ђорђевић Ниш,
ВишеZADACI ZA VJEŽBU 1. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C). 2.
ZADACI ZA VJEŽBU. Dokažite da vrijedi: (a) (A \ B) (B \ A) = (A B) (A C B C ), (b) A \ (B \ C) = (A C) (A \ B), (c) (A B) \ C = (A \ C) (B \ C).. Pomoću matematičke indukcije dokažite da za svaki n N vrijedi:
ВишеMATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8. siječnja 2010.
MATEMATIČKA ANALIZA I primjeri i zadaci Ante Mimica 8 siječnja 00 Sadržaj Funkcije 5 Nizovi 7 3 Infimum i supremum 9 4 Neprekidnost i es 39 3 4 SADRZ AJ Funkcije 5 6 FUNKCIJE Nizovi Definicija Niz je
ВишеMicrosoft Word - VEROVATNOCA II deo.doc
VEROVATNOĆA - ZADAI (II DEO) Klasična definicija verovatnoće Verovatnoća dogañaja A jednaka je količniku broja povoljnih slučajeva za dogañaj A i broja svih mogućih slučajeva. = m n n je broj svih mogućih
ВишеPITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(l
PITANJA I ZADACI ZA II KOLOKVIJUM IZ MATEMATIKE I Pitanja o nizovima Nizovi Realni niz i njegov podniz. Tačka nagomilavanja niza i granična vrednost(limes) niza. Svojstva konvergentnih nizova, posebno
ВишеUAAG Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević
Osnovne algebarske strukture 5. Vektorski prostori Borka Jadrijević Osnovne algebarske strukture5. Vektorski prostori 2 5.1 Unutarnja i vanjska množenja Imamo dvije vrste algebarskih operacija, tzv. unutarnja
ВишеALGEBRA I (2010/11)
ALGEBRA I (2010/11) ALGEBRA I(20010/11), KOLOKVIJUM I-NOVEMBAR, 24. novembar 2010. GRUPA I 1. Da li je tautologija: p ( q r) (p q) (p r). 2. Pronaći KKF i KDF za r ( p q). 3. Pronaći jean primer interpretacije
ВишеDinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem
Dinamičko programiranje Primer 1: Za dati niz naći njegov najduži neopadajući podniz. Defnicija: podniz nekog niza je niz koji se dobija izbacivanjem nekih (moguće nijednog) elemenata polaznog niza. Formalno,
ВишеТЕОРИЈА УЗОРАКА 2
ТЕОРИЈА УЗОРАКА 2 12. 04. 13. ВЕЖБАЊА Написати функције за бирање елемената популације обима N у узорак обима n, код простог случајног узорка, користећи алгоритме: Draw by draw procedure for SRS/SRSWOR
ВишеSlide 1
Катедра за управљање системима ТЕОРИЈА СИСТЕМА Предавањe 2: Основни појмови - систем, модел система, улаз и излаз UNIVERSITY OF BELGRADE FACULTY OF ORGANIZATIONAL SCIENCES План предавања 2018/2019. 1.
ВишеMicrosoft Word - O nekim klasicnim kvadratnim Diofantovim jednacinama.docx
Универзитет у Београду Математички факултет О неким класичним квадратним Диофантовим једначинама Мастер рад ментор: Марко Радовановић студент: Ивана Фируловић Београд, 2017. Садржај Увод...2 1. Линеарне
ВишеTeorija igara
Strategije Strategije igrača B igrača A B 1 B 2... B n A 1 e 11 e 12... e 1n A 2 e 21 e 22... e 2n............... A m e m1 e m2... e mn Cilj: Odrediti optimalno ponašanje učesnika u igri Ako je dobitak
ВишеMicrosoft Word - IZVOD FUNKCIJE.doc
IZVOD FUNKCIJE Predpotavimo da je funkcija f( definiana u nekom intervalu (a,b i da je tačka iz intervala (a,b fikirana. Uočimo neku proizvoljnu tačku iz tog intervala (a,b. Ova tačka može da e pomera
ВишеMicrosoft PowerPoint - jkoren10.ppt
Dickey-Fuller-ov test jediničnog korena Osnovna ideja Različite determinističke komponente Izračunavanje test-statistike Pravilo odlučivanja Određivanje broja jediničnih korena Algoritam testiranja Prošireni
ВишеMere slicnosti
Nenad Mitić Matematički fakultet nenad@matf.bg.ac.rs Kako odrediti sličnost/različitost, obrazaca, atributa, dogadjaja... Podaci različitog tipa i strukture Zavisnost od tipa, raspodele, dimenzionalnosti
ВишеTest iz Linearne algebre i Linearne algebre A qetvrti tok, U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x +
Test iz Linearne algebre i Linearne algebre A qetvrti tok, 2122017 1 U zavisnosti od realnog parametra λ rexiti sistem jednaqina x + y + z = λ x + λy + λ 2 z = λ 2 x + λ 2 y + λ 4 z = λ 4 2 Odrediti inverz
ВишеMAT-KOL (Banja Luka) XXIII (4)(2017), DOI: /МК Ž ISSN (o) ISSN (o) ЈЕДНА
MAT-KOL (Banja Luka) XXIII (4)(07) 9-35 http://www.mvbl.org/dmbl/dmbl.htm DOI: 0.75/МК7049Ž ISSN 0354-6969 (o) ISSN 986-588 (o) ЈЕДНА КЛАСА ХЕРОНОВИХ ТРОУГЛОВА БЕЗ ЦЕЛОБРОЈНИХ ВИСИНА Милан Живановић Висока
ВишеTEORIJA SIGNALA I INFORMACIJA
Multiple Input/Multiple Output sistemi MIMO sistemi Ulazi (pobude) Izlazi (odzivi) u 1 u 2 y 1 y 2 u k y r Obrada=Matematički model Načini realizacije: fizički sistemi (hardware) i algoritmi (software)
ВишеРЕШЕЊА 1. (2) Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подр
РЕШЕЊА. () Обележја статистичких јединица посматрања су: а) особине које су заједничке за јединице посматрања б) особине које се проучавају, а подразумевају различите вредности по јединицама посматрања
ВишеMicrosoft Word - CAD sistemi
U opštem slučaju, se mogu podeliti na 2D i 3D. 2D Prvo pojavljivanje 2D CAD sistema se dogodilo pre više od 30 godina. Do tada su inženjeri koristili table za crtanje (kulman), a zajednički jezik komuniciranja
ВишеUkoliko Vam za bilo koji zadatak treba pomoć, slobodno pozovite. Postoji mogućnost kompletnog kursa, kao i individualnih časova. Zadatke prikupio i ot
Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje. Pokazati da je to preslikavanje linearni operator, naći matricu, sopstvene vrednosti i sopstvene vektore tog operatora. 2. Odrediti vrednost parametra
ВишеMicrosoft Word - TAcKA i PRAVA3.godina.doc
TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje izmeñu dve tače Ao su nam date tače A( x, y i B( x, y, onda rastojanje izmeñu njih računamo po formuli d( A,
ВишеОрт колоквијум
Испит из Основа рачунарске технике - / (6.6.. Р е ш е њ е Задатак Комбинациона мрежа има пет улаза, по два за број освојених сетова тенисера и један сигнал који одлучује ко је бољи уколико је резултат
ВишеPrimjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, Literatura: I. Gusić, Lekcije iz Matematike 2
Primjena neodredenog integrala u inženjerstvu Matematika 2 Erna Begović Kovač, 2019. Literatura: I. Gusić, Lekcije iz Matematike 2 http://matematika.fkit.hr Uvod Ako su dvije veličine x i y povezane relacijom
ВишеAlgoritmi SŠ P1
Državno natjecanje iz informatike Srednja škola Prvi dan natjecanja 2. ožujka 219. ime zadatka BADMINTON SJEME MANIPULATOR vremensko ograničenje 1 sekunda 1 sekunda 3 sekunde memorijsko ograničenje 512
ВишеMicrosoft Word - ASIMPTOTE FUNKCIJE.doc
ASIMPTOTE FUNKCIJE (PONAŠANJE FUNKCIJE NA KRAJEVIMA OBLASTI DEFINISANOSTI) Ovo je jedna od najznačajnijih tačaka u ispitivanju toka funkcije. Neki profesori zahtevaju da se asimptote rade kao. tačka u
ВишеElementarna matematika 1 - Oblici matematickog mišljenja
Oblici matematičkog mišljenja 2007/2008 Mišljenje (psihološka definicija) = izdvajanje u čovjekovoj spoznaji odre denih strana i svojstava promatranog objekta i njihovo dovo denje u odgovarajuće veze s
ВишеPRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekste
PRIRODNO MATEMATIČKI FAKULTET U NIŠU DEPARTMAN ZA RAČUNARSKE NAUKE Utorak, 5.06.019. godine PRIJEMNI ISPIT IZ INFORMATIKE 1. Koja od navedenih ekstenzija se najčešće koristi za tekstualne datoteke? a)
ВишеMicrosoft Word - 09_Frenetove formule
6 Frenet- Serret-ove formule x : 0,L Neka je regularna parametrizaija krivulje C u prostoru parametru s ) zadana vektorskom jednadžbom: x s x s i y s j z s k x s, y s, z s C za svaki 0, L Pritom je zbog
ВишеPopularna matematika
6. lipnja 2009. Russellov paradoks Russellov paradoks Bertrand Arthur William Russell (1872. - 1970.), engleski filozof, matematičar i društveni reformator. Russellov paradoks Bertrand Arthur William Russell
ВишеUNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš,
UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET Departman za matematiku MASTER RAD VaR Mentor: Prof. dr Miljana Jovanović Student: Milena Stošić Niš, 2015. Sadržaj Uvod... 4 Glava 1 Uvodni pojmovi...
ВишеDiferenciranje i integriranje pod znakom integrala math.e Vol math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod
1 math.e Hrvatski matematički elektronički časopis Diferenciranje i integriranje pod znakom integrala analiza Irfan Glogić, Harun Šiljak When guys at MIT or Princeton had trouble doing a certain integral,
ВишеAnaliticka geometrija
Analitička geometrija Predavanje 4 Ekscentricitet konusnih preseka i klasifikacija kvadratnih krivih Novi Sad, 2018. Milica Žigić (PMF, UNS 2018) Analitička geometrija predavanje 4 1 / 15 Ekscentricitet
ВишеTitle
1. Realni brojevi Prirodno bi bilo konstruisati skup realnih brojeva korak po korak, od prirodnih brojeva preko cijelih, racionalnih i na kraju iracionalnih. Medutim, mi ćemo tom problemu ovdje pristupiti
Више(Microsoft Word - MATB - kolovoz osnovna razina - rje\232enja zadataka)
. B. Zapišimo zadane brojeve u obliku beskonačno periodičnih decimalnih brojeva: 3 4 = 0.7, = 0.36. Prvi od navedenih četiriju brojeva je manji od 3 4, dok su treći i četvrti veći od. Jedini broj koji
Више